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Abstract

Since the 50’s, there exists the conjecture:

“If G is a finite non-cyclic group of order p”, p a prime number and
n an integer greater than 2, then the order |G| of G divides the order

| AG| of the group 4(G) of its automorphism”.

In this paper, we prove that the conjecture is also true if G has any of
the following conditions:

(i) The center Z of G is elementary abelian.
(if) The center Z of G is cyclic or

(iii) G has class cand ¢ = 3.
Introduction

Since the 50’s, there exists the conjecture:

“If G is a finite non-cyclic group of order p”, p a prime number and
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n an integer greater than 2, then the order | G | of G divides the order | 4(G)]|
of the group A(G) of its automorphism”.

Groups which satisfy this conjecture are called LA-groups.

Many papers have been appeared upon this topic, but the conjecture
remained open until now. For example:

Schenkman in 1955 proved that a finite non-abelian group of class two
is an LA-group [26]. In this paper, some lemmas were incorrect. In 1968,
Faudree proved by another way those lemmas and he proved that a finite
non-abelian group of class two is an LA-group [15].

Ree in 1956 proved that any finite non-abelian group of order p” and
exponent p is an LA-group [25].

Otto in 1966 proved that any finite abelian group of order p" is an
LA-group [24].

Davitt and Otto in 1971 [5] proved that a finite p-group with the central
quotient metacyclic is an LA-group. They also proved in 1972 that a finite
modular p-group is an LA-group [6].

Davitt in 1970 proved that a metacyclic p-group of order p” is an LA-
group [4]. He also in 1972 proved that a non-abelian p-abelian finite group of

order p” isan LA-group [7]. He also in 1980 proved that if ‘g < p4, then

G is an LA-group [8].

Otto proved in [24, Theorem 1] that if G is a direct product G = H x K,
where H is abelian of order p” and K is a PN-group, then | 4(G)|=>
pIAK)|.

The result of this type not only extends the number of groups to which
the conjecture is known to be true, but also and perhaps more importantly,
shows that the truth of the overall conjecture depends only on being able to

prove it for a smaller class of groups. Otto’s result shows that it is sufficient
to consider p-groups with no non-trivial abelians direct factors.
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Also, Hummel proved in [21] that if the p-group G is a central product

H - K, where H is abelian and non-trivial and | K | divides | 4(K)|, then
| G| divides | 4(G)|. Hummel’s result shows that it is sufficient to consider
p-groups which are not central product of no non-trivial groups H - K,
where H is abelian and | K | divides | 4(K)|. It may be noted here that if

Z f_ ®(G), where Z is the center of G, then there exists a maximal subgroup
Mof Gsuchthat Z £ M. Then G = Z-M and G is a central product of Z
and M, where Z is abelian. If Z = ®(G), then G is of class two. Therefore, if

G is of class ¢ > 2, then Z is a proper subgroup of ®(G). Therefore, in

trying to prove the conjecture, it is sufficient to prove it for p-groups for
which Z < ®(G).

Hence the truth of the overall conjecture depends only on being able to
prove it for a class of groups which satisfy all the following conditions (A):
Conditions (A). (i) G has class ¢ > 2.

(if) G has more than two generators and so ¢ > 3, where ¢ is the number

of invariants of Q_
L

(iii) G is a PN-group.

(iv) G is not a central product of H - K, where H is abelian and | X |
divides | A(K)]|.

(v) Z is a proper subgroup of ®(G).

Notations

Throughout this paper, G will be a PN-group which satisfies the
conditions (A). Also, we shall use the following notations:

G is a finite non-abelian group of order p”, p a prime number, G' =
[G, G] is the commutator subgroup of G, Z = Z(G) is the center of G and
®(G) is the Frattini subgroup of G.
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We denote the lower and the upper central series of G by:
G=Ly2L12Ly2---2L.1>L. =1
where ¢ is the class of G and I; = G’ =[G, G] is the commutator subgroup
of G,
GZZC ZZC—lZZc—Z Z'“ZZ]_>ZO =1,
where Z; = Z is the center of G.

We also denote by mq 2my >2---2m, 21 and kg 2 kyp 2 -2 kg 21
the invariants of G/Ll and Z, respectively, where ¢ and s are the numbers
of invariants of G/L; and Z, respectively. If | G/L, | = p™ and | Z | = p*,
then m =my +my +---+m; and k =ky + ko +--- + kg.

A(G), I1(G), A.(G) are the groups of automorphisms, inner
automorphisms and central automorphisms of G, respectively.

