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Abstract 

The Cumulative Sum (CUSUM) chart provides good performance in 
detecting small shifts of process means compared to the traditional 
Shewhart chart. A common assumption of the control chart is the 
independent and identically distributed random variables, however, 
this assumption could be deviated from in practice such as chemical 
processes or if financial market is autocorrelated and trend stationary. 
In this paper, the explicit formulas of the Average Run Length (ARL) 
when observations form a pure seasonal autoregressive of order pth 
(seasonal AR(p)) models with exponential distribution white noise             
on CUSUM chart are derived. The numerical results from explicit 
formulas and the numerical integration approach are presented. Our 
results illustrate that the explicit formulas can reduce computational 
times to evaluate the ARL when compared with the results obtained 
from the numerical integration approach. According to the proposed 
explicit formulas for the ARL, it is very useful in practical applications 
in order to design an optimal CUSUM chart. 
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1. Introduction 

One of the primary control charts of statistical process control which has 
been proven to be an effective tool in reducing the variability and improving 
the quality of a process is Cumulative Sum (CUSUM) chart. In 1954, Page 
first proposed this chart and it has been successfully used in many 
manufacturing and service systems. Traditionally, a main assumption 
concerning CUSUM chart is that the observations are independent and 
identically distributed (i.i.d.) random variables. However, the independency 
assumption does not always happen in actual practice, such as chemical 
processing, where the observations are mostly autocorrelated and trend 
stationary (see Montgomery [12]. Recently, many uses of CUSUM charts 
have been developed and then improved for different processes by several 
new approaches such as Bohm [1], Lu and Reynolds [7], Lucas and Saccucci 
[8], Montgomery and Mastrangelo [11], Sukparungsee and Novikov [14], 
VanBrackle and Reynolds [15] and Woodall and Faltin [18]. 

The first passage times usually are called the Average Run Length (ARL) 
and the Average Delay Time (ADT) for the in-control and out-of-control 
processes, respectively. They are commonly the major criterion for 
measuring the performance of control charts. The ARL is used as a measure 
of the time before a process that is still in-control is signaled as being out-of-
control; it is always desirable to have a large ARL. The ADT is used as a 
measure of the time before a process that has gone out-of-control is signaled 
as being out-of-control; which should be small. VanBrackle and Reynolds 
[15] found that the performance of a control chart is significantly affected by 
autocorrelated data. Lorden [6] indicated the reaction to a change in control 
chart. Woodall and Faltin [18] showed that the correlation should be 
eliminated if possible. However, because autocorrelation is often an inherent 
part of a process, it must be properly modeled and monitored. Lu and 
Reynolds [7] pointed out that control charts using residual-based schemes are 
not necessarily better than those based on the original observations with 
adjusted control limit, unless the level of autocorrelation is quite high. It is 
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better to use a chart based on the original observations rather than on 
residuals since it is much easier to understand and interpret for an operator. 

In 1978, the Integral Equation (IE) approach was first studied by 
Crowder for approximating the ARL of a Gaussian distribution. He derived 
and used a Fredholm integral equation of the second type. Indeed, there are 
many approaches to evaluate the ARL and ADT such as Monte Carlo 
Simulation (MC), Markov Chain Approach (MCA) and Martingale approach. 
However, these approaches provide only closed-form formulas, while the IE 
approach gives the explicit formulas. Mititelu et al. [10] used IE approach to 
solve the explicit formulae of the ARLs for CUSUM chart when observations 
are exponential data. Busaba et al. [3] used IE approach to solve the explicit 
formulas for the ARL and ADT for CUSUM chart when observations are 
negative exponential data. Busaba et al. [3, 4] used Integral Equations (IE) 
approach to solve the explicit formulae of the ARLs for CUSUM chart for 
the case of trend and no-trend stationary pth order autoregressive model with 
exponential distribution white noise. This is a motivation to propose the 
explicit formulae for ARL and ADT for the case of a seasonal AR(p) model 
with exponential distribution white noise. Furthermore, the equations 
numerically are proved by using the Gauss-Legendre Quadrature rule and 
then compare the results from both approaches. 

