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Abstract

In this paper, a class of third-order nonlinear delay dynamic equations
on time scales is studied. By using the generalized Riccati
transformation and the inequality technique, two new sufficient
conditions which ensure that every solution is oscillatory or converges
to zero are established. The results obtained essentially generalize and
improve earlier ones. Examples are given to illustrate our main results.

1. Introduction

In recent years, there has been much research activity concerning the
oscillation and nonoscillation of solutions of various equations on time
scales, and we refer the reader to the studies by Bohner and Saker [1] and
Erbe et al. [2, 3], and there are some results dealing with oscillatory behavior
of second-order delay dynamic equations on time scales [4-9]. However,
Received: October 25, 2013; Accepted: February 12, 2014
2010 Mathematics Subject Classification: 39A21, 34C10, 34K11, 34N05.

Keywords and phrases: oscillatory behavior, third order, dynamic equation, generalized
Riccati transformation, time scale.

*Corresponding author



76 Shouhua Liu, Quanxin Zhang and Li Gao

there are few results dealing with the oscillation of the solutions of third-
order delay dynamic equations on time scales, we refer the reader to the
papers [10-12].

In this paper, we consider oscillatory behavior of all solutions of the
third-order nonlinear delay dynamic equation

(eOROXCO) +aO) Ffg®]) =0, teT, t=ty, (L1
where o > 0 is the ratio of two positive odd integers.
Throughout this paper, we will assume the following hypotheses:

(Hy) T is a time scale (i.e., a nonempty closed subset of the real
numbers R) which is unbounded above, and ty € T with ty > 0, we define

the time scale interval of the form [tg, ) by [tg, ®) = [tg, ) N T.

(Hy) r(t), r(t), q(t) are positive, real-valued rd-continuous functions
defined on T, and ri(t), rp(t) satisfy

1
© 1 1 \a

——AS = x, —— | AS =o.

Jyrw®s== | to(@(s)j N

(H3) 9(t) € Cry([to, ), T), g(t) >t, and g(T) = T.

(Hg) f :R — R isa continuous function such that LO)L() > K >0, for
X
x # 0.

By a solution of (1.1), we mean a nontrivial function x(t) satisfying
(1.1) which has the properties x(t) € C%d ([Tp, )y, R) for Ty >ty, and
KO [(OXA )2 ]* e Cly (T, o)y, R). Our attention is restricted to
those solutions of (1.1) which satisfy sup{|x(t)|:t>T} >0 forall T > T,.

A solution x of equation (1.1) is said to be oscillatory on [T,, o) if it is

neither eventually positive nor eventually negative. Otherwise it is called
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nonoscillatory. The equation itself is called oscillatory if all its solutions are
oscillatory.

If =1 g(t)=t, then (1.1) simplifies to the third-order nonlinear
dynamic equation

(OO +a®) f(xt) =0, teT, t=t. (L2)

If, furthermore, r(t) = rp(t) =1, f(x)=x, g(t) =t, then (1.1) reduces
to the third-order linear dynamic equation

X224 £ qt)x(t) =0, teT, t=t, (1.3)

If, in addition, o =1, then (1.1) reduces to the nonlinear delay dynamic
equation

(O[ROXAO)]D +a®) F gD =0, teT, t>t. (L4)

In 2005, Erbe et al. [10] considered the general third-order nonlinear
dynamic (1.2). By employing the generalized Riccati transformation
techniques, they established some sufficient conditions which ensure that
every solution of (1.2) is oscillatory or converges to zero. In 2007, Erbe et al.
[11] studied the third-order linear dynamic (1.3), and they obtained Hille and
Nehari type oscillation criteria for the (1.3). In 2011, Han et al. [12] extended
and improved the results of [10, 11], meanwhile obtained some oscillatory
criteria for the (1.4). On this basis, we discuss the oscillation of solutions of
(1.1). By using the generalized Riccati transformation and the inequality
technique, we obtain some sufficient conditions which guarantee that every
solution of (1.1) is oscillatory or converges to zero.

The paper is organized as follows: In Section 1, we present some basic
definitions and useful results from the theory of calculus on time scale. In
Section 2, we give several lemmas. In Section 3, we use the generalized
Riccati transformation and the inequality technique to obtain some sufficient
conditions which guarantee that every solution of (1.1) is either oscillatory or
converges to zero.
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We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g of two differentiable

functions f and g:

(fg)* () = T2 9 + F(o®)g*®) = FOg )+ FA)g(c(t), (L.5)

A A A
(- PO gy g

For b, c € T and a differentiable function f, the Cauchy integral of TR
defined by

Cea
jbf ®A(t) = f(c) - f(b).
The integration by parts formula reads
Cea oy A
[, 1A 09mAM = 1©)9) - 1)) - [ oM g  OaL
and infinite integrals are defined by
" f(s)as = lim [ (s)A
.[b (s) S_tLrI;on (s)as.
For more details, see [17, 18].

