F W, Far East Journal of Mathematical Sciences (FIMS)
q p \  © 2014 Pushpa Publishing House, Allahabad, India

\ Published Online: May 2014
B LR " Available online at http://pphmj.com/journals/fjms.htm
Volume 87, Number 1, 2014, Pages 89-111

NEW RESULTS ON UPPER BOUNDS FOR THE
CHROMATIC NUMBER OF FUZZY GRAPHS
AND THEIR COMPLEMENTS

Isnaini Rosyidal2, Widodo?, Ch. R. Indrati! and K. A. Sugeng?

!Department of Mathematics
GadjahMada University
Indonesia
e-mail: widodo_mathugm@yahoo.com
rinii@ugm.ac.id

2Department of Mathematics
Semarang State University
Indonesia
e-mail: iisisnaini@gmail.com

3Department of Mathematics
University of Indonesia
Indonesia
e-mail: kiki@ui.ac.id

Abstract

Upper bounds for sum and product of chromatic number of
complementary fuzzy graphs are given in [9]. We find that these
bounds do not hold for fuzzy graphs which have certain properties.
This problem motivates us to investigate upper bounds for sum and
product of chromatic number of several classes of fuzzy graphs and
their complements. We obtain new results on upper bounds for sum

Received: January 9, 2014; Revised: March 7, 2014; Accepted: March 8, 2014
2010 Mathematics Subject Classification: 03E72, 05C72.
Keywords and phrases: chromatic number, fuzzy graphs, complement of fuzzy graphs.



90 Isnaini Rosyida, Widodo, Ch. R. Indrati and K. A. Sugeng

and product of complementary fuzzy graphs. Finally, we investigate
these results related to the bounds given in [9]. We add a necessary
condition to fuzzy graphs so that the upper bounds given in [9] can be
improved.

1. Introduction

Let G(V, E) be a graph with vertex set V(G) and edge set E(G). Vertex
coloring of G is a mapping C from V(G) to the set of natural numbers N
such that C(x) = C(y) for all (x, y) € E(G). Given an integer k, a k-coloring
of G is a mapping C from V(G) to the set of colors {1, 2, ..., k} such that
C(x) = C(y) for all (x, y) e E(G). The chromatic number of G, denoted
by %(G), is the smallest integer k such that there is a k-coloring of G. For
simplicity, we will use symbol V for V(G) and E for E(G).

Vertex coloring of graph G can be interpreted as a problem of special
kind about partition of the vertex set, as mentioned in [1]. Therefore, there is

an equivalent definition of vertex coloring as follows. A vertex coloring of
G(V, E) is a partition of V into non-empty subsets Vj, Vs, ..., V|, which are

called color classes such that V =V3 UV, U---UV, the subsets V;
(L <i<k) are mutually disjoint and each V; contains no pair of adjacent
vertices. The chromatic number of G is the smallest natural number k for
which such partition is possible.

The notion of a fuzzy set was introduced by Zadeh in [11]. The ideas of
fuzzy set theory have been introduced into graph theory by Rosenfeld in
1975 as mentioned in [5]. Rosenfeld introduced a fuzzy graph G(V, o, p)
that is a graph which has a fuzzy vertex set V with a membership function
c:V —[0,1] and a fuzzy edge set E with a membership function
uw: E — [0, 1] such that p(u, v) < min{c(u), o(v)} for all u,veV. The
fuzzy graph é(v, o, u) is also denoted by é(\7, E). While Kaufmann
introduced a fuzzy graph G(V, w) that is a graph with a crisp vertex set V
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and a fuzzy edge set E witha membership function p: E — [0, 1], as cited
in [10]. The fuzzy graph é(V, ) is also denoted by é(v, E). Note that a
crisp graph G(V, E) is a special case of a fuzzy graph which each vertex of

V and each edge of E have degree of membership 1. Further, a graph
G(V, E) will be called a crisp graph.