2. Cumulative Sum and its Property 

According to the major assumption that ...,, 21 ξξ  are i.i.d. random 

variables with a distribution function ( ),, αxF  the parameter α  has the 

value 0α  in the in-control state, and 0α≠α  in an out-of-control state. In 

this paper, we consider that the observations are a seasonal AR(p) with an 
exponential distribution white noise. We assume that the parameters, α  and 

,0α  are known. 

Under the assumptions that ( )α,xF  is absolute continuous with respect 

to ( )., 0αxF  The CUSUM chart is based on use of the first passage times τ  
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(see, i.e., Busaba et al. [2, 3] and Sukparungsee and Novikov [14]), which is 
for a statistic defined as in equation (1) as 

 { },,0inf hXt th ≥≥=τ  (1) 

where h is a control limit on the value of .tX  

The typical conditions on choice of the first passage times τ  are the 
Average Run Length (ARL) and the Average Delay Time (ADT) as in 
equations (2) and (3). We define ( )⋅θE  as the expectation under distribution 

( )0, αxF  that the change-point occurs at time .θ  

 ( ) ( ),~ ∞=θ≥τ− θ AEARL h  (2) 

where A is given (usually large) and 

 ( ) ( ) ( ).11~ =θ≥τ|τ≥τ− θ hEADT  (3) 

2.1. The seasonal AR(p) on exponential CUSUM 

The CUSUM is designed to detect a process mean shift of an i.i.d. 
observed sequence of random variables. The statistics tX  satisfies the 

following recursive equation as: 

( ) ,...,,2,1, 01 xXtaZXX ttt ==−+= +
−  

where tX  is the CUSUM value of statistics after n observations, x is an 

initial value for ,tX  ( )yy ,0max=+  and a is a constant. Many discussions 

have led to this recursive presentation by Mazalov and Zhuravlev [9] and 
Venkateshwara et al. [17]. 

In this paper, we consider CUSUM chart for a seasonal AR(p) model 
with exponential distribution white noise. Thus, we define the statistics as: 

 ,...;,2,1, 01 xXtaZXX ttt ==−+= −  (4) 

where 

tpstpststt ZZZZ ξ+φ++φ+φ= −−− 221  

when ,11 <ϕ<− i  ,...,,2,1 pi =  s is periodicity and ( ).exp~ λξt  
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For seasonal AR(1) with s-periodicity model, the observations ,tZ  =t  

...,,2,1  satisfy the following relationship: 

,tstt ZZ ξ+φ= −  

where φ  is autoregressive parameters 11 1 <φ<−  and ( ).exp~ λξt  

For seasonal AR(2) with s-periodicity model, the observations ,tZ  =t  

...,,2,1  satisfy the following relationship: 

,221 tststt ZZZ ξ+φ+φ= −−  

where 1φ  and 2φ  are autoregressive parameters that have the following 

restrictions: 
.11,1,1 22121 <φ<−<φ−φ<φ+φ  

2.2. The uniqueness of solution to the ARL and ADT integral equation 

According to Banach’s Fixed Point Theorem, we present the existence 
and uniqueness of our solutions. We evaluate the ARL of CUSUM chart 
defined as a function ( ) .hXxj τ= E  Let XP  and XE  be the probability 

measure and the induced expectation corresponding to the initial value 
.0 xX =  Vardeman and Ray [16] and Venkateshwara et al. [17] showed that 

the ARL for CUSUM at a given level, defined as ( ) ,∞<τ== hXARLxj E  

is a solution of the following integral equation: 

 ( ) { } ( )[ ] { } ( ).0001 111 jXXjhXIxj XX =+<<+= PE  (5) 

For this case, nξ  are exponential distributed observations which have 

been shown by Busaba et al. [2] and Mititelu et al. [10]. We also define nξ  

as exponential distribution white noise in the seasonal AR(p) model as in (4) 
so (5) can be written as 

( ) ( ) ( )∫ λ−φ++φ+φ+−λ −−−λ+=
h yZZZax dyeyjexj pstpstst
0

2211  

( ( ) ) ( ) [ ).,0,01 221 axje pstpstst ZZZax
∈−+ −−− φ++φ+φ+−λ  (6) 
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It is shown that solutions of the integral equation (6) are continuous 
functions because the right hand side of (6) contains only continuous 
functions. 

