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Abstract 

Since the 50’s, there exists the conjecture: 

“If G is a finite non-cyclic group of order ,np  p a prime number and    

n an integer greater than 2, then the order G  of G divides the order 

AG  of the group ( )GA  of its automorphism”. 

In this paper, we prove that the conjecture is also true if G has any of 
the following conditions: 

  (i) The center Ζ of G is elementary abelian. 

 (ii) The center Ζ of G is cyclic or 

(iii) G has class c and .3=c  

Introduction 

Since the 50’s, there exists the conjecture: 

“If G is a finite non-cyclic group of order ,np  p a prime number and                   



T. G. Exarchakos, G. M. Dimakos and G. E. Baralis 2 

n an integer greater than 2, then the order G  of G divides the order ( )GA  

of the group ( )GA  of its automorphism”. 

Groups which satisfy this conjecture are called LA-groups. 

Many papers have been appeared upon this topic, but the conjecture 
remained open until now. For example: 

Schenkman in 1955 proved that a finite non-abelian group of class two  
is an LA-group [26]. In this paper, some lemmas were incorrect. In 1968, 
Faudree proved by another way those lemmas and he proved that a finite 
non-abelian group of class two is an LA-group [15]. 

Ree in 1956 proved that any finite non-abelian group of order np  and 

exponent p is an LA-group [25]. 

Otto in 1966 proved that any finite abelian group of order np  is an      

LA-group [24]. 

Davitt and Otto in 1971 [5] proved that a finite p-group with the central 
quotient metacyclic is an LA-group. They also proved in 1972 that a finite 
modular p-group is an LA-group [6]. 

Davitt in 1970 proved that a metacyclic p-group of order np  is an LA-

group [4]. He also in 1972 proved that a non-abelian p-abelian finite group of 

order np  is an LA-group [7]. He also in 1980 proved that if ,4p
Z
G ≤  then 

G is an LA-group [8]. 

Otto proved in [24, Theorem 1] that if G is a direct product ,KHG ×=  

where H is abelian of order rp  and K is a PN-group, then ( ) ≥GA  

( ) .KApr  

The result of this type not only extends the number of groups to which 
the conjecture is known to be true, but also and perhaps more importantly, 
shows that the truth of the overall conjecture depends only on being able to 
prove it for a smaller class of groups. Otto’s result shows that it is sufficient 
to consider p-groups with no non-trivial abelians direct factors. 
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Also, Hummel proved in [21] that if the p-group G is a central product 
,KH ⋅  where H is abelian and non-trivial and K  divides ( ) ,KA  then 

G  divides ( ) .GA  Hummel’s result shows that it is sufficient to consider 

p-groups which are not central product of no non-trivial groups ,KH ⋅  
where H is abelian and K  divides ( ) .KA  It may be noted here that if 

( ),GZ Φ  where Z is the center of G, then there exists a maximal subgroup 

M of G such that .MZ  Then MZG ⋅=  and G is a central product of Z 

and M, where Z is abelian. If ( ),GZ Φ=  then G is of class two. Therefore, if 

G is of class ,2>c  then Z is a proper subgroup of ( ).GΦ  Therefore, in 

trying to prove the conjecture, it is sufficient to prove it for p-groups for 
which ( ).GZ Φ<  

Hence the truth of the overall conjecture depends only on being able to 
prove it for a class of groups which satisfy all the following conditions (A): 

Conditions (A). (i) G has class .2>c  

 (ii) G has more than two generators and so ,3≥t  where t is the number 

of invariants of .
1L

G  

(iii) G is a PN-group. 

(iv) G is not a central product of ,KH ⋅  where H is abelian and K  

divides ( ) .KA  

(v) Z is a proper subgroup of ( ).GΦ  

Notations 

Throughout this paper, G will be a PN-group which satisfies the 
conditions (A). Also, we shall use the following notations: 

G is a finite non-abelian group of order ,np  p a prime number, =′G  

[ ]GG,  is the commutator subgroup of G, ( )GZZ =  is the center of G and 

( )GΦ  is the Frattini subgroup of G. 
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We denote the lower and the upper central series of G by: 

,11210 =>≥≥≥≥= − cc LLLLLG  

where c is the class of G and [ ]GGGL ,1 =′=  is the commutator subgroup 

of G, 

,10121 =>≥≥≥≥= −− ZZZZZG ccc  

where ZZ =1  is the center of G. 