Vertex coloring of a fuzzy graph é(V, n) was introduced by some

authors in two different ways. First, Munoz et al. [6] generalized the coloring
function C :V — N of a crisp graph G(V, E) into a function Cy ¢ :V — S

of a fuzzy graph é(v, w), where S is the set of colors, d is a distance
function defined between two colors on S, and f is a real scale function
defined on image of u. After that, Pourpasha and Soheilifar [8] generalized

the coloring function Cy ¢:V —S of a fuzzy graph G(V, w) into the
function Cq ¢ g :V — S of a fuzzy graph é(V, o, u), where g is a real

scale function defined on image of . Second, coloring of a fuzzy graph G
has been done based on partition of vertex set V into independent vertex sets.
With respect to the second approach, Eslahchi and Onagh [2] introduced a

vertex coloring of a fuzzy graph é(V, o, u) through a partition of the fuzzy

vertex set V into fuzzy color-classes \7, i=1 ..k

The fuzzy graph coloring problem consists of determining the chromatic
number of a fuzzy graph with an associated coloring definition. Several
authors have studied the problems in obtaining chromatic number of fuzzy
graphs. The chromatic number for several classes of fuzzy graphs using the
Cq, ,g function has been investigated in [8]. While upper bounds for sum

and product of chromatic number of complementary fuzzy graphs have been
given in [9] using the definition as in [2].

In this paper, we find that the bounds given in [9] do not hold for fuzzy
graphs which have certain properties. This problem motivates us to
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investigate upper bounds for sum and product of chromatic number of
several classes of fuzzy graphs and their complements. We obtain new results
on upper bounds for sum and product of complementary fuzzy graphs.
Finally, we investigate these results related to the bounds given in [9]. We
add a necessary condition to fuzzy graphs so that the upper bounds given in
[9] can be improved.

2. Preliminaries

We review briefly some definitions in fuzzy sets as in [11]. Let X be a
space of objects. A fuzzy set A on X is a set of the form {(x, pa(x)): x e X},

where pp is a mapping: X — [0, 1] We call u, as a membership function

of the fuzzy set A and pa(x) represents the grade of membership of x in A.

Other definition said that a fuzzy set A on X is a mapping p : X — [0, 1]
as in [3]. According to the first notation, the symbol of the fuzzy set A is
distinguished from the symbol of its membership function (u,). According
to the second notation, there is no distinction between the two symbols. In
this paper, we use the first notation.

A fuzzy set A on X is empty if and only if ua(x) =0 for all x € X.
Let A and B be two fuzzy sets on X with the membership functions
ua X —[0,1] and ug : X — [0, 1], respectively. The union of A and B,
written as C = AU B, is the fuzzy set on X with the membership function
uc : X — [0, 1] defined by pc(x) = max{ua(x), pg(x)} for all x e X.
The intersection of A and B, written as C = A() B, is the fuzzy set on X
with the membership function pc : X — [0,1] defined by pc(x)=
min{ua(x), ug(x)} for all x € X. The fuzzy set A is called a subset of B,
denoted by A < B, if ua(x) < pg(x) forall x e X.

We review briefly some definitions in fuzzy graphs as in [5]. Let
G'(V', &', ) be afuzzy graph with o' :V’ —[0,1] and p':V'xV' — [0, 1].
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The fuzzy graph G’ iscalleda fuzzy subgraph of é(V, o, n) if V' <V and
E'c E. The underlying crisp graph of a fuzzy graph é(\7, E) is a graph
G(V*, E*), where V*={veV :o(v)>0} and E*={(u,v)eV xV :
w(u, v) > 0} [10].

Furthermore, we refer to the definition of complement of a fuzzy graph
as in [10].

Definition 2.1 [10]. The complement of a fuzzy graph G(V, o, 1) isa
fuzzy graph G =(V, 5, 1), where =0 and @(u,v)=min{c(u), o(v)}
—w(u,v) forall u,veV.

Definition 2.2 [10]. A fuzzy graph é(V, o, u) is self complementary if
G=G.

There are two types of adjacency in a fuzzy graph, namely strong
adjacency and weak adjacency [2].

Definition 2.3 [2]. Two vertices u and v of a fuzzy graph é(V, o, 1) are
called strongly adjacent if p(u, v) > %min{o(u), o(v)}, otherwise is weakly

adjacent.

Sunitha [10] gave the condition for a fuzzy graph to be self
complementary as follows.

Theorem 2.4 [10]. Let é(V,c, n) be a fuzzy graph. If p(u,v)=

%min{o(u), o(v)} forall u, v eV, then G is self complementary.

Theorem 2.5 [9]. Let é'(v, o, u) be a fuzzy graph and G = V, o, n
be its complement. The vertices u, v e V are strongly adjacent in G if and
only if u, v are weakly adjacent in E The strongly adjacent vertices

u, v e V in this theorem are restricted to p(u, v) > %min{o(u), o(v)}.
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Next, Sunitha [10] gave a theorem for the complement of joint and union
of two fuzzy graphs as follows.