As on the metric space of all continuous functions ( ( ) ),, 1IC  where I  

is a compact interval, and the norm is defined as ( ) ,Sup xjj
x I∈

=  the 

operator T is named a contraction if there exists a number 10 <≤ q  such 

that ( ) ( ) 2121 jjqjTjT −≤−  for all ., 21 Xjj ∈  Now, define the 

operators T as 

( )( ) ( ) ( )∫ λ−φ++φ+φ+−λ −−−λ+=
h yZZZax dyeyjexjT pstpstst
0

2211  

( ( ) ) ( ) [ ).,0,01 221 axje pstpstst ZZZax
∈−+ −−− φ++φ+φ+−λ  (7) 

Then the integral equations in (6) can be written as ( )( ) ( ).xjxjT =  Recalling 

Banach’s Fixed Point Theorem if the operator T is contraction, then the 
fixed-point equation ( )( ) ( )xjxjT =  has a unique solution. To show the 

uniqueness of the solution of (6), we prove in Theorem 2.1 that T is a 
contraction. Define the norms ( ) .Sup

1
1 xjj

x I∈
=  

Theorem 2.1. On the metric spaces ( ( ) ),, 11IC  the operator T is a 

contraction. 

Proof. First, to prove T is a contraction, we may check that for any 
,1I∈x  and ( ),, 121 IC∈jj  we have the inequality ( ) ( ) ≤− 121 jTjT  

,121 jjq −  where q is a positive constant, .10 <≤ q  According to (7), we 

have that: 

( ) ( )21 jTjT −  

( )xjSup=  

[ )
( ) ( )( ) ( ( ) )pstpstst ZZZax

ax
ejj −−− φ++φ+φ+−λ

∈
−−= 221100Sup 21

,0
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( ) ( ) ( )( )∫ λ−φ++φ+φ+−λ
−λ+ −−− h yZZZax dyeyjyje pstpstst

0 21
221  

[ )
( ) ( ) ( ( ) )pstpstst ZZZax

ax
ejj −−− φ++φ+φ+−λ

∈
−−≤ 221100Sup 121

,0
 

( )∫ λ−φ++φ+φ+−λ −−−λ−+
h yZZZax dyeejj pstpstst
0121

221  

[ )
[ ( ) ]hejj pstpstst ZZZax

ax
λ−−−= −−− φ++φ+φ+−λ

∈

2211Sup
,0

121  

[ ( ) ] 121
2211 jjhe pstpstst ZZZ

−λ−−= −−− φ++φ+φλ  

,211 jjq −=  where [ ( ) ] .11 221
1 <λ−−= −−− φ++φ+φ+−λ heq pstpstst ZZZax  

We have used the triangular inequality and the fact that 

( ) ( )
[ )

( ) ( ) .Sup00 2121
,0

21 jjxjxjjj
ax

−=−≤−
∈

 

3. The ARL and ADT to CUSUM Chart Seasonal AR(p) Model 

We consider the explicit formulae and the numerical integral equation to 
solve the solutions for the seasonal AR(p) model. The explicit formulas are 
based on an integral equation approach, “Fredholm integral equation of the 
second type”. In Theorem 3.1, we derive and propose explicit solutions 
which are guaranteed existence and uniqueness by Theorem 2.1. 

Theorem 3.1. The solution of (6) is 

( ) ( ( ) ) 0,1 221 ≥−λ−+= λλφ−−φ−φ−λ −−− xeehexj xhZZZa pstpstst  and .ha <  

Proof. 

