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Abstract 

The problem of unsteady laminar boundary layer flow and heat 
transfer over a permeable shrinking sheet in a rotating fluid is 
considered. The transformed boundary layer equations are solved 
numerically using an implicit finite-difference scheme, namely the 
Keller-box method. Numerical results for different values of the 
Prandtl number, suction, unsteadiness and rotation parameters on the 
heat transfer characteristics are obtained and discussed. 
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Introduction 

Very recently, the problem of boundary layer flow induced by a 
shrinking sheet has become popular and attracted many researchers to 
investigate further. Shrinking film is one of the examples of shrinking 
problem in industries whereby it is very useful in packaging of bulk 
products. Shrinking sheet problem has been initiated by Wang [1] by taking 
the case of stretching decelerating surface and discovered a flow reversal. 
Later, Wang [2] studied the stagnation flow towards a shrinking sheet and 
reported that non-alignment destroys the symmetric stagnation flow for two-
dimensional case. The viscous flow induced by a shrinking sheet with 
suction was considered by Miklavcic and Wang [3]. Sajid and Hayat [4] and 
Fang and Zhang [5] studied MHD flow of a viscous and electrically 
conducting fluid due to a shrinking sheet and obtained the exact series 
solution using homotopy analysis method and showed a closed-form exact 
solution of the full Navier-Stokes equations, respectively. 

Unsteady boundary layer flow towards a stretching sheet has been 
studied by many researchers, see [6-14]. On the other hand, not many works 
have been done for the problem of an unsteady boundary layer flow induced 
by a shrinking sheet. Namely, Fang et al. [15] studied the boundary layer 
flow over a continuously shrinking sheet with time dependent deceleration 
taken into account, while Ali et al. [16] extended this idea to the case of a 
rotating fluid. Ali et al. [17] also considered the problem of unsteady 
axisymmetric boundary layer flow and heat transfer induced by a permeable 
shrinking sheet with radiation effect. The unsteady MHD boundary layer 
flow on a shrinking sheet dependent on a dimensionless magnetic parameter 
reported by Merkin and Kumaran [18]. Therefore, the present paper aims to 
extend the problem considered in Ali et al. [16] by adding the heat transfer 
characteristic to the problem. The ordinary differential equations are solved 
numerically for some values of the governing parameters using a finite-
difference scheme. 
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Basic Equations 

Consider the unsteady laminar flow and heat transfer over a permeable 
shrinking sheet in a rotating fluid. The fluid motion becomes three-
dimensional due to the Coriolis force. The Cartesian coordinates are ( )zyx ,,  

with the axes rotating at an angular velocity ( )tΩ  in the z-direction, as shown 

in Ali et al. [16], where t represents the time. It is assumed that the sheet 
shrinking velocities in the ( )yx,  directions are ( )txuw ,  and ( ),, txvw  and the 

wall mass flux velocity in the z-direction is ( ),, txww  which will be detailed 

later. Under these conditions, the Navier-Stokes and energy equations in this 
Cartesian coordinate system are (see Wang [19]) 
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subject to the boundary conditions 

∞====< TTwvut ,0:0  for any x, y, z, 

( ) ( ) ( ) wwww TTtxwwtxvvtxuut ====≥ ,,,,,,:0  at 0,=z  

∞→→→ TTvu ,0,0  as ,∞→z  (6) 

where u, v, w are the velocity components in the x-, y- and z-directions, 
respectively, ρ is the fluid density, ν is the kinematic viscosity, T is the fluid 
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temperature, wT  is the surface temperature, ∞T  is the ambient temperature,        

α is the thermal diffusivity, 2∇  is the Laplacian operator in the three-
dimensional coordinates ( )zyx ,,  and ( ) 0, <txww  for suction and ( )txww ,  

0>  for injection. 

We assume that ( ) ( )txvtxu ww ,,,  and ( )tΩ  have the following form: 

 ( ) ( ) ( ) ,1,1,,1,
111 ttt
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where ( )0>a  represents the stretching rate, Ω is the constant angular velocity 

of the shrinking sheet and 1α  is a parameter showing the unsteadiness of the 

problem. Therefore, we introduce the following similarity transformation: 
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Thus, ( )txww ,  should have the form of 

 ( ) ( ) ,01,
1

sft
atxww =
α−
ν−=  (9) 

where s is the constant wall mass transfer parameter with 0>s  for suction 
and 0<s  for injection, respectively. 

