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Abstract

The Cumulative Sum (CUSUM) chart provides good performance in
detecting small shifts of process means compared to the traditional
Shewhart chart. A common assumption of the control chart is the
independent and identically distributed random variables, however,
this assumption could be deviated from in practice such as chemical
processes or if financial market is autocorrelated and trend stationary.
In this paper, the explicit formulas of the Average Run Length (ARL)
when observations form a pure seasonal autoregressive of order pth
(seasonal AR(p)) models with exponential distribution white noise
on CUSUM chart are derived. The numerical results from explicit
formulas and the numerical integration approach are presented. Our
results illustrate that the explicit formulas can reduce computational
times to evaluate the ARL when compared with the results obtained
from the numerical integration approach. According to the proposed
explicit formulas for the ARL, it is very useful in practical applications
in order to design an optimal CUSUM chart.
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1. Introduction

One of the primary control charts of statistical process control which has
been proven to be an effective tool in reducing the variability and improving
the quality of a process is Cumulative Sum (CUSUM) chart. In 1954, Page
first proposed this chart and it has been successfully used in many
manufacturing and service systems. Traditionally, a main assumption
concerning CUSUM chart is that the observations are independent and
identically distributed (i.i.d.) random variables. However, the independency
assumption does not always happen in actual practice, such as chemical
processing, where the observations are mostly autocorrelated and trend
stationary (see Montgomery [12]. Recently, many uses of CUSUM charts
have been developed and then improved for different processes by several
new approaches such as Bohm [1], Lu and Reynolds [7], Lucas and Saccucci
[8], Montgomery and Mastrangelo [11], Sukparungsee and Novikov [14],
VanBrackle and Reynolds [15] and Woodall and Faltin [18].

The first passage times usually are called the Average Run Length (ARL)
and the Average Delay Time (ADT) for the in-control and out-of-control
processes, respectively. They are commonly the major criterion for
measuring the performance of control charts. The ARL is used as a measure
of the time before a process that is still in-control is signaled as being out-of-
control; it is always desirable to have a large ARL. The ADT is used as a
measure of the time before a process that has gone out-of-control is signaled
as being out-of-control; which should be small. VVanBrackle and Reynolds
[15] found that the performance of a control chart is significantly affected by
autocorrelated data. Lorden [6] indicated the reaction to a change in control
chart. Woodall and Faltin [18] showed that the correlation should be
eliminated if possible. However, because autocorrelation is often an inherent
part of a process, it must be properly modeled and monitored. Lu and
Reynolds [7] pointed out that control charts using residual-based schemes are
not necessarily better than those based on the original observations with
adjusted control limit, unless the level of autocorrelation is quite high. It is
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better to use a chart based on the original observations rather than on
residuals since it is much easier to understand and interpret for an operator.

In 1978, the Integral Equation (IE) approach was first studied by
Crowder for approximating the ARL of a Gaussian distribution. He derived
and used a Fredholm integral equation of the second type. Indeed, there are
many approaches to evaluate the ARL and ADT such as Monte Carlo
Simulation (MC), Markov Chain Approach (MCA) and Martingale approach.
However, these approaches provide only closed-form formulas, while the IE
approach gives the explicit formulas. Mititelu et al. [10] used IE approach to
solve the explicit formulae of the ARLs for CUSUM chart when observations
are exponential data. Busaba et al. [3] used IE approach to solve the explicit
formulas for the ARL and ADT for CUSUM chart when observations are
negative exponential data. Busaba et al. [3, 4] used Integral Equations (IE)
approach to solve the explicit formulae of the ARLs for CUSUM chart for
the case of trend and no-trend stationary pth order autoregressive model with
exponential distribution white noise. This is a motivation to propose the
explicit formulae for ARL and ADT for the case of a seasonal AR(p) model
with exponential distribution white noise. Furthermore, the equations
numerically are proved by using the Gauss-Legendre Quadrature rule and
then compare the results from both approaches.

2. Cumulative Sum and its Property

According to the major assumption that &, &,, ... are i.i.d. random
variables with a distribution function F(Xx, o), the parameter o has the
value o in the in-control state, and o # ag in an out-of-control state. In

this paper, we consider that the observations are a seasonal AR(p) with an
exponential distribution white noise. We assume that the parameters, o and

0, are known.