Theorem 2.6 [10]. Let él(\71, E;) and 52(\72, E,) be two fuzzy graphs.
Then (él + 62) = gl U EZ and (61 U 62) = Grl + 52.

In crisp graph case, upper bounds for sum and product of chromatic
number of a graph and its complement are given in [7]. For a graph G(V, E)

with n vertices:

V0 < 4(G)+ (@) <n+1 and ngﬂny@ﬂs(n;g%

The bounds given in [7] do not hold for fuzzy graphs. In case of fuzzy
graph, the bounds are given in [9]. Let é(V, o, u) be a fuzzy graph with n

vertices and CTB = (V, &, i) be its complement:
1) x(G)+%(G) < 2(n—1) and (2) %(G)- x(G) < n? +1.
3. Main Results

First, we modify the definition of fuzzy graph coloring which given in
[2] and [9]. In [2, 9], a fuzzy set A is symbolized by its membership function
p. However, in Definition 3.1, the symbol of a fuzzy set A is distinguished
from the symbol of its membership function (up).

Definition 3.1 [9]. Let é(\7, E) be a fuzzy graph where the membership

function of V is & and the membership function of E is p. A k-coloring of
G is defined as a partition of V into k-fuzzy subsets \71,\72, ...,\7k of which
membership functions are yq, yo, ..., Yk, respectively, such that it satisfies

the following conditions:

a.V =V, UV, U---UVy.

l

b.

<

|ﬂ\7]=®,li_]
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c. For every strongly adjacent vertices u, v of G, min{y;(u), yj(v)} =0
@<i<k).
The chromatic number of G, denoted by X(é), is the smallest number
of k for which the fuzzy graph G has k-coloring.
The chromatic number of complement g is denoted by X(E). For
simplicity, we usually use the symbol y for x(é) and y for X(g).

By Definition 3.1, we give a condition to a fuzzy graph so that its
chromatic number is equal to 1. Next, we give a condition to a fuzzy graph
with n vertices so that its chromatic number is equal to n.

Lemma 3.2. Let é(v, o, u) be a fuzzy graph with n vertices.

(1) If every pair of two vertices in G is weakly adjacent, then x(é) =1

(2) Otherwise, if every pair of two vertices in G is strongly adjacent,
then X(é) =n.

Proof. Let V = {v{, vy, ..., Vp}.

(1) Since every pair of vertices is weakly adjacent, we only have one
partition S = V' which satisfies all of the conditions in Definition 3.1. Thus,

x(é) = 1. The fuzzy graph G asin (1) is called trivial.

(2) Since every pair of two vertices is strongly adjacent, we can construct
a partition S = {\71, \72, \7n} on the fuzzy vertex set V with the membership
functions vq, v, ..., Y, respectively, where

o= 1o

0, X # Xj.

The partition S satisfies the properties in Definition 3.1. This is the
minimal partition since any partition with less than n members does not

satisfy all of the conditions in Definition 3.1. Thus, %(G) = n. ]
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In this paper, we investigate upper bounds for sum and product of
chromatic number of several classes of fuzzy graphs and their complements.
Further, we show that the bounds given in [9] do not hold for fuzzy graphs
with certain properties. First, we investigate upper bounds for sum and
product of chromatic number of fuzzy cycles and their complements.

3.1. The chromatic number of fuzzy cycles and their complements

Definition of a fuzzy cycle is presented below.

Definition 3.3 [5]. A fuzzy cycle with length n, denoted by én, is a
fuzzy graph consisting a sequence of distinct vertices (ug, Uy, Uy, ..., Uy)
such that p(uj, Uj,) >0 for 1<i<n and p(uj, ug)=0 for k = j+1,
where ug = up.

In crisp graph case, chromatic number of a cycle with even length is 2
and chromatic number of a cycle with odd length is 3. In the case of fuzzy
graph, chromatic number of a fuzzy cycle with even length is 2. However,
chromatic number of a fuzzy cycle with odd length is 2 or 3, that is stated in
Theorem 3.4.

Theorem 3.4. Let én be a fuzzy cycle with length n.

(1) The chromatic number of én is2ifniseven.

(2) The chromatic number of 5n is2 or 3ifnisodd.

Proof. Let én =C(V, o, p).

(1) Let V = {w, Vo, ..., V,}, Where n is even.