By substituting equations (8) and (9) into equations (2), (3) and (5), we 
obtain the following ordinary differential equations: 
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subject to the boundary conditions (6) which become 

( ) ( ) ( ) ( ) ,10,10,10,0 =θ−=−=′= gfsf  

( ) ( ) ( ) 0,0,0 →ηθ→η→η′ gf  as ,∞→η  (13) 

where aω=λ  and aA 1α=  are non-dimensional parameters signifying 

the relative importance of rotation rate to stretching rate and the unsteadiness 
parameter, respectively. Primes denote the differentiation with respect to η. 
The pressure term can be determined from equation (4). For the present 
solution, we assume a decelerating shrinking sheet with .0≤A  

In this study, the physical quantities of interest are the skin friction in x 
and y directions, ( )fyfx CC ,  and the local Nusselt number xNu  which are 

defined as 
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where wxτ  and wyτ  are the surface shear stress in the directions of x and y, 

respectively, and wq  represents the surface heat flux, which are given by 
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with μ and k are the dynamic viscosity and thermal conductivity of the fluid, 
respectively. Using equation (8), we obtain 

( ) ( ) ( ),0Re,0Re2,0Re2 21212/1 θ′−=′=−′′=− −
xxfyyfxx NugCfC  (16) 

with ν= xuwxRe  and ν= yuwyRe  are the local Reynolds number. 

Results and Discussion 

Equations (10)-(12) subject to the boundary conditions (13) have been 
solved numerically via the Keller-box method, as described in the book by 
Cebeci and Bradshaw [20]. Table 1 and Figure 1 show the heat transfer rate 



   Fadzilah Md. Ali, Roslinda Nazar, Norihan Md. Arifin and Ioan Pop 230 

at the surface and the temperature profiles for various Prandtl number when 
other parameters are fixed. The heat transfer rate at the surface increases, 
while the temperature profiles and the thermal boundary layer thickness 
reduce with Prandtl number. This is because higher Prandtl number reduces 
the thermal conductivity and the conduction is also reduced, which in turn 
thinning the thermal boundary layer thickness. Therefore, this implies an 
increase in the heat transfer rate at the surface. 

Table 1. Variation of ( )0θ′−  with Pr when 5.2,2 ==λ s  and 2−=A  

Pr 0.7 1 3 6.8 10 

( )0θ′−  1.8967 2.6267 7.5567 17.0243 25.0159 

 
Figure 1. Temperature profiles for various Pr when ,2=λ  2−=A  and 

.5.2=s  

The effect of the constant wall mass transfer parameter s on the 
temperature profile is illustrated in Figure 2. It can be seen clearly that the 
temperature profiles reduce as s increases. The constant wall mass transfer 
parameter s has also increased the wall temperature gradient. Hence s has 
increased the wall shear stress, therefore increases the local Nusselt number. 
Figures 3 and 4 show the effect of the rotation parameter λ and unsteadiness 
parameter A on the temperature profiles, respectively. Both λ and A decrease 
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the temperature profiles, where the effect of λ is not very significant. It is 
also found that the heat transfer coefficient is also increased with λ and A. 
From Figures 1-4, it is observed that the temperature profiles are affected the 
most by the Prandtl number and the boundary conditions (13) for 
temperature are also satisfied. 

 
Figure 2. Temperature profiles for various s when ,1=λ  2−=A  and 

.7.0Pr =  

 
Figure 3. Temperature profiles for various λ when ,1−=A  2.2=s  and 

.7.0Pr =  
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Figure 4. Temperature profiles for various A when ,1=λ  5.2=s  and 

.7.0Pr =  

 
Figure 5. Variation of the heat transfer coefficient ( )0θ′−  with A for various 
s when 1=λ  and .7.0Pr =  

Figure 5 illustrates the local Nusselt number for various suction 
parameter, s and unsteadiness parameter, A. It can be seen that the heat 
transfer coefficients increase with both s and A. Physically, suction increases 
the surface shear stress and slows down the fluid motion which consequently 
thinning the thermal boundary layer thickness and as a result, the local 
Nusselt number increases. 
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Conclusion 

A numerical study is performed for the problem of unsteady laminar 
boundary layer flow and heat transfer over a permeable shrinking sheet in a 
rotating fluid. It is found that the temperature profiles decrease with Prandtl 
number, as well as the thermal boundary layer thickness. The same effect can 
be observed when the constant wall mass transfer, the rotation and the 
unsteadiness parameters are applied. It is also observed that heat transfer rate 
at the surface increases with Prandtl number, suction and unsteadiness 
parameters. 
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