( ) ( ) ( )∫ λ−φ++φ+φ+−λ −−−λ+=
h yZZZax dyeyjexj pstpstst
0

2211  

( ( ) ) ( ) [ ).,0,01 221 axje pstpstst ZZZax
∈−+ −−− φ++φ+φ+−λ  



Piyapatr Busababodhin 96 

Set ( )∫ λ−=
h ydyeyjd
0

.  Now, we have 

( ) ( )dexj pstpstst ZZZax −−− φ++φ+φ+−λ
λ+= 2211  

( ( ) ) ( ).01 221 je pstpstst ZZZax −−− φ++φ+φ+−λ
−+  (8) 

If ,0=x  then 

( ) ( )dej pstpstst ZZZa −−− φ++φ+φ+−λ
λ+= 22110  

( ( ) ) ( )01 221 je pstpstst ZZZa −−− φ++φ+φ+−λ
−+  

( ) .221 de pstpstst ZZZa
λ+= −−− φ−−φ−φ−λ  

Substituting ( )0j  into (8), we found that 

 ( ) ( ) .1 221 xZZZa eedxj pstpstst λφ−−φ−φ−λ
−+λ+= −−−  (9) 

Now the constant d can be found as 

( ( ) )∫ λ−λφ−−φ−φ−λ
−+λ+= −−−h yyZZZa dyeeedjd pstpstst

0
2211  

( ) ( ( ) ) .11 221 hZZZah
h

heeee pstpstst λφ−−φ−φ−λλ−
λ

−+−
λ

= −−−  

Substituting the constant d into (9), we have 

( ) ( ( ) ) 0,1 221 ≥−λ−+= λλφ−−φ−φ−λ −−− xeehexj xhZZZa pstpstst  and .ha <  

The explicit formulas for the ARL and ADT are presented as follows: 

 ( ) ( ( ) ) xhZZZa eehexjARL pstpstst −−+== −−− φ−−φ−φ− 22110  (10) 

and 

( ) ( ( ) ) ,1 221
1

xhZZZa eehexjADT pstpstst λλφ−−φ−φ−λ
−λ−+== −−−  (11) 
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where λ  is a parameter of the exponential distribution, α  is a constant, δ  is 
a trend parameter, iφ  is a smoothing parameter for ,...,,2,1 pi =  p is an 

order of autoregressive observations model, h is boundary value, and a is 
reference value. 

4. Comparisons of the Results with Numerical Integration 

We apply the numerical integration approach to the CUSUM chart for 
the seasonal AR(p) model. First, we assume that the system is in-control at 
time n if the CUSUM statistic nX  is in the range UnL HXH ≤≤  and      

out-of-control if Un HX >  or ,Ln HX <  where LH  is a constant lower 

boundary, ( )0=LH  and UH  is a constant upper boundary ( ).hHL =  

Second, we also assume that the system is initially in an in-control state x, 

i.e., xX =0  and .0 hx ≤≤  We then define function ( )xj IE  as follows: 

( ) ∞<τ= hx
IE xj E  

{ } ( )[ ] { } ( )0001 111 jXXjhXI xx =+<<+= PE  

( ) ( ) ( ) ( )∫ −+−++=
h

jxaFdyxayfyj
0 1 ,01  (12) 

where hτ  is the first passage time defined in (1). Then ( )xj IE  is the ARL 

for initial value x. 

We present a numerical integration scheme for evaluating solutions (5) 
for the CUSUM chart which can be written as follows: 

( ) ( ) ( )pstpstst
IE ZZZxaFjxj −−− φ−−φ−φ−−+= 22101  

( ) ( )∫ +φ−−φ−φ−−+ −−−
h

pstpstst dyyZZZxafyj
0 221 ,  

where ( ) xexF λ−−= 1  and ( ) ( ) .xedx
xdFxf λ−λ==  
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Recalling a given quadrature rule for integrals on [ ],,0 h  the integral 

equation can be approximated by 

( ) ( ) ( )pstpststii ZZZaaFajaj −−− φ−−φ−φ−−+≈ 22111  

( ) ( )∑
=

−−− φ−−φ−φ−−++
m

k
pstpststikkk ZZZaaafajw

1
221 ,  

....,,2,1 mi =  (13) 

