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Abstract

In this paper, we employ a fixed point theorem on a cone to study the

existence of positive periodic solutions for the following higher-

dimensional functional differential equation:

( ) ( ) ( ) ( ) .,, R∈=+ txtftxtAtx t�

Some existence results of multiplicity positive periodic solutions are

obtained.

1. Introduction

Recently, by employing Krasnosel’skii fixed point theorem [5] on a

cone, Jiang and Wei [4] have investigated the existence of one positive
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periodic solution for functional differential equations of the form

( ) ( ) ( ) ( ),, txtftxtAtx +=�

where ( ) ( ) ( ) ( )[ ] ( )RR,,...,,, 21 CatatatadiagtA jn ∈=  is ω-periodic, ×R:f

,nBC R→  and 0>ω  is a constant. In this paper, we are concerned

with the following functional differential equation:

( ) ( ) ( ) ( ) ,,, R∈=+ txtftxtAtx t� (1)

in which ( ) ( ) ( ) ( )[ ] ( )RR,,...,,, 21 CatatatadiagtA jn ∈=  is ω-periodic, =j

.,...,2,1 n  ( )txtf ,  is a function defined on ,BC×R  and ( )txtf ,  is

ω-periodic whenever x is ω-periodic, where BC denotes the Banach space

of bounded continuous functions nRR →φ :  with the norm =φ

( ) ,sup
1
∑
= ∈θ

θφ
n

j

j

R
 where ( ) ....,,, 21 Tnφφφ=φ  If ,BCx ∈  then BCxt ∈  for

any R∈t  is defined by ( ) ( )θ+=θ txxt  for .R∈θ  And 0>ω  is a

constant.

System (1) was extensively investigated in literature as bio-
mathematics models. It contains many bio-mathematics models of delay
differential equations or systems, such as the periodic logistic equation
with several delays [7]

( ) ( ) ( ) ( ) ( )( )
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τ−−= ∑
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n
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ii ttytbtatyty
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�

and the periodic distributed delay Lotka-Volterra competition system [8]

( ) ( ) ( ) ( ) ( ) ( ) ....,,2,1,
1

0
nidsstusKatuatrtu
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For more information about the applications of system (1) to a variety of
population models, we refer to the reader to [2, 3, 6, 10] and the
references cited therein. Our purpose of this paper is to study the
existence of multiplicity positive periodic solutions of (1) by utilizing a
fixed point theorem [1] on a cone.
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For convenience, we need to introduce a few notations. Let =R
( ) [ ),,0,, ∞+=∞+∞− +R  and ( ],0,∞−=−R  respectively. For each =x

( ) ,...,,, 21 nTnxxx R∈  the norm of x is defined as ∑ =
= n

j
jxx

1
.

{( ) }....,,2,1,0:...,,, 21 njxxxx jnTnn =≥∈=+ RR  We say that x is

positive when .nx +∈ R  ( )YX,BC  denotes the set of bounded continuous

functions .: YX� →φ

2. Main Results

The objective of this section is to derive sufficient conditions for two
existence results of twin positive periodic solutions of (1). It follows from
(1) that

( ) ( ) ( )∫
ω+

=
t

t
s dsxsfstgtx ,,, (2)

where

( ) ( ) ( ) ( )( )Tsnsss xsfxsfxsfxsf ,...,,,,,, 21=

and

( ) ( ) ( ) ( )[ ] ( )
( )

( ) 1exp

exp
,,,...,,,,,,

0

21

−

















==

∫
∫
ω

dvva

dvva
stgstgstgstgdiagstg

j

s

t
j

jn (3)

for ( ) ....,,2,1,, 2 njst =∈ R

In what follows, we always assume that

)H( 1  ( )∫
ω

≠
0

0dssa j  for ....,,2,1 nj =

)H( 2  ( ) ( )∫
ω

≥φ
0

0, dssatf jtj  for all ( ) ( ) ....,,2,1,,, njBCt n =×∈φ +RRR

)H( 3  ( )txtf ,  is a continuous function of t for each ( )., nBCx +∈ RR

)H( 4  For any 0>L  and ,0>ε  there exists 0>δ  such that for

ψφ,  ,,, LLBC ≤ψ≤φ∈  and δ<ψ−φ  for [ ]ω∈ ,0s  imply

( ) ( ) .,, ε<ψ−φ ss sfsf
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Clearly, the denominator in ( )stg j ,  is not zero since ).H( 1  Note

further that

( )

( )
( )

( )

( )
,:

1exp

exp
,

1exp

exp
:

0

0

0

0
j

j

j

j

j

j

j q
dvva

dvva
stg

dvva

dvva
p =

−

















≤≤
−


















=

∫
∫

∫
∫

ω

ω

ω

ω

(4)

for all [ ] ....,,2,1,, njtts =ω+∈  And we let .max:,min:
11 jnjjnj

qqpp
≤≤≤≤

==

It is easy to see that ( ) ( )ω+ω+= stgstg ,,  for all ( ) 2, R∈st  and by
),H( 2

( ) ( ) ,...,,2,1,0,, njufstg ujj =≥φ (5)

for ( ) 2, R∈st  and ( ) ( ).,, nBCu +×∈φ RRR  It is not difficult to verify

that any ω-periodic function ( )tx  that satisfies (2) is also an ω-periodic

solution of (1).