We also denote by 121 ≥≥≥≥ tmmm  and 121 ≥≥≥≥ skkk  

the invariants of 1LG  and Z, respectively, where t and s are the numbers    

of invariants of 1LG  and Z, respectively. If mpLG =1  and ,kpZ =  

then tmmmm +++= 21  and .21 skkkk +++=  

( ),GA  ( ),GI  ( )GAc  are the groups of automorphisms, inner 

automorphisms and central automorphisms of G, respectively. 

( )ZGHom ,  are the set of all homomorphisms of G into Z. 

A p-group G is called p-abelian if ( ) ppp baab =  for every two elements 

a and b of G. 

The p-group G is called metacyclic if it has a normal subgroup H such 
that both H and HG  are cyclic. 

We say that the p-group G has exponent p if 1=pa  for every .Ga ∈  

The p-group G is called PN-group if it has no non-trivial abelian direct 
factor. 

K is a two-maximal subgroup of G, if K is a maximal subgroup of a 
maximal subgroup of G. 

( ) ( ) { }GxxGPGP p ∈|== 1    and   ( ) ( ) { }.11 =|∈== pxGxGEGE  

Now we will state some known results and also we shall prove some new 
results, which are needed and used to prove the main result of this paper. 
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Lemma 1. Let G be a non-abelian group of order np  and class c,  

where p is a prime number and n is a positive integer, .2>n  Let =G  
11210 =>≥≥≥≥ − cc LLLLL  and 121 ZZZZG ccc ≥≥≥≥= −−  

10 => Z  be the lower and the upper central series of G, where GL ′=1  

[ ]GG,=  is the commutator subgroup of G and ZZ =1  is the center of G. 

Let also mpL
G =

1
 and ,kpZ =  121 ≥≥≥≥ tmmm  and 21 kk ≥  

1≥≥≥ sk  be the invariants of 
1L

G  and Z, respectively. Then =m  

tmmm +++ 21  and .21 skkkk +++=  

Then we have: 

(a) 
2
1

1
expexp2

+
+

+
≥≥

i
i

i
im

L
L

L
Lp  for all .1...,,2,1 −= ci  For ,2=t  

2
1

L
L  is cyclic of order at most .2mp  

(b) ,ici ZL −≤  1−−ici ZL  and [ ] iii LLL 2, ≤  for all ...,,2,1,0=i  

.1−c  

(c) .exp 1 ZL
LL

i
i

i ∩≤+  

(d) If 
1+i

i
L
L  is cyclic of fixed order rp  for all ,1...,,2,1 −= ci  then 

,11 +−− = iici LZL ∩  ,1 iciic ZLZ −−− ≤<  rpL
G ≤
1

exp  and .2
2

rpZ
G =  

(e) 1expexp 1 k
i

i pZZ
Z

==+  for all .1...,,1,0 −= ci  

(f) In the invariants of 
1L

G  and Z, we get that .12 km ≥  

Proof. Case (a) has been proved by Blackburn in [2]. 
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Case (b) and Case (c) have been proved in [13, Lemma 1]. 

Case (d) has been proved by Gallian [16, Lemma 2.1]. 

Now we shall prove the Cases (e) and (f). 