2. Several Lemmas

Throughout this paper, for sufficiently large Ty € T, we denote

Q|+

AS, Rz(t, To) = J"I; %S-;O)AS,

Ry(t, To) := J:O (ﬁj

Q|+

Qt) = (KLOO q(s)Asj :
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In order to the definition of Q(t) meaningful, we denote

o0
J q(s)As < . (2.2)
t
In this section, we present several lemmas that will be needed in the proofs of
our results in Section 3.

Lemma 2.1. Assume that x(t) is an eventually positive solution of (1.1).

Then there exists T € [tg, o) such that either

() x(t)>0, x*(t)>0, (ROx*(®)* >0, (RM[(RM)X*(1)*]*)* <0,
te(T, o);

or

(1) x(®)>0, x*(®) <0, (mMOX ()" >0, (ROURMOX 1)) <0,
te[T, ).

Proof. Assume that x(t) is an eventually positive solution of (1.1), then

there exists T e [ty, o) such that x(t) >0 and x(g(t)) >0 for all t e

[T, ). From (1.1), we have

(RO[OX* ) 1) = -a) F(x(g(1) < -Ka®)x“[g(H)] < 0. (2.2)

Hence, r,(t)[(r(t)x*(t))*]* is decreasing and therefore eventually of one
sign, so (ry(t)x (t))* is either eventually positive or eventually negative. We

assert that (r(t)x*(t))* > 0 forall t € [T, o).

Assume that (r(t)x*(t))® < 0 eventually, then there exists t; < [T, o)

such that (r(t;)x(t))* < 0. We get

RO [(ROX ) < () [(n)x @) 1" <0, t e [t, 0+
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Let M = —ry(t; ) [(r(t,)x* (t,))*]* > 0. Then

1

o 1

"

(rz2(t)a

R(E)XA(t) < =M (2.3)

Integrating (2.3) from t; to t(t € [t;, o)) provides

1
BOXA () < Aty ) -Me [ —2

" ((s))a

1

AS = —o0, t = 400,

Then there exists tp € [t, o) such that r(t)x“(t) < r(tp)x*(tp) < 0.

Similarly, we obtain

X(t) < x(t2) + rl(tz)XA(tz)Jt : 1
2 (n(s))a

AS > —0, t = +oo,

which contradicts with x(t) > 0. So (r(t)x*(t))* >0, this implies that

x2(t) > 0 or x2(t) < 0. This completes the proof.

Lemma 2.2 [16]. Assume that x(t) is a positive solution of equation

(1.1) which satisfies case (I) in Lemma 2.1. Then

1
0> B e 00X ), 2.4)
1
(1) > Ra(t, To) i (O (RO V) @5)

If conditions (2.1) and (H3) hold, then

1

X(t) < %rza O ()X )2 2.6)
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Lemma 2.3. Assume that x(t) is a positive solution of equation (1.1)

which satisfies case (1) in Lemma 2.1, and (H3) holds. Then

K1), RLTo) (G(t))[ (r (o) X" (o(t))"* J e

xt) — n() x(o(t))
where
1-a
R, T) = {Rl(t, TO)Q1 (o(t)), O<oa<l 8
Rl(t, To)RZ_OL(G(t), To), o > 1.

Proof. Because the x(t) is a positive solution of (1.1) and which satisfies

case (1) in Lemma 2.1, and o(t) > t, hence

X(o(t)) = x(t). (2.9)

From (2.2), we have

ROIROX O] 2 RO [((c®)x () ]*.  (2.10)
Hence,

1
xA(1) 29 A1) CHR(E To) 12O RO ©)°
xt) ~ ) T n x(o(1))

210 Ry(t, To) rp(o(t)[(r(o(t) x* (o) 1"
S0 X(o(t) oW

Thus, when 0 < o <1,

XA(t) . Rult, To) (r(c®)x* ()™ "
0 R0 rz("(‘)){ E0) }

1 1-a
| 18 (o) (r(o(t) x* (s(1)))*
X(o(t))
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(2.6) 1o - Als(tND a
! &mT%§)<a»Q@®{m(Qééfm>}

29) R, To) (3(c)x (o) |,
Zﬁﬁ%mw%l ot }’

when a > 1,

ML R To) o () o) |
imzlwfﬁwm[lxwm

a-1
{1 x(o(t)) ]
rf (o(t)) (R (o(t)) x* (o()))*

(2.5) a1 o Als(tND a
8 &““”Eaf“””b@wm{mfaﬂ&&“m }

X(o(t))

28) R(t, Tp) (o)X () |
= D rZ(G(t)){ e } |

This completes the proof.