Without loss of generality, we can approximate the integral by a sum of 

areas of rectangles with bases m
h  with heights chosen as the values of ( )kaf  

at the midpoints of intervals of length m
h  beginning at zero, i.e., on the 

interval [ ]h,0  with the division points haaa m ≤≤≤≤≤ 210  and 

weights .kw  We obtain ( ) ( )∫ ∑
=

≈
h m

k
kk afwdyyj

0
1

,  where ,2
1
⎟
⎠
⎞⎜

⎝
⎛ −= km

hak  

....,,2,1 mk =  

Because equation (13) is a system of m linear equations in the m 
unknowns ( ) ( ) ( ),...,,, 21 majajaj  it can be written in matrix form as 

,1 111 ×××× += mmmmm JRJ  

( ) ,1 11 ××× =− mmmmm JRI  

where 

( )
( )

( )

,,2

1

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= ××

1

1
1

1 1m

maj

aj
aj

Jm  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Δ−−+Δ−−++Δ−−

Δ−−+Δ−−++Δ−−
Δ−−+Δ−−++Δ−−

=×

afwaaafwaaafwaaF

aaafwafwaaafwaaF
aaafwaaafwafwaaF

R

mmmm

mm

mm

mm

2211

222111

112211
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with pstpstst ZZZ −−− φ++φ+φ=Δ 221  and ( )1...,,1,1diag=mI  is the 

unit matrix of order m. If there exists ( ) ,1−
×− mmm RI  then the solution of 

the matrix equation is as follows: 

( ) .1 1
1

1 ×
−

×× −= mmmmm RIJ  

To solve this set of equations for the approximate values of 

( ) ( ) ( ),...,,, 21 majajaj  we may approximate the function ( )xj IE  as 

( ) ( ) ( )pstpstst
IE ZZZxaFajxj −−− φ−−φ−φ−−+≈ 22111  

( ) ( )∑
=

−−− φ−−φ−φ−−++
m

k
pstpststikkk ZZZaaafajw

1
221  

 (14) 

with m
hwk =  and .2

1
⎟
⎠
⎞⎜

⎝
⎛ −= km

hak  

We display numerical scheme to evaluate solutions of the integral 
equations in (10) and (11) from Section 3, which are compared with the 
approximate function ( )xj  as in (14), by Gauss-Legendre quadrature rule. 

All results give a comparison of the approximated solutions ( ),xj IE  the 

exact solutions ( ),xj  the absolute percentage difference 

( ) ( ) ( )
( ) %100% ×
−

=ε xj
xjxj IE

r  

for several values of a, h and the number of divisions m. 

To study the ARL for CUSUM charts for the seasonal AR(p) model, we 
consider CUSUM chart for the seasonal AR(1) and seasonal AR(2) models. 
We present some numerical results in Table I in order to compare the explicit 
and numerical values of the ARL for the seasonal AR(1) model with 
exponential distribution white noise. The parameters φ  are equal to 0.3, 0.5, 

0.7 and –0.3, –0.5, –0.7. For in-control state, the ARLs are equal to 100, 370 
and 500 with boundary value of 4 and then the constant value is dependent 
on the initial value of x. 
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Table I. ARL of CUSUM chart for the seasonal AR(1) with 12-periodicity 
model with exponential distribution white noise when 4=h  