(e) By definition, the upper central series of G is .1 ⎟
⎠
⎞⎜

⎝
⎛=+

ii
i

Z
GZZ

Z  Hence 

it is enough to show that .expexp 2 ZZ
Z =  The rest of the proof follows       

by induction. Let .exp 2 xpZ
Z =  Take Ga ∈  and .2Zb ∈  Then [ ] ∈ba,  

[ ] ., 2 ZZG ≤  So [ ]ba,  commutes with both a and b. Then [ ] [ ]rr baba ,, 1=  

[ ]rba,=  for any positive integer r. Hence [ ] [ ] ,1,, == pxp baba
x

 as 

.Zb px ∈  So 

 .1 xk ≤  (1) 

Also, [ ] [ ] ,1,,
11
==

kk pp baba  as [ ] ., Zba ∈  So Zb
kp ∈
1  for every 

.2Zb ∈  Then 

 .1kx ≤  (2) 

From (1) and (2), we get that .1kx =  

(f) Let .exp
1
2 x

c
c pL

L
=

−
−  Take ,Ga ∈  .2−∈ cLb  Then [ ] [ ]2,, −∈ cLGba  

.1 ZLc ≤= −  Hence [ ]ba,  commutates with both a and b. This gives that for 

any positive integer n, we have [ ] [ ] [ ] .,,, nnn bababa ==  So [ ] =
xpba,  

[ ] ,1, =
xpba  as .1 ZLb c

p x
≤∈ −  Therefore, [ ] 1, =

xpba  for [ ] ., Zba ∈  

Since ,exp 1kpZ =  we get that .1kx ≥  On the other hand, by Lemma 1(a), 

we have that .exp
1
22 x

c
cm pL

Lp =≥
−
−  Hence .12 kxm ≥≥  



On the Automorphisms of Finite p-groups 7 

Lemma 2. Let G be a group of order np  and class c. Also, let 

11210 =>≥≥≥≥= − cc LLLLLG  and ≥≥≥= −− 21 ccc ZZZG  

101 =>≥ ZZ  be the lower and the upper central series of G, where 

[ ]GGGL ,1 =′=  is the commutator subgroup of G and ZZ =1  is the     

center of G. Let ,
1

mpL
G =  kpZ =  and 121 ≥≥≥≥ tmmm  and 

121 ≥≥≥≥ skkk  be the invariants of 
1L

G  and Z, where t and s are the 

numbers of invariants of 
1L

G  and Z, respectively. ,exp 1
1

mpL
G =  =Zexp  

.1kp  In such a group, all the following conditions hold: 

    (i) ,a
c pGA =  where ( ).,min

,

,
∑=

st

ji
ji kma  

   (ii) If 1kmi ≥  for some i with ,1 ti ≤≤  then ( ) .sitika −+≥  

  (iii) If 1mk j ≥  for some j with ,1 sj ≤≤  then ( ) .tjsmja −+⋅≥  

  (iv) If ,1 km <  then ,ma ≥  where .
1

mpL
G =  

   (v) If ,11 tmkmk ≥≥>  then .11 −−++≥ msmka  

  (vi) If ,11 +≥≥ jj kmk  then 

( ) ( ) ( ).121 −−++++−+⋅≥ tjskkkkmja j  

 (vii) If ( ) ,ApGA =  then ,baA +≥  where ( ) ,a
c pGA =  .

2
bpZ

G =  

(viii) ( ) ( )GIGAc ∩  is isomorphic to the center of .Z
G  

 (ix) If ,
2

bpZ
G =  then .12 11 +−≥ kckb  
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Proof. Cases (i), (ii), (iii) and (vi) have been proved by Exarchakos           
[9, Lemma 1]. Also, Case (iv) has been proved by Exarchakos [12, Lemma 
2]. Case (viii) has been proved by Hall, Jr. in [18]. 

We now proceed to prove the Cases (v), (vii) and (ix). 