Lemma 2.4. Assume that x(t) is an eventually positive solution of (1.1)
which satisfies case (I1) in Lemma 2.1 such that

1
J:WJ':O [%J‘:} q(u)Au}“AsAt - . (2.12)

Then lim x(t) = 0.
t—o0

Proof. Assume that x(t) is an eventually positive solution of (1.1) which



Oscillation Theorems of the Third-order Nonlinear Delay Dynamic ...
satisfies case (II) in Lemma 2.1. Then x(t) is decreasing and tIim x(t) =
—>0

| >0.

If I >0, then it is easy to see that there exists t; e [tg, oo)T such that

x[g(t)] = x(t) > 1 > 0 forall t; e [ty, o). From (2.2), we have

(RO [ROX* O ) < —Ka®)x*[g®)] < -KI%q(t).  (2.13)

If (2.1) does not hold, then integrating (2.12) from t; to t(t € [ty, )y ), we
get

BONROX 1T < )0 )] - KI7 [ a(s)as > <
(t > +0).

This is contrary to (r(t)x*(t))* > 0.

If (2.1) holds, then integrating (1.1) from t to «, we get
OROX O] < K[ "o [gE)as < —Kal® [ " a(s)as

te [tl' OO)T'
Hence, we have

1

—(ROXA ) < 4[% [ t°° Kq(s)AsF.

Integrating the above inequality from t to oo, we obtain

1

R(t)x3(t) < —IK%J.:O [ﬁj‘:} q(u)AuFAs.
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Integrating the last inequality again from T to t, we have

1
1 =
—rt 1 o0 1 © o
) <x(T)-IKe| — — A AUAS.
H) = x(T) J.T r1(8)-'.3 [fz(U)J.u ) V} o
Since condition (2.12) holds, we obtain tIim X(t) = —oo, which contradicts
—>00

X(t) > 0. Hence | = 0. This completes the proof.

3. Main Results

In this section, we state and prove our main results. Write

Dp ={(t,s):t=s>ty, t, s €ty o)}

Called function H(t, s) has the property P (denoted as H e P), if for
sufficiently large t > ty satisfy

(i) H(t, ) =0, t 2 tg; H(t, $) > 0, t > s > ty, t, s € [tg, ®)q;

(i) H(t, s) has a nonpositive continuous A-partial derivative Hs(t, s)
with respect to the second variable.

Theorem 3.1. Assume that (H;)-(H4) and (2.12) hold. Assume that
there exist positive functions 8, ¢ e C}d ([to, ), (0, ©)), H(t,s)eP,
h(t, s) € Crq (D, R) such that
hit, s) =

H(t, s) = WH%, 5), (3.1)

A _RY(s, Tp)
HE 0~ S66m)

and for all sufficiently large T; > Ty such that

2
limsup H(t% Tl)J;l{H(t' s)Q(s, Tp) _%}AS =, (3.2)

t—ow
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where

RY(t, To) = 82(t) + 203(t) (tT)‘” 2 (() p(o(t), (3.3)

Qtt T9) = 5 {Ka(H) - (o) + L0 (rot)alot)2}, (34)

h_(t, s) = max{0, —h(t, s)}, h,(t, s) = max{0, h(t, s)}. (3.5)
Then (1.1) is either oscillatory or converges to zero.

Proof. Assume that (1.1) has a nonoscillatory solution x(t) on [ty, o).

Without loss of generality, we may assume that there exists sufficiently large
T >ty such that x(t) >0 and x(g(t)) >0 forall t [T, «);. By Lemma

2.1, we see that x(t) satisfies either then only case (1) or case (I1) may occur.