Under the assumptions that F(x, o) is absolute continuous with respect

to F(x, ag). The CUSUM chart is based on use of the first passage times t
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(see, i.e., Busaba et al. [2, 3] and Sukparungsee and Novikov [14]), which is
for a statistic defined as in equation (1) as

T = inf{t > 0, X; > h}, (1)
where h is a control limit on the value of X;.

The typical conditions on choice of the first passage times t are the
Average Run Length (ARL) and the Average Delay Time (ADT) as in
equations (2) and (3). We define Eg(-) as the expectation under distribution

F(X, ag) that the change-point occurs at time 6.
ARL = Eg(t) = A (8 = ), )
where A is given (usually large) and
ADT = Ey(ty) = (]t 21) (6=1). (3)
2.1. The seasonal AR(p) on exponential CUSUM

The CUSUM is designed to detect a process mean shift of an i.i.d.
observed sequence of random variables. The statistics X; satisfies the

following recursive equation as:
Xt = (Xt—l + Zt - a)+, t = 1, 2, eey XO = X,
where X; is the CUSUM value of statistics after n observations, x is an

initial value for X;, y* = max(0, y) and a is a constant. Many discussions

have led to this recursive presentation by Mazalov and Zhuravlev [9] and
Venkateshwara et al. [17].

In this paper, we consider CUSUM chart for a seasonal AR(p) model
with exponential distribution white noise. Thus, we define the statistics as:

Xt = Xt—l + Zt —a, t =1, 2, , XO = X, (4)
where
Zy = 0li s + 022t o5+ + Oply_ps + &

when -1< ¢j <1, i =1 2, .., p, sis periodicity and & ~ exp(}).
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For seasonal AR(1) with s-periodicity model, the observations Z;, t =
1, 2, ..., satisfy the following relationship:

Zy =0y s + &,
where ¢ is autoregressive parameters -1 < ¢, <1 and & ~ exp(}).

For seasonal AR(2) with s-periodicity model, the observations Z;, t =
1, 2, ..., satisfy the following relationship:

Zy = 0li_s + d2Zt_ps + &,

where ¢, and ¢, are autoregressive parameters that have the following

restrictions:
dr+dp <l d—dp<l -1<op<l.
2.2. The uniqueness of solution to the ARL and ADT integral equation

According to Banach’s Fixed Point Theorem, we present the existence
and uniqueness of our solutions. We evaluate the ARL of CUSUM chart
defined as a function j(x) = Exty. Let Py and Eyx be the probability
measure and the induced expectation corresponding to the initial value
Xo = X. Vardeman and Ray [16] and Venkateshwara et al. [17] showed that

the ARL for CUSUM at a given level, defined as j(x) = ARL = Ex 1, < oo,
is a solution of the following integral equation:

J(¥) =1+ Ex [1{0 < Xq < h} j(X9)]+ Py {Xq = 0} j(0). 5)

For this case, &, are exponential distributed observations which have
been shown by Busaba et al. [2] and Mititelu et al. [10]. We also define &,

as exponential distribution white noise in the seasonal AR(p) model as in (4)
so (5) can be written as

_ h
() = 1 ae" AT BB 2 T [y ey

" (1_ ek(X—a+¢1Zt—s+¢22t—25+”'+¢pzt—ps)) j(O), X e [0, a)' (6)
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It is shown that solutions of the integral equation (6) are continuous
functions because the right hand side of (6) contains only continuous
functions.

As on the metric space of all continuous functions (C(I), || [), where I

is a compact interval, and the norm is defined as | j| = Sup| j(x)|, the
xel

operator T is named a contraction if there exists a number 0 < g <1 such
that |[T(jp)—T(i2)| <d|jp— jo |l for all j;, jo € X. Now, define the
operators T as

_ h
T(j(x) = 1+ ae X8t hZs+2Zos +¢pzt’p5)jo i(y)e ™ ™dy

" (1_ ek(X—a+¢1Zt—s+¢ZZt—Zs+'"+¢pzt—ps)) j(O), X e [O, a)_ ©)

Then the integral equations in (6) can be written as T(j(x)) = j(x). Recalling

Banach’s Fixed Point Theorem if the operator T is contraction, then the
fixed-point equation T(j(x)) = j(x) has a unique solution. To show the

uniqueness of the solution of (6), we prove in Theorem 2.1 that T is a

contraction. Define the norms | j [, = Sup| j(x)|.
XE]I]_

Theorem 2.1. On the metric spaces (C(Iy), | [,). the operator T is a

contraction.