Since C is a fuzzy cycle, u(uj, ui,;)>0, for 1<i <n, and uuj, uy)
—0for k= j+1. Since ~min{o(u;), o(uy )} #0, u(u;, Ue) < 5 minfo(u),

2
o(uy )}. This means that all of the pair of vertices (uj, ug) with k = j +1

are weakly adjacent. So that we can construct a partition S = {\71, \72}
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on the fuzzy vertex set V, where V; = {v, V3, Vs, ... Vq_;} and V, =
{V, V4, Vg, ..., Vs }. Every pair of two vertices in \7, is weakly adjacent. The

membership functions of \71 and \72 are y1 and y,, respectively, where

o(vj), ifiisodd
71lVi) =

0, if iiseven

0, if iisodd
and yo(vj) =

o(v;), ifiiseven.

We can see that the partition S satisfies all of the conditions in Definition
3.1. This is the minimal partition since any partition with less than 2 subsets

does not satisfy all of the conditions in Definition 3.1. Thus, X(én) = 2.
(2) Let V = {v, V5, ..., V,}, where n is odd. We consider two cases:

Case 1. There exists at least a pair of vertices (uy, Ug,q) Which is

weakly adjacent. Without loss of generality, we assume that v; and v;,, are
weakly adjacent. If i is even, then we can construct a partition S = {\71, \72}
on the fuzzy vertex set V, where V; = {v, V3, Vs, ..., Vy_2, V) and V, =
{Vo, V4, oy Vi, Vi1, o0 Vn—3: V_1 - While if i is odd, then we can construct a
partition S = {V;, V5! on the fuzzy vertex set V, where V; = {v, V3, Vg, ..,
Vi, Visg, o Voo, Vot and Vs = {Vp, Vg, ..oy V3, Vyy_1 ) Every pair of two
vertices in \7, is weakly adjacent. The sets \71 and \72 have the membership

functions vy, and y,, respectively, where

o(v), ifveV,

Y1lv) = .
0, if veVy,
0, ifve Vl'

Y2(V) = .
o(v), ifveV,.

The partition S satisfies all of the conditions in Definition 3.1. This is the
minimal partition since any partition with less than 2 subsets does not satisfy

all of the conditions in Definition 3.1. Thus, X(én) = 2.
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Case 2. Every pair of two vertices (uj, Uj,q) is strongly adjacent for
i=1 2, .. n Since the fuzzy cycle 6n has an odd length n, we can
construct a partition S = {V;, V5, V3}, where V; = {v;, V3; Vg, ..., Vy_2},
Vy = {Vy, Vy; Vg, ..y V1 } and \73 = {Vy}. Every pair of two vertices (uj, uy)
with k # j +1 is weakly adjacent in 6n. This means that every pair of two

vertices in \7, is weakly adjacent. The sets \71 \72, \73 have the membership

functions yq, v, and ys, respectively, where

o(v), ifveV
YklV) = )
0, ifve Vk

forall k =1, 2, 3.

The partition S satisfies all of the conditions in Definition 3.1 and this is
the minimal partition. Thus, X(én) =3. ]

Next, we give a theorem on upper bounds for chromatic number of fuzzy
cycles and their complements.

Theorem 3.5. Let én be a fuzzy cycle with n vertices (n > 4). For n
is even, X(én)+X(€n)S 2+n and x(én)-x(gn)SZn. For n is odd,
1(C)+7(Cy) < 3+n and %(C,)-%(C,) < 3n.

Proof. Let 5n = C~(V, o, 1) be a fuzzy cycle and En be its complement.

Let V = {v, Vo, ..., V}. We consider two cases:

Case 1. u(vj, Vi41) = %min{c(vi ), o(vj4q)} forall i =1, 2, ..., n.

Then [(vi, Vj,q) = %min{o(vi ), o(vjq)} forall i =1 2, .., n Inother

words, the pair of vertices (v;, vj,1) is strongly adjacent in En. On the other
hand, every pair of two vertices (v;, Vi) with k = j +1 is weakly adjacent

in Gn. Then these vertices are strongly adjacent in En. Thus, every pair of

two vertices is strongly adjacent in gn. By Lemma 3.2, X(En) =n.
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By Theorem 3.4, if n is even (n > 4), then X(én) + X(En) <2+n and
x(én)-x(a)s 2n. If nis odd (n>5), then X(én)+X(En)§3+ n and
2(Cn)- 1(Co) < 3n.