(v) If imk ≤1  for all i, then tmk ≤1  and so .sma ⋅≥  Therefore, we 

may assume that imk ≥  for some i with .2 si ≤≤  From Case (i), we have 

 ( ) ,,
1

a
c pZL

GHomGA =⎟
⎠
⎞⎜

⎝
⎛=  where ( ) .,min

,

,
∑=

st

ji
ji kma  (1) 

Let ,xa  xb  be the number of times x appears among the invariants of 
1L

G  

and Z, respectively. In (1), summing powers over ti mm ...,,2,1=  for =jk  

,...,, 1kks  we get 

.
1 1

1 1

∑ ∑ ∑ ∑
= > = >

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
++++=

ks

x

k

kx

k

x

k

kx
xixsx

s

i

i

xakxaaxkxaa  

Thus 

 .
2 1 11

1 11

∑ ∑ ∑ ∑∑ ∑
= = > == > ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
++

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=

s

j

s

i

m

kx

k

x
xxj

k

x

k

kx
xix

j

i

i

xaakakxaa  (2) 

Since 

∑ ∑∑ ∑
= => =

=≥
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

s

i

m

x
x

m

kx

k

x
xxj mxaxaak

i1 11

11 1
,  

putting ,
2 1

1
∑ ∑ ∑
= = >

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

s

j

k

x

k

kx
ix

i

i

axkxar  from (2), we get .rma +≥  
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Let ∑ ∑
= >

+=ϕ
i

i

k

x

k

kx
xixi akxa

1

1
.  We claim that .1≥ϕi  

If ∑
=

=
ik

x
xxa

1
,0  then ti mk ≤  and so .1 it kmk ≥≥  Then ∑

>
≥

1
.1

k

kx
x

i

a  

This gives .1≥ϕi  

If ∑
>

=
1

,0
k

kx
x

i

a  then ti mk ≥  and then ∑
=

≥
ik

x
xxa

1
1  and we have again 

.1≥ϕi  So our claim has been established. 

For ,1≥ϕi  we set 1−≥ sr  and so .1−+≥ sma  

Since ,11 mkk ≥≥  there exists a non-negative integer b such that =k  

.1 bm +  By (2), we get 

∑ ∑ ∑ ∑ ∑ ∑
= = ≥ = > >

+++−≥++ϕ≥
s

i

k

x

m

kx

k

x

m

kx

m

kx
xxxxxi

i

i

i

i

abamxasakxaa
2 1 1

1
1 1

1

1
.1  

Since ∑ ∑ ∑
= > =

=≥+
ik

x

m

kx

m

x
xxx mxaamxa

1 1
1

1

1

1
 and ∑

>
≥

1
,1

m

kx
x

i

a  as ,1 ikm ≥  

we get ,1 bmsa ++−≥  where .1mkb −=  Therefore, smka ++≥  

.11 −− m  

(vii) Let ( ) .A
p pGA =  Then 

( ) ( ) ( ) ( ) ( )
( ) ( ) .GIGA

GIGAGIGAGAp
c
c

c
A

∩
⋅

=⋅≥=  

Since ( ) Z
GGI =  and by (b), ( ) ,2

Z
Z

Z
GZGIAc =⎟
⎠
⎞⎜

⎝
⎛=∩  we have 

( ) ( )
( ) ( ) ( ) .

2
baba

c
c
cA pppZ

GGAGIGA
GIGAp +=⋅≥⋅=

⋅
≥ ∩  Hence .baA +≥  
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(ix) Since 11exp k
i

i pZ
Z

=+  for all 1...,,2,1,0 −= ci  and 
1−cZ

G  cannot 

be cyclic, we get 1
1

1+

−
≥ k

c
pZ

G  and 1
1

k
ic
ic pZ

Z
≥

−−

−  for all .3...,,2,1 −= ci  

This gives that ( ) .1231
2

1
12

1111 +−−+−
−

=⋅≥⋅= kckckkc
c

pppZ
Z

Z
G

Z
G  Hence 

.12 11 +−≥ kckb  

Theorem 1. Let G be a non-abelian group of order np  and class c. If 

1+i
i

L
L  is cyclic of fixed order rp  for all ,1...,,2,1 −= ci  then G is an     

LA-group. 