Proof. First, to prove T is a contraction, we may check that for any
xely, and jj, jp € C(I;), we have the inequality || T(jp)-T(jp)[; <

qll Jp — 2 ;. where q is a positive constant, 0 < g < 1. According to (7), we

have that:
ITC) -T2
= Sup| j(x)|

= Sup | (jy(0) = jp(0))( — "V TATIE-s Fo2Zi2s T bpZiops))

xe[0, a)
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_ h
g R etz B [ ) - J'z(Y))e"‘de‘

< Sup || j2(0) - j2(0)]l; @ - e?»(x—a+¢lzt_s+¢22t_25 +'-'+¢pzt_ps))
xe[0,a)

_ h
" " - o ||17»e7“(x a+¢1Z;_s+02Z_p5+ +¢pzt—ps)J'0 e—kydy‘

=[h-J2lp Sup [1- g X"t 0Ztos +02Zt 25+ +pZi-ps) _ Ah]

xe[0, a)

_ [1 _ ex(¢lztfs+¢22t725+'"+¢pztf ps) lh]” i - o ”1

— ql" jl _ jz ”, where q = [1_ ek(X—a+¢1ths+¢ZZt725+”'+¢pztf ps) _ lh] <1

We have used the triangular inequality and the fact that

| 1(0)— 1200)| < Sup | h(¥)— J200[ =] J1 = 2 |-

xe[0,a)

3. The ARL and ADT to CUSUM Chart Seasonal AR(p) Model

We consider the explicit formulae and the numerical integral equation to
solve the solutions for the seasonal AR(p) model. The explicit formulas are
based on an integral equation approach, “Fredholm integral equation of the
second type”. In Theorem 3.1, we derive and propose explicit solutions
which are guaranteed existence and uniqueness by Theorem 2.1.

Theorem 3.1. The solution of (6) is
j(x)=@1+ M8 0Zt-s=02Zt-25 = ~0pZe-ps) _ Ah)e —e™ x>0and a<h,
Proof.

- h
O W 1LY

f(1- ek(X—a+¢1ths+¢zzt725+'"+¢pzt*pS)) j(0), xe]0, a).
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Set d = J; i(y)e ™dy. Now, we have

j(X) = 14 2 A2 T daZiasdpZips )y

n (1 _ ex(X—a‘H"lzt—s +02Z¢_2g +"'+<|)pzt—ps)) j(O)

If x =0, then
§(0) = 1+ ne™ (ATt 225t pZeps)g
(1= MAr iz tb2Zias o 0pZiops)y )
_ MatiZsmboZeas— i) | gy

Substituting j(0) into (8), we found that

j(X) —1+d + ek(a—¢1zt—s—¢22t—25 —"'—¢pzt—ps) _ ekx.

Now the constant d can be found as

d = Joh J(l +d + ek(a—¢1zt—s—¢22t—2$ —"'—¢pzt—ps) _ eky)e—xydy

Substituting the constant d into (9), we have

ﬁ(l B e—xh)(l N eX(a—¢1Zt—s—¢zzt—25—'"‘¢PZt—pS)) — heth
. .

(8)

9)

J(X) — (1+ ek(a—¢1zt—s—¢22t—25_'"—¢pzt—ps) _}\‘h)e}\,h _e7\.X’ x>0 and a<h

The explicit formulas for the ARL and ADT are presented as follows:

ARL = jO(X) — (1+ e(a_¢1zt—s_¢22t—2$_“'—¢pzt—ps) _ h)eh _ eX (10)

and

ADT = jl(x) — (1 + ek(a—(blzt—s—d)zzt—zs —'"—¢pzt—ps) _ kh)e”‘ _ ekx, (11)
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where A is a parameter of the exponential distribution, o is a constant, & is
a trend parameter, ¢; is a smoothing parameter for i =1, 2, ..., p, p is an

order of autoregressive observations model, h is boundary value, and a is
reference value.