Case 2. én has at least a pair of vertices (v, Vi,1) such that

Vi, Vi) # %min{o(vk ), 6(Vi41)}- This means that there is at least a pair

of vertices vy and vy, which are weakly adjacent in gn. We can construct
a partition S = {\71, \72, \7k Lk<n-1in C:n. The membership functions

of \7, i=1 ..,k are yq, v2, ..., Yk, respectively, where
yi(u) = o(u), and yj(v) = o(v) if uand v are weakly adjacent in gn,

Y (U) = o(u), v (v) =0, k =i, ifuand v are strongly adjacent in gn.
The partition S satisfies all of the conditions in Definition 3.1. This is the
minimal partition, thus X(En )< n-1. By Theorem 3.4, if nis even (n > 4),
then 7(C,)+x(C,)<2+(n-1)<2+n and %(C,)-7(C,) < 2(n—1) < 2n.
If nis odd (n>5), then %(Cp) + X(En) <3+(n-1)<3+n and X(én)'
1(C.) < 3(n —1) < 3n. O

We give some remarks as follows:

(@) The upper bound for X(én) + X(gn) satisfies the upper bound (1).
Since, if n is even and n > 4, then x(én)+ X(gn) <2+n<(n-2)+n
=2(n—-1). Next, if n is odd and n >5, then X(én) + X(gn) <3+n<

(n—=2)+n=2(n-1). However, the upper bound for X(én)‘X(En) is
smaller than the upper bound (2). Since, if n is even and n > 4, then

X(én) : X(En) <2n<(n=2)n<(n —1)2 <n?+1. Next, if n is odd and

n>5, then x(C,)-7(C,)<3n < (n-2n < (n-1% <n? +1.
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(b) While upper bound for sum of chromatic number of a fuzzy cycle 53

and its complement do not lie within the upper bound (1).

In Example 3.6, we give a fuzzy cycle 53, where its bound does not lie
within the bound (1).

Example 3.6. Let 63 =6(V, o, ) be a fuzzy cycle given in Figure 1.

There is exactly one pair of vertices (B, C) such that

u(B, C) = %min{o(B), o(C)}.

While u(A, B):%min{c(A), o(B)} and p(A, C) = %min{o(A), o(C)}.

Figure 1. A fuzzy cycle 63 and its complement.

Let S = {\V;, \72,\73} be a partition of the fuzzy vertex set V. The

membership functions of \71 \72, \73 are yq, yo and yz, respectively which
are defined as in Table 1. The partition S satisfies all of the conditions in
Definition 3.1. Thus, X(63) = 3.

Table 1. The membership functions yq, yo, y3 of the fuzzy subsets in 63

(left) and the membership functions y4, y, of the fuzzy subsets in 33 (right)

Vertices vy, y, y3 Max Vertices vy, y, Max
A 02 0 0 02 A 02 0 02
B 0 04 0 04 B 0 04 04

C 0 0 03 03 C 0 03 03
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On the other hand, we can construct a partition S" = {\71, \72} in C=:3. The

membership functions of \71 and \72 are y; and y,, respectively, which are
defined as in Table 1. The chromatic number X(Eg) = 2. Thus, X(63)+ X(C::3)

=5>2(n-1) and X(C~:3) . X(gg) =6 <n?+1. We can see that the upper

bound for sum of chromatic number of fuzzy cycle 63 and its complement

does not lie within the upper bound (1).

Then we investigate upper bounds for sum and product of chromatic
number of fuzzy wheels and their complements.

3.2. The chromatic number of fuzzy wheels and their complements

In order to define a fuzzy wheel, a definition of union and joint of two
fuzzy graphs are presented.

Definition 3.7 [10]. Let Gy(V;, E;) and G,(V,, E,) be two fuzzy
graphs where the membership functions of \71 El,\72, Ez are oy, H1, 02, Mo
respectively.

Assume that \71 ﬂ\72 = J. The union of two fuzzy graphs 51 and 62
is a fuzzy graph (31 U (32 = 5(\71 UV,, E; UE,), where the membership

function of \71 U\72 is STV which is defined by
o(u), ifueVy—Vy;

G\7U\7(u)= o
1= Gz(U), ifUEVz—Vl

and the membership function of El U Ez is HE UE, which is defined by

ny(u,v), if (u,v) e Ey — Ey;

HEUE, (V) = {uz(u’ v), if(u,v)eE,-Ey.
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The joint of two fuzzy graphs él and éz is a fuzzy graph 61 + éz =
é(\71 U\72, El U Ez U E'), where E' is the set of all edges joining the
vertices of \71 and \72. The membership function of fuzzy vertex set \71 U \72
is O UV,

While the membership function of fuzzy edge set El U Ez UE' is
HE, UE, UE’ which is defined by

mEUE, (U V), if (u, v) e E; UE,,
Mg UEUE W V)= _ _

min{oy(u), oo(u)}, if(u,v)eE"
After that, we give the concept of a fuzzy wheel.