Hom(G, Z) are the set of all homomorphisms of G into Z.

A p-group G is called p-abelian if (ab)? = aPb? for every two elements
a and b of G.

The p-group G is called metacyclic if it has a normal subgroup H such
that both H and G/H are cyclic.

We say that the p-group G has exponent p if a” =1 forevery a € G.

The p-group G is called PN-group if it has no non-trivial abelian direct
factor.

K is a two-maximal subgroup of G, if K is a maximal subgroup of a
maximal subgroup of G.

P(G)=R(G)={x"|xe G} and E(G)=E(G)={xeG|x’ =1}

Now we will state some known results and also we shall prove some new
results, which are needed and used to prove the main result of this paper.
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Lemma 1. Let G be a non-abelian group of order p" and class c,
where p is a prime number and n is a positive integer, n > 2. Let G =
Lo2Li2Ly>>L3>L.=1and G=Z.2>Zo 12 Zep 227
> Zy =1 be the lower and the upper central series of G, where L4 = G’
=[G, G] is the commutator subgroup of G and Z; = Z is the center of G.

Let also

%‘:pm and |Z|=p*, m>my>->m >1 and ky >k,

2.2k, 21 be the invariants of % and Z, respectively. Then m =
m+my +--+mand k =k +ky +---+ k.

Then we have:
L

Li >exp—L forall i=1,2,..,c—1. For t =2,

() p"? >exp
Li+1 Lz+2

L

T is cyclic of order at most p
2

ma

(b) Ll < ZC—i’ Ll f ZC—i—l and [Ll’ Ll] < L2[ fOl" all i= 0, 1, 2, veny
c-1

L
(c)expL;q < W‘
) If LLi is cyclic of fixed order p” for all i =1, 2, ..., c—1, then
i+1

G G
LNZej1=Lig, Zej1<Li<Z.; exp<p" and ‘Z_z‘ =p”.

IS
Zin k .
(e) exp—= = expZ = p"l forall i =0,1, .., c—1.
i

15
I

Proof. Case (a) has been proved by Blackburn in [2].

(f) In the invariants of — and Z, we get that my > ky.
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Case (b) and Case (c) have been proved in [13, Lemma 1].
Case (d) has been proved by Gallian [16, Lemma 2.1].

Now we shall prove the Cases (e) and (f).

(e) By definition, the upper central series of G is % = Z(Zﬁj Hence
. :

1

it is enough to show that exp% =exp Z. The rest of the proof follows

by induction. Let exp% = p*. Take a e G and b € Z,. Then [q, b] e
[G, Z,] < Z. So [a, b] commutes with both a and 4. Then [a”, b] = [ay, b ]
= [a, b]" for any positive integer r. Hence [a, bpx] =[a, b]* =1, as

bP* € Z. So

kl < x (1)
k1 k1 k1
Also, [a, b? "] =[a, b}’ " =1, as [a, b]le Z. So b~ e Z for every
b e Z,. Then
x < kl' (2)

From (1) and (2), we get that x = k.

(f) Let exp% =p*. Take ae G, be L._,. Then [a, b] € [G, L._5]
= L._1 < Z. Hence [a, b] commutates with both a and . This gives that for
any positive integer n, we have [a", b] = [a, b"] = [a, b]". SO |a, bpx] =
[a, b =1 as b7 < L._1 < Z. Therefore, [a, bl =1 for [a, b] € Z.

Since exp Z = pkl, we get that x > k7. On the other hand, by Lemma 1(a),

we have that p"2 > expi"—‘2
c-1

= p*. Hence my > x > ky.
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Lemma 2. Let G be a group of order p" and class c. Also, let
G=L02L_|_ZL2 Z"'ZLC_1>LC=1 and GZZCZZC_]_ZZC_Z >
271> Zy =1 be the lower and the upper central series of G, where

L = G' =[G, G] is the commutator subgroup of G and Zy = Z is the

center of G. Let %‘ =p", |Z|= pk and my 2my 2 ---2m; 21 and

ky 2 kyp 2 -+ 2 kg 21 be the invariants of % and Z, where t and s are the
: . G : G m

numbers of invariants of E and Z, respectively. expz =pl expZ =

pkl. In such a group, all the following conditions hold-
t,s
(i) | 4.G| = p®, where a = min(m;, k).
iJ

(i1) If m; > ky for some i with 1 < i < ¢, then a > ik + (t —i)s.