If case (1) holds, then x“(t) > 0, t e [T, o). Define the function W(t)
by

Agpna ¢
W(t)_at)rz(t)ﬁw} Hp(t)}, el @9

Then W(t) > 0 and

WA () = 5“())<r2<t>[<r1<t>xA(t>>A] '

(Sa(t())j (ROROXA 1) + EOROe0)*

. é.g?)( a0 (o V)

(i(t())j (OO + GO0
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" ?,f%( A K [g()

{ift())J (OO ) ) + EORMEW) . @.7)

From xA(t) >0, g(t) > t, a > 0, we obtain

x*(g(t)) -1 (3.8)
x(t)

Using (3.7) and (3.8), we obtain

WA (t) = - KS(t)q(t){ (t())j (RLOUROXAO) ) + GO0 1),

(3.9)
From
()" = (0 | ; (hx(o(t)) + (L - h)x(t))* "dh
> ax®(t) j ;(hx(t) + (@ -h)x(t)*tdh = ax®(©)x* (1),
we obtain
( 5i(t) jA _ 3 Ox 0 - s @)t _ (5%)_ as(t) XA(t)J 1
X*(t) X*(t)x*(o(t)) XV ) x*(s(t))

(3.10)
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Hence, we get

if‘())] (LOROX ) 1)°

IN

5 (1) — as(t) ) (R®O[ROX ) 1)°
x(®) “( v -

_ 20, o[ woxtr T
= 8%(t) - ad(t) Xx(t) [rz(t){lT} J

(2.7) - Als(t)A a
< [SA(I)OL6(I) R(I’tly(t-I;O)rZ(G(t))[(rl( (t))()(é(t())(t))) J J

Agnd 1)
.[rz(t)ﬁl(t)xx(t)(t)) | J

A A 107
SA(t)[l’z(t)[(rl(t);((t)(t)) } J

2
Apna 1)
— ad(t) R(rtl,(tT)c))({Q(t){(q(t)xx(t)(t)) } J }

. SA(U(Vg((G((t‘)))) ACOREO)

2
- aa(t) X (D )0t

— 53Oy (o(t) olo(t)) — ad(t) R(r‘l'(tTf) (15 (o) 0(o(t)))?

87
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(50 + 2050 X8 oyoto) | o)
R(L To) (W(o(t)
~ e rl(t)o (S(G(t))j ' (3.11)

From (3.9), (3.11) and (3.3), (3.4), we obtain

WA () < —K3(t)q(t) - 8° (1) ra(o(t)) o(o(t))

~ad(t) R(r‘l’(f)o) (b (o®)o(o®)? + (BH)rB)o(t)

n (SA (t) 4 20(6(0 R(r;-’(;go ) r (G(t )) (P(G(t ))) Vg/((cyc(gt))))

R(t, To) (W (s(t))?
-0 e (o))

O(R(t, To)

< =300 Ka() - (000)" + 212 (o) o(o)F

R(t
n

(3404 2050 P rteoto)

R(t, To) (W (s(t))?
- e (o))

o o 2
-0 To)+ R To i - i () - @12

From (3.12), we get

2
Qlt, T) < -WA(t) + R™(t, TO)Ve\s/((cG((tt)))) - “S(t)rig’ To) (Vg((g((tt))))j . (3.13)
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Replace t with s, multiply both sides by H(t, s), integrating from T; to

t > T;, we obtain

t g t A
J.Tl H(t, s)Q(s, Tg)As < —Ll H(t, s)W~(s)As

s jTtl Ht, $)R™(s, TO)VQS/((G((SS)))) As

t ad(s)R(s, Tg) (W (a(s)))?
- J'TlH(t, D) 0 ( 5(2((:))))) As. (3.14)

From H € P and (3.1), we get

t A ta
- HE WAS)As = HE TOW(T) + [ HA( W (o(s))as

~ M, TW(T) - jTl R8((S(ST)§) H(t, 5W(o(s))As

—h(t, s)
Jn Sole) H2(t $)W (o (s))As. (3.15)

From (3.14), (3.15) and (3.5), we obtain

| "H(t, $)Q(s, To)As
T1

<HE W) + [ 6?“( ;'))Hz(t $W (o(s))As

t ad(t)R(s, To) (W(s(s)))?
—Jn )= 5 (ac(ss»j as
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< H(t TOW(Ty) + j g((t(si))Hz(t $)W (o(s))As

t ad(t)R(s, Tp) (W (o(s)))?
_ITlH(t’ ) r(s) : (5(0(35))) As

= H(t, T))W(Ty)

h_(t, 5) oB(UR(s, To) (W(o(s))
fn[a( o ot - ST ) JAS

(3.16)

such that

h_(t, s) ad(t)R(s, Tp) (W(o(s)))?
S(o(s ))Hz(‘ W(a(s) ~ H(, 5) TS0 (FES)

hg(t, s)r(s)
= Za3(o(s))R(s, Tg)" (3.17)

From (3.16), (3.17), we obtain

1t h2(t, s)ry(s) 5
ijq(”(t’ $)Q(: To) - 403 o ) RS, TO)JAS <W(T).