Next, we introduce the concerned definition and fixed point theorem
that we need in this paper.

Definition. Let X  be a Banach space and K be a closed, nonempty

subset of  .X  K is a cone if

 (i) Kvu ∈β+α  for all Kvu ∈,  and all ;0, ≥βα

(ii) Kuu ∈−,  imply .0=u

Theorem A [9]. Let K be a cone in a Banach space E and 21, ΩΩ  be

two bounded open sets in E such that 10 Ω∈  and .21 ΩΩ ⊂  Let ∩KT :

( ) K→12 \ΩΩ  be completely continuous operator. If

( )1c  there exists { }0\0 Ku ∈  such that ,, 20 Ω∂∈λ≠− ∩KuuTuu

,1,,;0 1 ≥µ∂∈µ≠≥λ Ω∩KuuTu  or

( )2c  there exists { }0\0 Ku ∈  such that ,, 10 Ω∂∈λ≠− ∩KuuTuu

,1,,;0 2 ≥µ∂∈µ≠≥λ Ω∩KuuTu

then T has at least one fixed point in ( ).\ 12 ΩΩ∩k
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Let X  be the set

{ ( ) ( ) ( ) }RRRX ∈=ω+∈= ttxtxCx n ,:,

with the linear structure as well as the norm

[ ]
( )∑

= ω∈
===

n

j

j

t

jj njtxxxx
1 ,0

00 ,...,,2,1,sup,

where ( ) ....,,, 21 nTnxxxx R∈=  Then X  is a Banach space. Define

( )








=







−=σ ∫

ω
njdssa j ...,,2,1,2expmin:

0

and

{ ( ) ( ) [ ]},,0,...,,,,: 21
0 ω∈=σ≥∈= txxxxxtxxK TnjjX

one may readily verify that K is a cone in .X

Now, we define an operator KK →Φ :  as

( ) ( ) ( ) ( )∫
ω+

=Φ
t

t
s dsxsfstgtx ,,

for ,Kx ∈  ,R∈t  where ( )stg ,  is defined as that in (3), and ( ) =Φx

( ) ....,,, 21
T

nxxx ΦΦΦ  It is easy to see that a function X∈x  is a solution of

(1) if and only if x is a fixed point of the operator equation xx Φ=  in .X

Lemma 1. The mapping Φ maps K into K.

Proof. For any Kx ∈  and [ ],,0 ω∈t  it follows from )H( 2  that

( ) ( )txΦ  is continuous in t and

( ) ( ) ( ) ( )∫
ω+

ω+
ω+=ω+Φ

2
,,

t

t
s dsxsfstgtx

( ) ( )∫
ω+

ω+ω+ω+ω+=
t

t
v dvxvfvtg ,,

( ) ( ) ( ) ( )∫
ω+

Φ==
t

t
v txdvxvfvtg .,,
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Hence, ( ) .X∈Φx  And for ,Kx ∈  we find

( )∫
ω

≤Φ
00 , dsxsfqx sjjj

and

( ) ( ) ( )∫
ω

Φσ≥Φ≥≥Φ
0 00, xx

q
p

dsxsfptx jj
j

j
sjjj

for [ ] ....,,2,1,,0 njt =ω∈  Therefore, ( ) .Kx ∈Φ  This completes the proof

of Lemma 1.

Lemma 2. Suppose )H(-)H( 41  hold. Let η be a positive number,

{ }.: η<∈= xx XΩ  Then KK →Φ Ω∩:  is completely continuous.

By the continuity of ( )txtf ,  and Arzela-Ascoli (Royden [11, p. 169])

theorem, we can easily give the proof of Lemma 2 and we omit it here.
The reader can refer to [9].

Theorem 1. Suppose )(H-)(H 41  hold and there are positive constants

21, rr  and 3r  with 231 rrr <<  such that

)H( 5  ( ) ( )∫ ∫
ω ω

=φ∈φ=φ∈φ
>φ>φ

0 0
2

,
1

,
;,inf,,inf

21 p
r

dssf
p
r

dssf s
rK

s
rK

)(H6  ( )∫
ω

=φ∈φ
<φ

0
3

,
,,sup

3 q
r

dssf s
rK

where ,min:
1

j
nj

pp
≤≤

=  ,max:
1

j
nj

qq
≤≤

=  and ii qp ,  are defined in (4). Then

system (1) has at least two positive periodic solutions.