φ  a Value 0=x  φ  a Value 0=x  
( )xj0  100.808 ( )xj0  100.2770 

100.6717 99.9407 
( )xj IE  

821.20501 ( )xj IE  
998.0320 

2.082 

( )%rε  0.13522 

1.48 

( )%rε  0.3354 
( )xj0  370.0630 ( )xj0  370.5980 

368.6945 369.0626 
( )xj IE  

928.3780 
( )xj IE  

816.7590 
2.782 

( )%rε  0.3698 

2.183

( )%rε  0.4143 
( )xj0  500.3470 ( )xj0  500.3470 

498.3961 498.3391 
( )xj IE  

1168.6000
( )xj IE  

801.7350 

0.3 

3 

( )%rε  0.3899 

–0.3 

2.4 

( )%rε  0.4013 
( )xj0  100.2770 ( )xj0  100.2770 

100.0467 99.9202 
( )xj IE  

841.7970 
( )xj IE  

830.9870 
2.28 

( )%rε  0.2297 

1.28 

( )%rε  0.3558 
( )xj0  370.5980 ( )xj0  370.5980 

369.2794 369.1256 
( )xj IE  

803.3420 
( )xj IE  

801.5800 
2.983 

( )%rε  0.3558 

1.983

( )%rε  0.3973 
( )xj0  500.3470 ( )xj0  500.3470 

498.4272 498.3251 
( )xj IE  

801.7670 
( )xj IE  

798.8790 

0.5 

3.2 

( )%rε  0.3837 

–0.5 

2.2 

( )%rε  0.4041 
( )xj0  100.2770 ( )xj0  100.8080 

100.0724 100.4149 
( )xj IE  

856.2590 
( )xj IE  

803.0460 

0.7 

2.48 

( )%rε  0.2040 

–0.7 

1.082

( )%rε  0.3899 
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( )xj0  370.5980 ( )xj0  370.0630 
369.2716 368.5820 

( )xj IE  803.8880 ( )xj IE  803.9830 
3.183 

( )%rε  0.3579 

3.195

( )%rε  0.4002 
( )xj0  500.3470 ( )xj0  500.3470 

498.4702 498.3166 
( )xj IE  799.3490 ( )xj IE  802.4690 

3.4 

( )%rε  0.3751 

3.41 

( )%rε  0.4058 
1This is the CPU time used (seconds). 2This is the absolute percentage 

difference. 

It is noticed that the results obtained from the explicit formulas are               
much closer to the numerical approximation. The explicit formulas are faster 
computational times. As an example, if ,3.0=φ  082.2=a  and ,0=x  then 

this gives the .808.100ARL =  The computational time of this ARL which is 
based on the IE approach takes less than 1 second while the NI approach 
takes 821.2050 seconds. 

Table II. ARL and ADT of CUSUM Chart for the seasonal AR(1) with      
12-periodicity model with exponential distribution white noise when 4=h  

,733.2,0 == ax
25.0=φ  

,232.2,0 == ax  
25.0−=φ  λ  

( )xj  ( )xj IE  

( )%rε
1 

( )xj  ( )xj IE  

( )%rε  

1.00 370.5980 369.9061 0.1867 370.0630 369.1382 0.2499 
1.01 346.7460 346.1125 0.1827 364.2480 363.3530 0.2457 
1.05 269.1590 268.7076 0.1677 268.7810 268.1588 0.2315 
1.07 238.8610 238.4776 0.1605 238.5290 237.9930 0.2247 
1.10 201.3610 201.0567 0.1511 201.0860 200.6541 0.2148 
1.20 121.4780 121.3285 0.1231 121.3220 121.0962 0.1861 

2 14.7495 14.7442 0.0360 14.7379 14.7273 0.0721 
3 5.8554 5.8545 0.0158 5.85276 5.8509 0.0326 

1This is the absolute percentage difference. 



Piyapatr Busababodhin 102 

The results are shown in Table II in order to compare the explicit and 
numerical values of the ARL and ADT for the seasonal AR(1) model with 
exponential distribution white noise when parameter values are 25.0=ϕ  

and –0.25. For in-control state, the ARL is equal to 370, with boundary value 
equal to 4 and constant value is dependent on the initial value of x. Notice 
that 1=λ  is the value assumed for the in-control parameter, therefore the 
first row gives the value of the ARL. Rows for 1>λ  correspond to values of 
out-of-control parameters; therefore these rows give the values for ADT. 