Proof. Let .
1

mpL
G =  Since r

i
i pL

L
=

+1
 for all i, we get 

 ( ).1−+≥ crmn  (1) 

By Lemma 1, we have ici ZL −≤  and that .1−−ici ZL  Also, by 

Gallian [16], ,11 +−− = iici LZL ∩  ,
11

r
i

i
ic
ic pL

L
Z
Z

≥≥
+−−

−  r
c

pZ
G 2

1
≥

−
 

and .exp 1
1

ZLpL
G

c
r ≤=≤ −  Let .2 xpZ

Z =  Then kxpZ +=2  and 

so ( ) kxcrrn ++−+≥ 32  and this is the minimum value of n [16]. Then, 

by (1), we get ( ) ( ) ,321 kxcrrcrm ++−+≥−+  which gives .kxm +≥  

Since ,exp
1

ZL
G ≤  we get .ma ≥  Therefore, kxma +≥≥  and so ≥A  

nkxna ≥−−+  as .kxa +≥  

Theorem 2. Let G be a group of order np  and class c. If the center Z of 

G is elementary abelian, then G is an LA-group. 

Proof. We may assume that G has more than two generators. Then ,3≥t  
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where t is the number of invariants of .
1L

G  Since ,11 =k  1=ik  for all 

,...,,2,1 si =  by Lemma 2(ii), 

 .3kkta ≥≥   (1) 

Let 10121 =>≥≥≥≥= −− ZZZZZG ccc  be the upper central 

series of G, where ZZ =1  is the center of G. Since 
1−cZ

G  cannot by cyclic, 

we have .2
1

pZ
G
c

≥
−

 

Also, pZ
Z

ic
ic ≥
−−
−

1
 for all .3...,,2,1 −= ci  

Then we have .132
2

1
12

−−−
−

=⋅≥⋅= ccc
c

pppZ
Z

Z
G

Z
G  

Hence 

 ,21 ≥−≥ cb  (2) 

where .
2

bpZ
G =  

Also, if ,1=k  then ( ) ( ) GZ
GpGIpGA ===  and G is an 

LA-group. 

Assume that .2≥k  By (1) and (2), we get .823 ≥+≥+≥ kbaA  

Hence, for ,8≤n  G is an LA-group. 

Also, 2≥k  and so .223 +≥≥ kka  Then nkbaA ≥+≥+≥ 42  for 

.2
4−≥ nk  

Since nckckbaA ≥++=−++≥+≥ 12122  for ,5−≥ nc  we get 

nA ≥  for .5−≥ nc  
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Hence, if it holds either ,8≤n  2
4−≥ nk  or ,5−≥ nc  then G is an 

LA-group. 

Therefore, we may assume that the following conditions (3), (4) and (5) 
hold simultaneously: 

,9≥n  (3) 

 2
4−< nk  (4) 

and 

 .5−< nc  (5) 

Also, 12 ++≥+≥ ckbaA  and we have to prove that .12 nck ≥++  

By (4) and (5), we get .922 −<+ nck  So .8212 −<++ nck  

If ,12 nck <++  then nn <− 82  which gives ,8<n  a contradiction 

to (3). 

Hence nck ≥++ 12  and so nckbaA ≥++≥+≥ 12  and G is an 
LA-group. 

This proves Theorem 2. 

Theorem 3. Any finite non-cyclic abelian group of order ,np  2>n  is 

an LA-group. 

Proof. Otto proved in [24] that any finite non-cyclic abelian group of 

order ,np  2>n  is an LA-group. Also, Exarchakos [10] gives a formula, by 

which we can determine the number of automorphisms of an abelian p-group 
of a variety of types of abelian p-groups. This formula makes Otto’s result a 
special case. Also, this formula makes special cases all until now known 
results about the number of automorphisms of abelian p-groups. Here we 
state this formula without proof. Details could be found in [10, Theorem 2]. 
In that paper, Exarchakos proves: 
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Let G be a finite abelian group of order ,np  .2>n  Let ≥≥ 21 rr  

1≥≥ sr  be the invariants of G and .mpAG =  Then we have: 

I. If G is elementary abelian, then G is isomorphic to a vector space over 
a field of characteristic p. And so, 

 ( )
( )

( )( ) ( ).111 112
1

−−−= −−
ppppGA nnnn

 (1) 