4. Comparisons of the Results with Numerical Integration

We apply the numerical integration approach to the CUSUM chart for
the seasonal AR(p) model. First, we assume that the system is in-control at
time n if the CUSUM statistic X,, is in the range H| < X, < Hy and

out-of-control if X, > Hy or X, <H_, where H__ is a constant lower
boundary, (H_ =0) and Hy is a constant upper boundary (H = h).

Second, we also assume that the system is initially in an in-control state x,

i.e, Xo =x and 0 < x < h. We then define function j'E(x) as follows:
i'E(x) = Byt < 0

=14 B {10 < Xy < SO+ By = 0(0)
“14 [Ty a0 - F@-0i0, (1)

where 1y, is the first passage time defined in (1). Then j'E(x) is the ARL
for initial value x.

We present a numerical integration scheme for evaluating solutions (5)
for the CUSUM chart which can be written as follows:

jIE(X) =1+ JO)F(a—x—d1Zt_s — 02Zy_ps — - = ¢pzt—ps)
h
# IO @ X~ diZes ~ oo 25— = dpZps + V)Y,

dF(x) _
dx

where F(x) =1-e ™ and f(x) =
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Recalling a given quadrature rule for integrals on [0, h], the integral
equation can be approximated by

(@) =1+ j(a)F(a—a — 01Zi_s — 2225 =+ = dpZi_ps)
m
+ Zij(ak) flag +a—a —¢Zi_s — 92Zt_p5 =+ = dpZi_ps),
k=1
i=12 .., m (13)

Without loss of generality, we can approximate the integral by a sum of

areas of rectangles with bases % with heights chosen as the values of f(ay)

at the midpoints of intervals of length % beginning at zero, i.e., on the

interval [0, h] with the division points 0 <& <a, <---<a, <h and

m

weights w.. We obtain J'; i(y)dy = > wy f(ay), where a = %(k —%)
k=1

k=12 ..,m

Because equation (13) is a system of m linear equations in the m
unknowns j(a;), j(az), ..., j(@y), it can be written in matrix form as

‘]mxl = 1m><l + Rmxm‘]mXI'

(lm - Rmxm)mel = 1m><1a

where
i(a)
Iy = J'(f:lz), It =| |,
i(am) 1
Fla—a,-A)+w,f(a) Wof(a,+a—a—A) - wyflay+a—a-A)
R | Fla-a-8)+waf(a+a—a,-4) W, 1 (a) < Wy f (@ +a-a;~4)

mxm

Fl@a-a,-A)+wf(y+a—-a,—-A) wyf(a,+a-a,-4) - wp, f(a)
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With A = ¢1Z;_g + ¢pZt_ps + -+ dpZt_ps and Iy, =diagL 1, ..., 1) is the
unit matrix of order m. If there exists (I, — Rmxm)_l, then the solution of
the matrix equation is as follows:
Imxt = (lm - Rm><m)_1:|-m><1-
To solve this set of equations for the approximate values of

i(a), j(a), ..., j(ay), we may approximate the function j'E(x) as

IE() =1+ j(ag)F(a—x—¢1Zy s — d2Zt 25 =+ — dpZt_ps)
m
+ Zwkj(ak)f(ak +a—aj — 01y g — Pply_ps — _¢pzt—ps)
k=1

(14)

with w =% and a = %(k —%)

We display numerical scheme to evaluate solutions of the integral
equations in (10) and (11) from Section 3, which are compared with the
approximate function j(x) as in (14), by Gauss-Legendre quadrature rule.
All results give a comparison of the approximated solutions j'E(x), the

exact solutions j(x), the absolute percentage difference

-1E
j‘( i) ™) 1000

for several values of a, h and the number of divisions m.

er() = I

To study the ARL for CUSUM charts for the seasonal AR(p) model, we
consider CUSUM chart for the seasonal AR(1) and seasonal AR(2) models.
We present some numerical results in Table I in order to compare the explicit
and numerical values of the ARL for the seasonal AR(1) model with
exponential distribution white noise. The parameters ¢ are equal to 0.3, 0.5,

0.7 and -0.3, -0.5, -0.7. For in-control state, the ARLSs are equal to 100, 370
and 500 with boundary value of 4 and then the constant value is dependent
on the initial value of x.
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Table 1. ARL of CUSUM chart for the seasonal AR(1) with 12-periodicity
model with exponential distribution white noise when h = 4

o a Value X =0 ) a Value X =0
jo(x) | 100.808 jo(x) | 100.2770
100.6717 99.9407

2082 | jlE 1.4 ilE
082 | i™(X) 551 2050" 8 1 170 3980320
gr(%) | 0.1352? gr(%) | 0.3354
jo(x) | 370.0630 jo(x) | 370.5980
368.6945 369.0626