Table III. ARL and ADT of CUSUM chart for the seasonal AR(2) with       
12-periodicity model with exponential distribution white noise when =φ1  

,4.0  2.02 =φ  and 0=x  

CUSUM ( )ah,  
λ  Value 

(3, 2.75) (3, 2.90) (4, 2.382) (4, 3.083) (4, 3.3) 
( )xj0  100.0040 122.8510 100.8080 370.5980 500.3470 

99.8299 122.4853 100.6295 369.0867 498.9085 
( )xj IE  

963.69601 917.0680 948.9850 950.1400 938.6550 
1 

( )%rε  0.17412 0.2977 0.1771 0.4078 0.2875 

( )xj0  18.7236 21.5750 40.9483 40.7521 51.2113 

18.6830 21.5325 40.8583 40.6305 51.1024 
( )xj IE  

955.5370 916.7710 948.1900 946.4730 924.1840 
1.5 

( )%rε  0.2166 0.1972 0.2199 0.2985 0.2126 

( )xj0  8.6408 9.56626 14.7495 14.2983 17.4013 

8.6242 9.5386 14.7211 14.2700 17.3687 
( )xj IE  

920.4370 919.1580 948.1590 943.6500 920.3560 
2 

( )%rε  0.1916 0.2892 0.1924 0.1976 0.1875 

1This is the CPU time in seconds. 2This is the absolute percentage 
difference. 

The results are shown in Tables III and IV in order to compare the ARL 
and ADT which were obtained from the numerical approximation and the 
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explicit formulas for the seasonal AR(2) model with exponential distribution 
white noise when parameter values ( )21, φφ  are equal to (0.2, 0.1), (0.9, 

0.05), respectively. However, for in-control state, the ARLs are equal to 100, 
370 and 500 with the boundary value equal to 3 and 4. As an example, if the 
boundary value is equal to 4 and the constant value is 2.382, they give the 
ARL equal to 100.8080. Notice that the explicit solutions are in good 
agreement with the results obtained from the numerical approximation. 
Furthermore, it is obvious that 1=λ  is the value assumed for the in-control 
parameter, therefore, the first row gives the value of the ARL. Rows for 

1>λ  correspond to values of out-of-control parameters, therefore these rows 
give the values for ADT. 

Table IV. ARL and ADT of CUSUM Chart for the seasonal AR(2) with         
12-periodicity model with exponential distribution white noise when =φ1  

,9.0  05.02 =φ  and 0=x  

CUSUM ( )ab,  
λ  Value 

(3, 2.99) (4, 2.937) (4, 3.636) (4, 3.853) 
( )xj0  60.6550 100.4210 370.4880 500.6270 

60.6137 100.3444 370.1924 500.1369 
( )xj IE  

963.97701 962.6670 962.3700 962.9010 
1 

( )%rε  0.06812 0.0763 0.0798 0.0979 

( )xj0  12.7137 15.5232 40.1326 50.4161 

12.6943 15.5055 40.0976 50.3544 
( )xj IE  

968.8910 975.6450 982.5100 980.7620 
1.5 

( )%rε  0.1523 0.1142 0.0873 0.1224 

( )xj0  6.2861 7.3003 14.1355 16.7913 

6.2809 7.2936 14.1220 16.7737 
( )xj IE  

996.7680 994.0380 997.9230 1009.9700 
2 

( )%rε  0.0826 0.0914 0.0955 0.104571 

1This is the CPU time in seconds. 2This is the absolute percentage 
difference. 
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In Tables I to IV, the analytical explicit solutions are in good agreement 
with the results obtained from the numerical integral equation approach with 
500 nodes in the integration rule. It is obvious that explicit formulas give 
numerical results which are much closer to the numerical integral equations 
approach. In addition, the computational times of the numerical integral 
equations approach take approximately 15 minutes while the results obtained 
from the explicit formula take less than 1 second which is much less than the 
former. 

5. Conclusions 

We derive analytically explicit formulas of ARL and ADT for CUSUM 
chart when observations are the seasonal AR(p) model with exponential 
distribution white noise. The accuracy of the analytical results has been 
compared with the numerical integral equation based on Gauss-Legendre 
quadrature rule. They are in excellent agreement. The amount of time 
required for the numerical computations were approximately 10-15 minutes 
compared with less than one second for the explicit formulas. In addition, our 
results can easily be implemented in any computer program which is very 
useful for design of optimal CUSUM charts. 
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