Definition 3.8. A fuzzy wheel VVn is a fuzzy graph with n vertices

(n > 4), formed by connecting a single vertex x to all vertices in a fuzzy
cycle with n —1 vertices. In other words, a fuzzy wheel VVn (n > 4) canalso

be defined as joint él + én_l, where él consists of a single vertex.

In order to find the chromatic number of a fuzzy wheel and its
complement, the chromatic number of union of two fuzzy graphs and the
chromatic number of joint of two fuzzy graphs are presented.

Theorem 3.9. The union of two fuzzy graphs Gl U 62 has the chromatic

number x(Gy U Gy) = max{x(Gy), %(Gy)}-

Proof. Based on definition, Gl(\71, E;) and 62(\72, E,) are fuzzy
subgraphs of 61U§2, thus X(61U§2)2 max{x(él), x(éz)}. We will prove
the upper bound: X(él U 52) < max{x(él), X(éz)}- Let B = {)Zl, )Zz,

)Zkl} be a partition of \71 which gives X(él) = k;. The membership

functions of )Zl, )22, ey X

, are ag, ap, ., oy, respectively. Let P, =
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v, Y, ... Ykz} be a partition of V, which gives %(G,)=k,. The
membership functions of \71 \72, sz are Py, Pa, ..., Pk, respectively. Let
k = max{kq, ky }. We can construct a partition P = {Wl,WZ, VVk} of
\71 U\72, where the membership functions of Wl,WZ, VVk are vy, Yo,
wer Yk
If k =kq, then the membership functions vy, v,, ..., yx are defined by
viV) = aj(v) (i =1, .., k) for all ve Gy and y;(v)=B{(v) (I =1 ..., ky)
for all v eéz. Otherwise, if k =ky, then the membership functions
Y1, Y2, - Yk are defined by v;(v) = Bj(v) (i =1, ..., k) forall v e 52 and

W) =oy(v) (I =1 .., k) foral ve 51. The partition P satisfies the
properties in Definition 3.1 and this is the minimal partition. Thus,
X(él U (32) < max{x(él), x(éz )} which completes the proof. L]

Theorem 3.10. The joint of two fuzzy graphs él + 52 has the chromatic

number x(Gy + G,) = %(Gy) + 1(Gy).

Proof. Let G;(V;, E;) and G,(V,, E,) be two fuzzy graphs. The joint
51 + 52 has 51 and 52 as fuzzy subgraphs. Since there are edges joining
all of vertices in V; and Vs, X(él + 62) > X(él)+ X(éz)- We will prove
the upper bound: X(él + 52) < X(él) + X(éz)- Let B, = {Xy, Xy, ..., )Zkl}
be a partition of \71 which gives X(él) = ky. The membership functions
of )Zl, )ZZ, )Zkl are ag, ay, .., o, respectively. Let P, = {\71, \72,
sz} be a partition of V, which gives X(éz) = ko. The membership
functions of \71 \72, sz are Py, Bz, ..., B, respectively. We can construct

a partition P = {Wy, W, ..., VVkl, VVk1+1, VVk1+2, Wk1+k2} of V; UV,. The
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membership functions of VVl, VVZ, VVkl, VVk1+1, VVk1+2, VVk1+k2 are
VLo Y20 o Yhgo Yigtlo Thge2o - Yk vk TESPECtively, where: yi(v) = a(v)
for i=1 ..k and yg.a(v)=B(v), vi+2(V) =B2(V) s Vigskp (V) =
B, (V).

The partition P satisfies the properties in Definition 3.1 and this is the
minimal partition. Thus, X(él + 62) < x(él) + X(éz) which completes the
proof. ]

In crisp graph case, the chromatic number of odd wheel is 3 and the
chromatic number of even wheel is 4. In the case of fuzzy graph, the
chromatic number of even fuzzy wheel is 3 or 4.

Lemma 3.11. Let VVn be a fuzzy wheel. The chromatic number of an is
3ord.

Proof. x(W,,) = %(G; + C,_1). If nis odd, then the fuzzy cycle C,,_; has

even number of vertices. Thus, x(vvn) = X(él) + X(én—l) =1+2=3.