(i) If k; = my for somej with 1< j <'s, then a 2 Jjem+(s— j

(iv) If my < k, then a > m, where

G|_ m

Ll‘ m

WM Ifk>m >k >my, thena>k+m+s—m —1
(Vi) If kj 2 m 2 kjq, then

a2j-m+k—(k+ky+-+kp)+(s—j)t-1).
(vii) If' | A(G)| = p? then A>a+b, where 4.(G) = p?, ‘—‘zp :
(viii) 4.(G) N I(G) is isomorphic to the center ofg.

(ix)If‘Ziz‘ = pl, then b > kyc — 2ky +1.
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Proof. Cases (i), (ii), (iii) and (vi) have been proved by Exarchakos
[9, Lemma 1]. Also, Case (iv) has been proved by Exarchakos [12, Lemma
2]. Case (viii) has been proved by Hall, Jr. in [18].

We now proceed to prove the Cases (v), (vii) and (ix).

(V) If iy < m; for all i, then k; < m, and so a > m -s. Therefore, we

may assume that & > m; for some i with 2 <7 < 5. From Case (i), we have

| 4.(G)| = ‘Hom(%, Zj‘ = p?, where a = :Zj;min(mi, kj). (1)

Let a,, b, be the number of times x appears among the invariants of %
and Z, respectively. In (1), summing powers over m; =1, 2, ..., m; for k; =

kg, ..., kp, we get

kS k]_ kl' k]_
a=2xax+kSZax+---+ Zxax+ki2xax .
x=1 x>kg x=1 x>k;
Thus
S ki kl S ml k]_
azz Zxax+ki2ax +ij Zax+2xax . (2)
Jj=2\x=1 x>k; i=1 x>k x=1
Since
s my I my
ij Zax+2xax ZZxaxzm,
i=1 x>k; x=1 x=1

s (K I
putting = | > xa, + k; D ax} from (2), we get a > m + .
Jj=2\x=1 x>k;
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k; I
Let ¢; = Zxa +k; Y a,. Weclaimthat ¢; > 1.
x=1 x>k;

ki ky
If > xa, =0, then k; <m, and so ky > m, > k;. Then > a, >

X>ki
This gives ¢; > 1.
Ik k;
If > a, =0, then k; > m, and then ) xa, >1 and we have again
x>k; x=1

¢; = 1. So our claim has been established.
For ¢; 21, weset r > s—1andsoa >m+s—1.

Since k > k; > my, there exists a non-negative integer b such that £ =

my + b. By (2), we get

a>2(p,+2xa +k2a Zs—l+2xa +mlza +bz

x=k; x>k x>k;

my my
Since 2xa + my Z ay 2 Y xa, =m and Y a, 21 as m > k;,

x>k x=1 x>k;
we get @ > s—-1+m+b, where b =k —m. Therefore, a >k +m+s

- ml - 1.
(vii) Let | 4(G)|, = p. Then

[ 4:(G) |- 1(G)]

1 =140) 2| 4.0 1O = T S TATIE)

Since |1(G)|=‘%‘ and by (b), |AJWI(G)|=‘Z(%)‘=‘% , we have

s 4G 1(G)] _
“14.6)N[1G)]

|AC(G)|-‘Z£2 > p®. pb = p®® Hence 4> a+b.
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(ix) Since exp@ = pM forall i=0,1,2, .., c—1 and
Z; Ze

Zc—i

c—i-1

> pk]_+1

be cyclic, we get and > pkl forall i=12,..,¢c-3.

c-1
|7

Zeal| 2

G

Zy
b > ke — 2k +1.

This gives that > platl. phale=8) _ he=2k+l hence

Theorem 1. Let G be a non-abelian group of order p" and class c. If

Lfil is cyclic of fixed order p" for all i =1,2, .., c—1, then G is an
LA-group.
Proof. Let Q‘ = p™. Since | —| = p" forall i, we get
L i+1
n>m+r(c-1). (1)

By Lemma 1, we have L; <Z._; and that L; £ Z._;,_;. Also, by
Z

c—i

Zc—i—l

L.

1
Li +1

Ga”ian [16], Li ﬂ Zc—i—l = Li+l' ‘ > > p2r

> p’ ‘ G
Zc—l

and exp%s pl=|L.q1]<|Z]| Let

%‘ = p*. Then | Z, | = p*™* and

S0 n > 2r + r(c — 3) + x + k and this is the minimum value of » [16]. Then,

by (1), we get m + r(c —1) > 2r + r(c — 3) + x + k, which gives m > x + k.