03 | 2782 j'E -0.3 | 2183 j'E
I (%) 5283780 1) g157590
er(%) | 0.3698 er(%) | 04143
jo(x) | 500.3470 jo(x) | 500.3470
498.3961 498.3391

3 | jF 24 | jE
™) 11686000 ™) 50173850
(%) | 0.3899 e (%) | 0.4013
jo(x) | 100.2770 jo(x) | 100.2770
100.0467 99.9202

-IE (IE
228 | I™(0) 217970 128 | i) Ig30.0870
er(%) | 0.2207 er(%) | 0.3558
jo(x) | 370.5980 jo(x) | 370.5980
369.2794 369.1256

5 |2 iIE —05 | 1. iE
05 12983 | J7(0) Faogzazg | 2° | 1983 | 170 018800
er(%) | 0.3558 e (%) | 0.3973
jo(x) | 500.3470 jo(x) | 500.3470
498.4272 498.3251

32 | j'F 22 | j'E
(%) 017670 ™) o5 8790
er(%) | 0.3837 er(%) | 0.4041
0.7 jo(x) | 100.2770 | -0.7 jo(x) | 100.8080
100.0724 100.4149

248 | j'E 1.082 | j'E
8 1 1700 5562590 082 1 1) 3030460
er(%) | 0.2040 e (%) | 0.3899
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jo(x) | 370.5980 jo(x) | 370.0630
369.2716 368.5820

-IE (IE
3183 1 i™() 03,8880 31951 179 5039830
er(%) | 0.3579 er(%) | 0.4002
jo(x) | 500.3470 jo(x) | 500.3470
498.4702 498.3166

-|1E -|E
34 1170 7993490 3411 1700 5022690
e(%) | 0.3751 er(%) | 0.4058

This is the CPU time used (seconds).

“This is the absolute percentage
difference.

It is noticed that the results obtained from the explicit formulas are
much closer to the numerical approximation. The explicit formulas are faster
computational times. As an example, if ¢ = 0.3, a = 2.082 and x = 0, then

this gives the ARL =100.808. The computational time of this ARL which is

based on the IE approach takes less than 1 second while the NI approach
takes 821.2050 seconds.

Table Il. ARL and ADT of CUSUM Chart for the seasonal AR(1) with
12-periodicity model with exponential distribution white noise when h = 4

Xx=0,a=2733, X =0, a=2232,
A ¢ =0.25 er(%)? o = —0.25 & (%)
I[CONIN ) i(x) i ()
1.00 |370.5980 |369.9061 | 0.1867 |370.0630| 369.1382 | 0.2499
1.01 |346.7460 | 346.1125 | 0.1827 |364.2480| 363.3530 | 0.2457
1.05 |269.1590 | 268.7076 | 0.1677 |268.7810| 268.1588 | 0.2315
1.07 |238.8610|238.4776 | 0.1605 |238.5290| 237.9930 | 0.2247
1.10 |201.3610|201.0567| 0.1511 |201.0860| 200.6541 | 0.2148
1.20 |121.4780|121.3285| 0.1231 |121.3220| 121.0962 | 0.1861
2 14.7495 | 14.7442 0.0360 14.7379 14.7273 0.0721
3 5.8554 5.8545 0.0158 | 5.85276 5.8509 0.0326

This is the absolute percentage difference.
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The results are shown in Table Il in order to compare the explicit and
numerical values of the ARL and ADT for the seasonal AR(1) model with
exponential distribution white noise when parameter values are ¢ = 0.25
and —0.25. For in-control state, the ARL is equal to 370, with boundary value
equal to 4 and constant value is dependent on the initial value of x. Notice
that A =1 is the value assumed for the in-control parameter, therefore the
first row gives the value of the ARL. Rows for A > 1 correspond to values of
out-of-control parameters; therefore these rows give the values for ADT.