If n is even, then the fuzzy cycle 6n—1 has odd number of vertices. By

Theorem 3.4, the chromatic number X(an) = X(él) + X(én—l) is equal to 3

or 4, since the chromatic number of a fuzzy cycle with odd length is 2 or 3.

Based on Theorem 2.6, upper bounds for sum and product of chromatic
number of fuzzy wheels and their complements are given in Theorem 3.12.

Theorem 3.12. If VVn is a fuzzy wheel with n vertices (n > 5), then
X(W~n) + X(W~n) <3+n and X(an) : X(an) <4(n-1).

Proof. Let VVn be a fuzzy wheel with n vertices and an be its

complement. The complement VVn = 61+6n—1: where él has a single



New Results on Upper Bounds for the Chromatic Number ... 105

vertex. By Theorem 2.6, the complement an = gl U En_l. The chromatic
number X(an) = max{x(gl), X(En—l)}- By Theorem 3.5, X(En—l) <n-1.
By Lemma 3.11, x(W,)+ X(an) <4+(n-1)=3+n and X(VVn)-x(V\T/n)s
4(n -1). W

We give some remarks as follows:

(@) The bounds given in Theorem 3.12 lie within the bounds (1) and
(2) for n > 5. Since, if n>5, then X(VVn)JrX(VTn)S 3+n<(n-2)+n
= 2(n—1) and 3(W,)- %W, ) <4(n-1)<(n-1)-(n-1)= (n-12 <n? +1

(b) Upper bounds for sum and product of complementary fuzzy wheels
always lie within the upper bounds (1) and (2), because all of fuzzy wheels

VVn do not have the following properties:
(i) there is exactly one pair of vertices u, v eV such that p(u, v)

" %min{o(u), o(v)},

(i) u(x, y) = %min{o(x), o(y)} forall x, y eV —{u, v}.

(3) A fuzzy wheel VV4 also does not have the properties (i) and (ii) above.

However, a fuzzy wheel VV4 contains a fuzzy subgraph C~:3 which does not
satisfy the upper bound (1). Therefore, upper bound for sum of chromatic

number of a fuzzy wheel VV4 and its complement do not satisfy upper bound
).
3.3. The chromatic number of fuzzy graphs and their complements

First, we give a counterexample for upper bounds (1) and (2) in
Section 2.

Example 3.13. Let é(V, o, 1) be a fuzzy graph given in Figure 2.
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Figure 2. A fuzzy graph G and its complement G.

We can see that the fuzzy graph G has the following properties:

(1) there is exactly one pair of vertices C, D e G such that u(C, D)

2

(2 u(x, y) = %min{o(x), o(y)} forall x, y eV —{C, D}.

# 1 min{c(C), o(D)} (the vertices C and D are weakly adjacent).

Let S = {V;, V,, V3} be a partition of V. The membership functions of

\71, \72, \73 are given in Table 2. The partition S satisfies all of the conditions

in Definition 3.1.

Table 2. The membership functions yq, vy, y3 of the fuzzy subsets in G

(left) and the membership functions vy, v, v3, y4 Of the fuzzy subsets in E

(right)
Vertices vy v, 7y3 Max Vertices vy v, y3 ya Max
A 03 0 0 03 A 03 0 0 0 03
B 0O 04 0 04 B O 04 0 0 04
C 0 0 05 05 C 0O 0 05 0 05
D 0O 0 06 06 D 0O 0 0 06 06
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On the other hand, all of pairs of two vertices in G are strongly
adjacent. Thus, we can construct a partition S = {\71, \72, \73, \74} in G. The
membership functions of \71 \72, \73, \74 are given in Table 2. The chromatic
number of G is x(é) = 3 and the chromatic number of its complement is
1(G) =4 Thus, x(G)+x(G)=7>6=2(N-1) and %x(G)-x(G) =12 <
n? +1. These upper bounds do not lie within the upper bound (1).

We note that in order to demonstrate that the upper bound (2) can be

improved, it is necessary to assume that G does not have the following
properties:

(i) there is exactly one pair of vertices u, v eV such that p(u, v)

" %min{o(u), o(v)}.

(i) u(x, y) = %min{o(x), o(y)} forall x, y eV —{u, v}.

Further, we can prove that the upper bound (2) can be improved.
We have a new upper bound for the chromatic number of product of
complementary fuzzy graphs which is smaller than the upper bound (2).