II. Let G be not elementary abelian. Then 

1. If G is homocyclic, then ( ).122
1 −−≥ snsm  

2. If ,2=s  then ( ).12 2 −+= rnm  

3. If ,2>s  then ( ),12
1 ++≥ ssnm  except the particular Cases (a), (b) 

and (c): 

(a) ( )1...,,1,, ji  with .1>> ji  

(b) ( )1...,,1,1,...,, ii  with .pai >  

(c) ( ).1...,,1,1,i  

In these particular cases, we have: 

For the type (a), ( ) .112
1 −++≥ ssnm  

For the type (b), ( ).12
1 −+≥ ssnm  

For the type (c), ( ) .112
1 −−+≥ ssnm  

It is easily seen in all above cases we have nm ≥  and so we have the 
corollary: 

Corollary. Any finite non-cyclic abelian group of order ,np  ,2>n  is an 

LA-group. 
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Theorem 4. Let G be a group of order np  and class .2>c  Then if 

bpZ
G =

2
 and ,32 −≤ cb  then G is an LA-group. 

Proof. We may assume that G has more than two generators. Then ,3≥t  

where t is the number of invariants of .
1L

G  Let >≥≥≥= −110 cLLLG  

1=cL  and 1011 =>≥≥≥= − ZZZZG cc  be the lower and the upper 

central series of G, where [ ]GGGL ,1 =′=  is the commutator subgroup of 

G and ZZ =1  is the center of G. Since 
1−cZ

G  is not cyclic, we get that 

.2
1

pZ
G
c

≥
−

 If ,2
1

pZ
G
c

=
−

 then .exp
1

pZ
G
c

=
−

 Then pZ =exp  and 

by Theorem 2, G is an LA-group. Hence we may assume that .3
1

pZ
G
c

≥
−

 

Also, if pZ
Z

ic
ic =
−−
−

1
 for some i, ,31 −≤≤ ci  then pZ

Z
ic

ic =
−−
−

1
exp  and so 

pZ =exp  and G is an LA-group by Theorem 2. Therefore, we may assume 

that 3
1

pZ
G
c

≥
−

 and 2
1

pZ
Z

ic
ic ≥
−−
−  for all i, .32 −≤≤ ci  

Then 

 ( ) .32323
2

1
12

−−−
−

=⋅≥⋅= ccc
c

pppZ
Z

Z
G

Z
G  (1) 

Consider the following cases: 

(a) Let .32 −< cb  Then either 2
1

pZ
G
c

≤
−

 or pZ
Z

ic
ic =
−−
−

1
 for at 

least one i, .31 −≤≤ ci  Then we have pZ
G
c

=
−1

exp  or .exp
1

pZ
Z

ic
ic =
−−
−  

In each case, we get pZ =exp  and so by Theorem 2, G is an LA-group. 
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(b) Let .32 −= cb  Then 3
1

pZ
G
c

=
−

 and 2
1

pZ
Z

ic
ic =
−−
−  for all i. 

Since 
1−cZ

G  cannot be cyclic, we have .exp 2
1

pZ
G
c

≤
−

 If ,exp
1

pZ
G
c

=
−

 

then pZ =exp  and so G is an LA-group. Therefore, we may assume that 

.exp 2
1

pZ
G
c

=
−

 Then 2
1

exp pZ
Z

ic
ic =
−−
−  and so 

1−−
−
ic

ic
Z
Z  is cyclic of order 

2p  for all .3...,,2,1 −= ci  Then, by [16], .112 −− ≤< cc ZLZ  This gives 

that .
1

1 pL
Zc ≤−  Then 4

1
pL

Gpm ≤=  and .4≤m  Since G has more 

than two generators, 
1L

G  has more than two invariants. Hence .43 ≤≤ t  

If 4=t  and ,4
1

pL
G =  then pL

G =
1

exp  and so 1=im  for all i. Then 

12 =m  and so .121 =≤ mk  Then ,11 =k  pZ =exp  and by Theorem 2,        

G is an LA-group. 