Table I1l1. ARL and ADT of CUSUM chart for the seasonal AR(2) with
12-periodicity model with exponential distribution white noise when ¢; =

04, ¢ =0.2and x =0

CUSUM (h, a)
A Value
(3,2.75) | (3,2.90) |(4,2.382)| (4,3.083) | (4,3.3)
jo(x) |100.0040 | 122.8510 |100.8080 | 370.5980 | 500.3470
1 j'E ) 99.8299l 122.4853 | 100.6295 | 369.0867 | 498.9085
963.6960°| 917.0680 |948.9850 | 950.1400 | 938.6550
er(%) | 0.1741% | 0.2977 0.1771 | 0.4078 0.2875
Jo(x) | 18.7236 | 21.5750 | 40.9483 | 40.7521 | 51.2113
15 j'E(x) 18.6830 | 21.5325 | 40.8583 | 40.6305 | 51.1024
955.5370 | 916.7710 |948.1900 | 946.4730 | 924.1840
er(%) | 0.2166 0.1972 0.2199 | 0.2985 0.2126
jo(x) | 8.6408 | 9.56626 | 14.7495 | 14.2983 | 17.4013
5 j'E(x) 8.6242 9.5386 | 14.7211 | 14.2700 | 17.3687
920.4370 | 919.1580 |948.1590 | 943.6500 | 920.3560
er(%) | 0.1916 0.2892 0.1924 | 0.1976 0.1875
This is the CPU time in seconds.  *This is the absolute percentage

difference.

The results are shown in Tables Il and 1V in order to compare the ARL
and ADT which were obtained from the numerical approximation and the
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explicit formulas for the seasonal AR(2) model with exponential distribution
white noise when parameter values (¢y, ¢,) are equal to (0.2, 0.1), (0.9,
0.05), respectively. However, for in-control state, the ARLs are equal to 100,
370 and 500 with the boundary value equal to 3 and 4. As an example, if the
boundary value is equal to 4 and the constant value is 2.382, they give the
ARL equal to 100.8080. Notice that the explicit solutions are in good
agreement with the results obtained from the numerical approximation.
Furthermore, it is obvious that A =1 is the value assumed for the in-control
parameter, therefore, the first row gives the value of the ARL. Rows for
A >1 correspond to values of out-of-control parameters, therefore these rows
give the values for ADT.

Table IV. ARL and ADT of CUSUM Chart for the seasonal AR(2) with
12-periodicity model with exponential distribution white noise when ¢; =

09, ¢ =0.05and x=0

CUSUM (b, a)
(3,2.99) | (4,2.937) | (4,3.636) | (4 3.853)
jo(x) | 60.6550 | 100.4210 | 370.4880 | 500.6270

60.6137 100.3444 | 370.1924 500.1369
963.9770" | 962.6670 | 962.3700 962.9010

er(%) 0.0681° 0.0763 0.0798 0.0979
jo(%) 12.7137 15.5232 40.1326 50.4161

12.6943 15.5055 40.0976 50.3544
968.8910 | 975.6450 | 982.5100 980.7620

e (%) 0.1523 0.1142 0.0873 0.1224
jo (%) 6.2861 7.3003 14.1355 16.7913

6.2809 7.2936 14.1220 16.7737
996.7680 | 994.0380 | 997.9230 | 1009.9700

er(%) 0.0826 0.0914 0.0955 0.104571

A Value

1 i (%)

15 i"T(%)

2 i (%)

This is the CPU time in seconds.  “This is the absolute percentage
difference.
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In Tables I to 1V, the analytical explicit solutions are in good agreement
with the results obtained from the numerical integral equation approach with
500 nodes in the integration rule. It is obvious that explicit formulas give
numerical results which are much closer to the numerical integral equations
approach. In addition, the computational times of the numerical integral
equations approach take approximately 15 minutes while the results obtained
from the explicit formula take less than 1 second which is much less than the
former.

5. Conclusions

We derive analytically explicit formulas of ARL and ADT for CUSUM
chart when observations are the seasonal AR(p) model with exponential
distribution white noise. The accuracy of the analytical results has been
compared with the numerical integral equation based on Gauss-Legendre
quadrature rule. They are in excellent agreement. The amount of time
required for the numerical computations were approximately 10-15 minutes
compared with less than one second for the explicit formulas. In addition, our
results can easily be implemented in any computer program which is very
useful for design of optimal CUSUM charts.
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