Since expg <|Z|, we get a > m. Therefore, a > m > x + k andso 4 >

I

a+n—-x—-k>naazx+k.

Theorem 2. Let G be a group of order p" and class c. If the center Z of

G is elementary abelian, then G is an LA-group.

Proof. We may assume that G has more than two generators. Then ¢ > 3,
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where ¢ is the number of invariants of % Since ki =1, k; =1 for all
i=1 2, .. s, by Lemma 2(ii),

a> kt > 3k. @)

Let G=Z2.22Z,12Z._92--2271>Zy=1 be the upper central

series of G, where Z; = Z is the center of G. Since ZG cannot by cyclic,

c-1
2
we have > p°.
c-1
Also, | =<¢=—|> p forall i =12, ..., ¢ — 3.
c—i-1
G G Z -1 2 c-3 c-1
Then we have —‘:‘ HC— >p°-p =p-
Zy Zeq Zy
Hence
b>c—-1>2, (2)
G|_ b
where Z ‘ =p’.

Also, if k=1 then |A(G)|= p|I(G)|= p‘g‘ =|G| and G is an
LA-group.

Assume that £ > 2. By (1) and (2), weget 4 >a+b >3k +2 > 8.

Hence, for n < 8, G is an LA-group.

Also, k22 andso a >3k >2k+2. Then A>a+b =2k +4 > n for

Since A>2a+b>22k+2+c-1=2k+c+1>n for ¢ > n -5 we get
A>n forc>n-5.
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n—4

Hence, if it holds either n <8, &k > or c>n-5, then G is an

LA-group.

Therefore, we may assume that the following conditions (3), (4) and (5)
hold simultaneously:

n=09, (3)
n—4
k < 5 (@)
and
c<n-5. 5)

Also, A>a+b > 2k +c+1 and we have to prove that 2k + ¢ +1 > n.
By (4) and (5), we get 2k +c < 2n—-9. S0 2k +c+1< 2n - 8.

If 2k +c+1<n, then 2n —8 < n which gives n < 8, a contradiction
to (3).

Hence 2k +c+1>nandso A>a+b=>2k+c+1>n and Gis an
LA-group.

This proves Theorem 2.

Theorem 3. Any finite non-cyclic abelian group of order p", n > 2 is

an LA-group.

Proof. Otto proved in [24] that any finite non-cyclic abelian group of
order p", n > 2 is an LA-group. Also, Exarchakos [10] gives a formula, by

which we can determine the number of automorphisms of an abelian p-group
of a variety of types of abelian p-groups. This formula makes Otto’s result a
special case. Also, this formula makes special cases all until now known
results about the number of automorphisms of abelian p-groups. Here we
state this formula without proof. Details could be found in [10, Theorem 2].
In that paper, Exarchakos proves:
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Let G be a finite abelian group of order p", n>2. Let n>r >

-« > r, 21 be the invariants of G and | AG | = p™. Then we have:

I. If G is elementary abelian, then G is isomorphic to a vector space over
a field of characteristic p. And so,

ln(n—l) 1
[ AG)|=p2 " (p"-D(P" =D (p-1). 1)

Il. Let G be not elementary abelian. Then

1. If G is homocyclic, then m > %S(Zn —s-1).

2.1f s =2, then m=n+2(r, -1).

3.If s>2 then m>n+ %s(s +1), except the particular Cases (a), (b)
and (c):

@ (i, j, 1 ..., 1) with i > j > 1.

) G, ..., i, 1,1 ..., 1) with q; > p.

© (.11 ..1).

In these particular cases, we have:

For the type (a), m > n + %s(s +1)-1.
For the type (b), m > n + %S(s -1).

For the type (c), m > n + %s(s -1)-1.

It is easily seen in all above cases we have m > n and so we have the
corollary:

Corollary. Any finite non-cyclic abelian group of order p", n > 2, is an
LA-group.
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Theorem 4. Let G be a group of order p" and class ¢ > 2. Then if
‘Zi = pb and b < 2¢ — 3, then G is an LA-group.