If ,3=t  let 1321 ≥≥≥ mmm  be the invariants of .
1L

G  Then 21 mm +  

.43 =+ m  This gives that .13 =m  Hence ,321 =+ mm  which gives .12 =m  

Then 11 =k  and Z is elementary abelian. Hence, by Theorem 2, G is an       

LA-group. This proves Theorem 4. 

Theorem 5. Let G be a group of order np  and class c. Also, let 

( ) ,A
p pGA =  ( ) ,a

c pGA =  ,exp 1
1

mpL
G =  1exp kpZ =  and .kpZ =  

Then, if ,31
kk ≥  G is an LA-group. 

Proof. We may assume that 3≥t  and 21 ≥k  (Theorem 2). Also, by 

Theorem 4, we may assume that 422 ≥−≥ cb  also for ,31
kk ≥  we get 
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.1312 11 +≥+−≥ kkckb  If 3213 −≤+ ck  by Theorem 4, then G is an 

LA-group. 

Assume that .42213 ≥−≥+ ck  Then 

 .9≥k  (1) 

Since ,12 km ≥  Lemma 2(ii) gives ( ) ,222 skstka +≥−+≥  as .3≥t  

Hence 
 .12 +≥ ka  (1) 

Since ,4≥b  we get 

 .2352412 ≥+=++≥+≥ kkbaA  (2) 

Also, nkA ≥+≥ 52  for 

 .2
5−≥ nk  (3) 

Hence, for 23≤n  or ,2
5−≥ nk  G is an LA-group. Also, since ≥b  

,22 −c  we get nckckA ≥−+=−++≥ 1222212  for .2
17−≥ nc  Hence, 

for ,2
17−≥ nc  G is an LA-group. Therefore, we may assume that the 

following conditions (4), (5) and (6) hold simultaneously: 

,24≥n  (4) 

,2
5−< nk  (5) 

 .2
17−< nc  (6) 

Also, 122 −+≥ ckA  and we have to prove that .122 nck ≥−+  

By the Cases (5) and (6), we have ,2
222 −<+ nck  so <−+ 2

1ck  

.2
232 −n  If ,22

1 nck <−+  then we have 22
232 nn <−  which gives ,23<n  
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a contradiction to (4). Hence 22
1 nck ≥−+  which gives .122 nck ≥−+  

Therefore, nckA ≥−+≥ 122  and G is an LA-group. 

This proves Theorem 5. 

Corollary. Let G be a group of order np  and class c. Then G is an     

LA-group under anyone of the following conditions: 

  (i) If G has cyclic center. 

(ii) If kpZ =  and .6≤k  

Proof. (i) If Z is cyclic, kk =1  and by Theorem 5, G is an LA-group. 

(ii) If ,11 =k  then Z is elementary abelian and by Theorem 2, G is        

an LA-group. If ,21 ≥k  then kk ≥≥ 63 1  and so by Theorem 5, G is an      

LA-group. 

Theorem 6. Any finite non-cyclic group of order np  and class two is an 

LA-group. 

Proof1. Since G has class two, Z
G  is abelian and so ( ) ( )GAGI c≤  as 

( )GAc  is the centralizer of ( )GI  in ( ).GA  Also, since G has class two, 

,11 ZL ≤  where [ ]GGGL ,1 =′=  is the commutator subgroup of G. 

Also, 1exp kpZ =  gives 1expexp 2 kpZZ
Z ==  (Lemma 1(e)). By [14, 

Lemma 2], we have .expexp 1
1
2

1
kpL

Z
L
G ==  This gives .11 km =  Since 

21 mm ≥  and by Lemma 1(f), ,12 km ≥  we get 

 .121 kmm ==  (1) 