Theorem 3.14. Let é(Vcs, w) be a fuzzy graph with n vertices and

G = (G, ®) be a complement of G. If G does not have the following

properties:
(i) there is exactly one pair of vertices u, v eV such that p(u, v)

- %min{o(u), (v)},
(i) u(x, y) = %min{cs(x), o(y)} forall x, y eV — {u, v},

then 7(G) + %(G) < 2(n —1) and %(G) - 7(G) < (n - 1%
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Proof. Let é(Vo, w) be a fuzzy graph with n vertices and G - (o, w
be a complement of G. Let V = {V1, Vo, V3, «oey Vpy )

Assume that G does not have the properties (i) and (ii). It means that G
has at least two pairs of vertices, namely (u, v) and (y, z) such that p(u, v)

# %min{o(u), o(v)} and w(y, z) # %min{o(y), o(z)}.
We consider two cases:

Case 1. G has at least two pairs of vertices which are weakly adjacent.

Without loss of generality, we assume that there are two pairs of vertices

(v, vi41) and (v, o, vi,3) Which are weakly adjacent in G. We can construct
a partition S = {V;, Vo, .., Vi (k < n—2) of V, where the membership
functions of \71 \72, \7k are v (=1 2, ..., k).

For | =i, the membership function y, is defined by

y1(vV)=0(v) if v=v; and v=vj,4, while y;(v)=0 for all
veV —{Vj, Vi,1}

For | =i +1, the membership function vy, is defined by
Y1(vV)=0(v), if v=vj,, and v=vj,3, while y,(v)=0 forall
veV —{Vi,2, Viss}

For 1 < | < i, the membership function v, is defined by

y1(v) = o(v) for v =v; and y,(v) = 0 for v = vj.
For i+ 2 <1 <k <n -2, the membership function v, is defined by
y1(v) = o(v) for v =v .5 and y;(v) = 0 for v = v .

The partition S satisfies the properties in Definition 3.1 and this is the
minimal partition. Thus, x(é) <n-2
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While in E , every pair of two vertices can be strongly adjacent. We can
construct a partition S = {\71,\72, ...,\7k}(k <n) of V, where the membership

functions of \7, (=1 2, ..., k) are defined by:
y1(v) = o(v) for v =v, and y,(v) = 0 for v = v.

The partition S satisfies the properties in Definition 3.1 and this is the

minimal partition. The chromatic number X(E) < n. Thus, %(G)+ X(G:) <

(n-2)+n=2n-1) and x(G)-x(G) < (n—2)n < (n - 12,

Case 2. G has at least a pair of vertices which is weakly adjacent and a
pair of vertices which is strongly adjacent.

Without loss of generality, we assume that v; and vj,; are weakly
adjacent in G. We can construct a partition S = V1, Vo, o Vi) (k <0 —1)

of \7, where the membership functions of \71 \72, \7k are y; (I1=1
2, ..., k).

For | =i, the membership function y, is defined by
71(v) = o(v) if v=v; and v = v; 4, while y,(v) = 0 for all
veV —{v viuh
While for 1 < | < i, the membership function v, is defined by
y1(v) = o(v) for v =v, and y,(v) = 0 for v = v.
For i +1 < | < n -1, the membership function v, is defined by
Y1(v) = o(v) for v =vj,q and vy (v) = 0 for v = v ;.

The partition S satisfies the properties in Definition 3.1 and this is the
minimal partition. Thus, %(G) < n—1. Furthermore, since (G) also has at

least a pair of vertices which is strongly adjacent, there is at least a pair of
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vertices which is weakly adjacent in g . By the same way, we have x(g ) <

n—1. Thus, 7(G)+ %(G) < 2(n —1) and %(G)- %(G) < (n —1)2. O
4. Conclusion

In this paper, we investigate upper bounds for sum and product of
chromatic number of several classes of fuzzy graphs and their complements.
We show that there are certain fuzzy graphs which do not satisfy the bounds
given in [9], they are fuzzy graphs with the following properties:

1. there is exactly one pair of vertices u, v eV such that p(u, v) #

% min{o(u), o(v)},

2. u(x, y) = %min{o(x), o(y)} forall x, y eV —{u, v}.

Finally, we can improve the upper bounds given in [9]. By adding a
necessary condition that a fuzzy graph G does not have the properties (i) and
(i), we have 7(G)+x(G) < 2(n—1) and %(G) %(G) < (n —1)%. We can

see that the upper bound for the chromatic number of product of
complementary fuzzy graphs is smaller than the upper bound given in [9].
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