Proof. Let { }.: 11 ruu <∈= XΩ  Then for any ,1Ω∂∈ ∩Ku  we

have { } .0,0\, 00 ≥λ∈λ≠Φ− Kuuuu  For the sake of contradiction, we

choose ( ) ,1...,,1,10
nTu R∈=  then { }.0\0 Ku ∈  Suppose that there

exists 1Ω∂∈ ∩Ku  such that 00uuu λ=Φ−  for some .00 ≥λ  Then, we

have

( ) ( ) ( ) ....,,2,1,0 njtutu j
j =λ+Φ=
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From this, the definition of Φ, (4) and (5) it follows that

( ) ( ) ( ) ( )∫∫
ωω

λ+=λ+=
0

0
0

00 ,,,, dsusfstgdsusfstgu sjjsjj
j

 ( ) ( )∫ ∫
ω ω

λ+≥λ+≥
0 0

00 ,, dsusfpdsusfp sjsjj

 ( ) .,
0∫
ω

≥ dsusfp sj

Hence, we have

( )∫
ω

≥=
0

1 ,, dsusfpur s

which contradicts the first inequality in assumption ).H( 5  Therefore, we

derive that

{ } .0,0\, 00 ≥λ∈∀λ≠Φ− Kuuuu (6)

Let { }.: 22 ruu <∈= XΩ  Then for any ,2Ω∂∈ ∩Ku  applying the

second inequality in ),H( 5  similarly to the proof of (6), we have uu Φ−

{ } .0,0\, 00 ≥λ∈λ≠ Kuu

On the other hand, let { }.: 33 ruu <∈= XΩ  Then for any Ku ∈

,3Ω∂∩  from the definition of Φ, (4) and (5), we have

( ) ( )∫ ∫
ω ω

≤≤Φ
0 00 ,,, dsusfqdsusfqu sjsjjj

hence, in view of ),H( 6  one has

( )∫
ω

<≤Φ
0

3 ,, rdsusfqu s

that is,

., 3Ω∂∈∀<Φ ∩Kuuu

Therefore,

.1,, 3 ≥µ∂∈∀µ≠Φ Ω∩Kuuu (7)
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It is clear that ,231 ΩΩΩ ⊂⊂  by Theorem A, we can conclude that Φ

has two fixed points ( )131 \ΩΩ∩Ku ∈  and ( )322 \ΩΩ∩Ku ∈  with

., 223311 rurrur <<<<  Therefore, ( )tu1  and ( )tu2  are positive

periodic solutions of system (1). The proof is complete.

Theorem 2. Suppose )(H-)H( 41  hold and there are positive constants

21, RR  and 3R  with 231 RRR <<  such that

)H( 7  ( ) ( )∫ ∫
ω ω

=φ∈φ=φ∈φ
<φ<φ

0 0
2

,

1

,
;,sup,,sup

21
q

R
dssf

q
R

dssf s
RK

s
RK

)H( 8  ( )∫
ω

=φ∈φ
>φ

0
3

,
,,inf

3 p
R

dssf s
K R

where ,min:
1

j
nj

pp
≤≤

=  ,max:
1

j
nj

qq
≤≤

=  and ii qp ,  are defined in (4). Then

system (1) has at least two positive periodic solutions.

Proof. By condition ),H( 7  from the proof of Theorem 1, we know that

,1,, 4 ≥µ∂∈∀µ≠Φ Ω∩Kuuu

,1,, 5 ≥µ∂∈∀µ≠Φ Ω∩Kuuu

where { } { }.:,: 2514 RR <φ∈φ=<φ∈φ= XX ΩΩ

From condition ),H( 8  let { },: 36 R<φ∈φ= XΩ  for any ,6Ω∂∈ ∩Ku

it is similar to the proof of (6), we have

{ } .0,0\, 00 ≥λ∈∀λ≠Φ− Kuuuu

It is clear that ,564 ΩΩΩ ⊂⊂  by Theorem A, we can conclude that Φ

has two fixed points ( )463 \ΩΩ∩Ku ∈  and ( )654 \ΩΩ∩Ku ∈  with

., 243331 RuRRuR <<<<  Therefore, ( )tu3  and ( )tu4  are positive

periodic solutions of system (1). The proof is complete.

Using the same method of this paper, one can show that

Theorem 3. Suppose that )(H-)H( 41  hold. If )H(),H( 65  hold or

)H(),H( 87  hold, then the systems
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( ) ( ) ( ) ( ),, txtftxtAtx −=−′

( ) ( ) ( ) ( ),, txtftxtAtx =−′

and

( ) ( ) ( ) ( )txtftxtAtx ,−=+′

have at least two positive ω-periodic solutions, respectively.
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