2

Proof. We may assume that G has more than two generators. Then ¢ > 3,
G

Ly
L.=1land G=Z.>Z.1>-->227; >Zy =1 be the lower and the upper

where ¢ is the number of invariants of —. Let G =Ly > [y >---> L. 1 >

central series of G, where I; = G’ =[G, G] is the commutator subgroup of

G and Z; = Z is the center of G. Since

G is not cyclic, we get that
Zc—l

‘ G = p. Then expZ = p and

2
= p~, then exp
Zc—l ‘

c-1

G
Zc—l

> p3.

by Theorem 2, G is an LA-group. Hence we may assume that

Zc—l

e Z._; Z,._;
Also, if —<= = p forsomei, 1 <i<c¢ -3, then exp—=- = p and so
Ze-i-1 c—i-1

expZ = p and G is an LA-group by Theorem 2. Therefore, we may assume

that > p° and‘L > p? foralli, 2<i<c-3.
c-1 c—i-1
Then
G ‘ G ‘Zc_l 3 2c-3) _ 2c-3
—|= |\==|zp P =p~ . 1)
‘Zz Zeal| | 22

Consider the following cases:

(@) Let b < 2¢ —3. Then either < p2 or Zemi ‘ = p for at
c-1 Ze—i-1
least one 7, 1 <i < ¢ — 3. Then we have exp = p Or exp Zesi )2
Ze Ze—i-1

In each case, we get exp Z = p and so by Theorem 2, G is an LA-group.



On the Automorphisms of Finite p-groups 15

(b) Let b = 2¢ —3. Then G ‘: p° and ‘L = p? for all i.
Zc—l Zc—i—l
. . G 2 G
Since cannot be cyclic, we have exp—— < p“. If exp =p,
Zc—l Zc—l Zc—l

then expZ = p and so G is an LA-group. Therefore, we may assume that

G Zc—i
Zc—l Ze i

Z._; . .
= p2 and so —<— is cyclic of order
c—i-1 Ze i1

exp = pz. Then exp

p2 forall i=1,2,.., ¢—3. Then, by [16], Z._, < L4 < Z._4. This gives

Zc—l

that < p4 and m < 4. Since G has more

< p. Then p™ =‘%

than two generators, % has more than two invariants. Hence 3 < ¢ < 4.

15
L
my =1 and so ky <my =1. Then k =1, expZ = p and by Theorem 2,

If 1t =4 and ‘%‘ = p4, then exp— = p and so m; =1 forall i. Then

G is an LA-group.

If t =3, let my > my > m3 > 1 be the invariants of % Then my + my

+ mg = 4. This gives that m3 =1. Hence my + my =3, which gives m, =1.
Then & =1 and Z is elementary abelian. Hence, by Theorem 2, G is an

LA-group. This proves Theorem 4.

Theorem 5. Let G be a group of order p" and class c. Also, let
G

I p™, expZ = pM and |Z| = P~

4(G)], = ", 14.6)| = p*, exp

Then, if Iy =

w| =

, Gis an LA-group.

Proof. We may assume that + >3 and k& > 2 (Theorem 2). Also, by

b

Theorem 4, we may assume that b > 2¢ —2 > 4 also for k4 > =, we get

w
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bzklc—2k1+1>£+1. If £+132c—3 by Theorem 4, then G is an

— 3 3
LA-group.

Assume that % +1>2c—-22>4. Then

k> 0. @)

Since my > ky, Lemma 2(ii) gives a > 2k + (t — 2)s > 2k + s, as t > 3.

Hence
a>2k+1. Q)
Since b > 4, we get
A>2a+b>2k+1+4=2k+5>23. 2
Also, 4 > 2k +5 > n for
n->5
>
kz == @)
Hence, for n < 23 or k > " ; 5, G is an LA-group. Also, since b >
2c—2, weget A>2k+1+2c—2=2k+2c—1>n for c> ”_217. Hence,
for ¢ > 2 _217, G is an LA-group. Therefore, we may assume that the
following conditions (4), (5) and (6) hold simultaneously:
n > 24, (4)
n->5
k < > )
c<”;”. ©)

Also, 4 > 2k + 2¢ —1 and we have to prove that 2k + 2¢ —1 > n.

2n — 22 ) k+c—1<
2 ' 2

2n — 23 1 n 2n—-23 n
> .Ifk+c—§<§,thenwehave > <§

By the Cases (5) and (6), we have k + ¢ <

which gives n < 23,
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n
2
Therefore, 4 > 2k + 2c —1 > n and G is an LA-group.

> — which gives 2k +2c —1> n.

N

a contradiction to (4). Hence &k + ¢ —

This proves Theorem 5.

Corollary. Let G be a group of order p" and class c. Then G is an
LA-group under anyone of the following conditions:

(i) If G has cyclic center.
(i) If| Z | = p* and k <6.
Proof. (i) If Zis cyclic, k&4 = k and by Theorem 5, G is an LA-group.