                                                           
1Schenkman in 1955 proved that theorem [26]. But in that paper, some lemmas were incorrect. 
Later in 1968, Faudree proved by another way the incorrect lemmas and then he proved the 
theorem [15]. Here we prove the theorem by a completely different way. This proof has been 
done by elementary calculation. 
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By Theorem 2, we may assume that .21 ≥k  Also, by Theorem 5, we 

may assume that .3 1kk >  By Lemma 2(v), we have 11 −−++≥ msmka  

.11 −−++= ksmk  Since 13kk >  and ,1 ksk ≥  we get ,3 11 kksk >≥  

which gives 3>s  and since s is an integer .4≥s  Also, since ,12 km ≥  

Lemma 2(ii) gives ( ) ,222 skstka +≥−+≥  as .3≥t  Hence 

 .42 +≥ ka  (2) 

We claim that 

 .1ks >  (3) 

Since ,21 ≥k  for ,21 =k  we get 132 kks >≥  and so .1ks >  

For ,31 ≥k  we have ,33 1kks >≥  which gives 1ks >  and our claim 

has been established. Hence 1ks >  or .11 +≥ ks  

Therefore, nknkmkksmka =−+≥+≥−−++≥ 11  and so na ≥  

and G is an LA-group. This proves Theorem 6. 

Now we proceed to prove Theorem 7, which is the main result of this 
paper. 

Theorem 7. Any finite non-cyclic group of order np  and class 3=c  is 

an LA-group. 

Proof. We may assume that G has more than two generators. Then ,3≥t  

where t is the number of invariants of .
1L

G  Let 13210 =≥≥≥= LLLLG  

and 10123 =>≥≥= ZZZZG  be the lower and the upper central series 

of G, respectively, where [ ]GGGL ,1 =′=  is the commutator subgroup of 

G and ZZ =1  is the center of G. Then we have 21 ZL ≤  and .2 ZL ≤  Also, 

1
1

exp mpL
G =  and .exp 1kpZ =  Then .exp 12 kpZ

Z =  Also, ,exp 1
2

kpZ
G =  
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.exp 1
1
2 kpL

Z =  Thus, .exp 12
1

kpL
G ≤  By Theorem 5, we may assume that 

13kk >  and so 

 .1 km <  (1) 

Let mpL
G =
1

 and .kpZ =  Since ,1 km <  we get that mka +≥  

11 −−+ ms  (Lemma 2(vi)). Hence 

 .12 1 −−++≥ ksmka  (2) 

Let ,1
lpL =  .

1
2 wpL

Z =  Then .2
wlpZ +=  Also, let .2 xpZ

Z =  

Then .2
kxpZ +=  Hence 

 .kxlw +=+  (3) 

Since ,21 ZL ≤  we get .kxl +≤  So .kxnln −−≥−  Hence lnm −=  

.bkxn =−−≥  Also, since ,2 11 kkm <≤  we have .kxnma −−≥≥  

Hence .nkxa ≥++  Also, nkxb =++  and so ( ) .22 nkxba ≥+++  

This gives nba ≥+  for .2
1 nkx ≤+  Then nbaA ≥+≥  for .2

1 nkx ≤+  

Therefore, we may assume that 

 .2
1 nkx ≥+  (3) 

If ,1+≤ kl  then 1−−≥− knln  and so .1−−≥−= knlnm  By 
(2), 12 1 −−++≥ ksmka  and .112 111 +≥+−≥ kkckb  

Also, by (3) in Theorem 6, we have .1ks >  Hence .22 1 +≥+ ksb  

Then 

nknkmkkbsmkbaA =+−−+≥++≥−−+++≥+≥ 11112 1  

and G is an LA-group. Therefore, we may assume that .2+≥ kl  If ≤x  
,1+k  then .12 +≤+ kkx  Then kxka +≥+≥ 42  and ≥+≥ baA  

.nkxna ≥−−+  Hence we may assume that .2+≥ kx  Then ≥+ kx  
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22 +k  and by (3), .2
122 nk ≥+  So 4

4−≥ nk  and .4
42 +≥+≥ kkx  

Therefore, .24
4

4
4 nnnxk =++−≥+  Also, for ,4

4−≥ nk  we get ≥a  

22
442 nnk >+≥+  and so .kxa +≥  Then .nkxnbaA ≥−−+α=+≥  

This proves Theorem 7. 
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