(if) If &4 =1, then Z is elementary abelian and by Theorem 2, G is
an LA-group. If & > 2, then 3k > 6 > k£ and so by Theorem 5, G is an
LA-group.

Theorem 6. Any finite non-cyclic group of order p" and class two is an

LA-group.

Proof’. Since G has class two, G s abelian and so I1(G) £ 4.(G) as

VA
A.(G) is the centralizer of /(G) in A(G). Also, since G has class two,

Ly < 7y, where 11 = G' =[G, G] is the commutator subgroup of G.

Also, expZ = pkl gives exp% =expZ = pkl (Lemma 1(e)). By [14,
Zy _
L P

my > my and by Lemma 1(f), my > &y, we get

ky

Lemma 2], we have exp% =exp . This gives my = k. Since

m =my = k]_. (1)

'Schenkman in 1955 proved that theorem [26]. But in that paper, some lemmas were incorrect.
Later in 1968, Faudree proved by another way the incorrect lemmas and then he proved the
theorem [15]. Here we prove the theorem by a completely different way. This proof has been
done by elementary calculation.
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By Theorem 2, we may assume that k& > 2. Also, by Theorem 5, we
may assume that £ > 3k;. By Lemma 2(v), we have a 2 k + m+ s —my —1
=k+m+s—k -1 Since k >3k and ks >k, we get ks > k > 3k,
which gives s >3 and since s is an integer s > 4. Also, since my > ky,

Lemma 2(ii) gives a > 2k + (1 — 2)s > 2k + s, as ¢ > 3. Hence
a > 2k + 4. (2
We claim that
s > ky. 3)
Since &y > 2, for ky = 2, we get 2s > k > 3ky and so s > k.

For k >3, we have 3s > k > 3k, which gives s > & and our claim

has been established. Hence s > k; or s > kj + 1.

Therefore, a 2k+m+s—k-1>k+m>k+n—k=n and so a > n
and G is an LA-group. This proves Theorem 6.

Now we proceed to prove Theorem 7, which is the main result of this
paper.

Theorem 7. Any finite non-cyclic group of order p" and class ¢ = 3 is
an LA-group.

Proof. We may assume that G has more than two generators. Then ¢ > 3,

where ¢ is the number of invariants of % Let G=Lp=>2L)1 2Ly >213=1

and G = Z3 > Z, > Zy > Zg =1 be the lower and the upper central series
of G, respectively, where 1; = G’ =[G, G] is the commutator subgroup of

G and Z; = Z is the center of G. Then we have I, < Z, and L, < Z. Also,

exp% =p™ and expZ = pkl. Then exp% = pkl. Also, epoE2 = pkl,
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Z2
I

k > 3ky and so

K

exp = pkl. Thus, exp% < p2 . By Theorem 5, we may assume that

my < k. (1)

Let

g‘:p’” and | Z | = p*. Since m; <k, we get that a > k +m

+ s —mq —1 (Lemma 2(vi)). Hence

azk+m+s—2k -1 2)

Let |l/.|.| = pll ‘% = pW. Then |Z2 | — pl+W. AISO, Iet %‘ — px.
Then | Z, | = p**. Hence

w+l=x+k. ©)

Since Iy < Z,, weget /< x+k. Son—-I>2n—x—k. Hence m=n—-1
>n—x—k=>b Also, since m <2kg <k, we have a>m>n-x—k.

Hence a+x+k>n Also, b+x+k=n and s0 a+b+2(x+ k)= 2n.

This gives a + b > n for x+k£%n. Then A>a+b=n forx+ks%n.

Therefore, we may assume that
1
x+k2 571. (3)

If /I<k+1 then n—-I>n—-k-1andso m=n-I>n—-k-1. By
2),a2k+m+s—-2kk—-1and b > kc—2k +1> Kk +1.

Also, by (3) in Theorem 6, we have s > k. Hence b+ s > 2k + 2.
Then

A2a+b2k+m+s+b-2kg-12k+m+12k+n—-k-1+1=n

and G is an LA-group. Therefore, we may assume that / > k + 2. If x <
k+1 then x+k<2k+1. Then a>2k+4>x+k and A>a+b>

a+n—-x—k>n Hence we may assume that x > k+ 2. Then x+k >
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n—4

and x2k+22k+4.

2k + 2 and by (3), 2k+22%n. So k=

n—4

4

n—-4 n+4 n
i -

Therefore, k + x > 7] =7 Also, for k£ >

, We get a >

n;4>% andso a>x+k. Then 4>a+b=a+n—-x—-k>n.

This proves Theorem 7.

2k +4 >
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