This is contrary to (3.2).

If case (I1) holds, from (2.12), by Lemma 2.4, tll)rgo x(t) = 0. This
completes the proof.

Theorem 3.2. Assume that (Hq)-(H4), (2.12) hold. Assume that there
exist positive functions & e C}d ([to, ), (0, ©)), H(t, s)e P, h(t, s)e
Crq (D, R) such that

5%(s)
3(o(s))

h(t, s)

56 Hlto(t, s), (3.18)

HA(t, s)+ H(t, s) = —
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and for all sufficiently large T; > Ty such that

t—owo

hfﬂ(t, s)r(s) }AS = 0,
1+0) M [5(s)Ry (s, To)]*

(3.19)

Iimsup#J‘t KH(t, s)3(s)q(s)—-
H(t,Tl) T (

Then (1.1) is either oscillatory or converges to zero.

Proof. Assume that (1.1) has a nonoscillatory solution x(t) on [tg, 0) .

Without loss of generality, we may assume that there exists sufficiently large
T >ty such that x(t) >0 and x(g(t)) >0 forall t [T, o). By Lemma

2.1, we see that x(t) satisfies either then only case (I) or case (1) may occur.
If case (1) holds, then x“(t) > 0, t € [T, o). Define the function W (t)

by

A AN
w<t>=6<t>r2(t>[%], tel, o) (320

Then W(t) > 0 and

WA(t)

- OO O T [i“())J (OO O F)F°

é;(t())( q(t)f(X[g(t)])){ 8(t())j (O [(RO) XA ©)2]*)°

?f‘())< q(t)KX“[g(t)])+( 5(‘())j (OO O )

(3 8)
~Ka(t)q(t) +[ S“()J (OO ) ]*)°
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(3.10) XA (1) mOx )" | ’
< —K8(t)q(t)+(5A(t) od(t) (t)]{rZ(t){lT} }

e kstya() + SA(t)[Q(t){W} ]

L (e
iy BT A o) [fz(ﬂ[(“(t)xxa)(”) } J

(SEO) W(a(t)) ad(t)Ry(t, To) (W (o(t)) 1*%
= Ka0a0 + 50T~ (Fe))

Thus,

1
1+=
ks < w0 50 e - O ()

(3.21)

Replace t with s, multiply both sides by H(t, s), integrating from T; to

t > T;, we obtain
t
IT H(t, s)K3(s)q(s)As
1

< _J_;l H(‘[, S)WA(S)AS +I H(t S)SA(S)VE\SI((G((S))))

1
t ad(s)Ry(s, To) (W(o(s) o
[ e 9 S 422
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From H € P and (3.18), we obtain

t A ta
- [ HE WAS)As = HE TOW(T) + [ HA (1 sW(o(s))as

- H (t, Tl)W (Tl) — I_:jl H (t, S)SA(S)Vg((G((S))))

; j ht, s)HTa(R S)vg((?(s))))

W(o(s)) 5o
5(o(s)

<HE TOW(T) - jTtl H(t, )55 (s)

+ jTtl h_(t, s)H%(t, s)Vg(("((s)))) As. (3.23)

From (3.22), (3.23), we obtain

J'Tt H(t, s)K8(s)q(s)As < H(t, T))W(Ty)

o o o 141
+ jTtl h_(t,s)H1+°‘(t,S)Vg((GG((SS))))—H(t,s) S(t)rf(ls(;'TO)(Vg((c ((SS))))) “]AS.

(3.24)

Now set

aas&@nw(ww@»y,

X" = Bt )= Sots)

1
vl _ h_(t, s)r*(s)

i Mad(s)Ry(s, To )]% |
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a+l

where A = >1, X >0 and Y > 0. Using the equality

XYM o X < (- v R,

which yields

(L HE (L W(o(s) _ H(t oORS, To)(vv(c(sﬂjl*%
3(a(s)) r(s) 8(o(s))

g hio‘(t, () (3.25)
L+ o) [3(s) Ry (s, To)I”

From (3.24) and (3.25), we have

e (t, s)r*(s)
L+ o) ELS(s) Ry(s, To)I*

T ﬁl(H(t, $)K3(S)q(s) - jAs <w(m)

This is contrary to (3.19).

If case (Il) holds, from (2.12), by Lemma 2.4, tll)ngo x(t) = 0. This
completes the proof.

Example 3.1. Consider the third-order nonlinear delay dynamic equation

A

5
2 5
Al (beo) T | +Soaiarmas da <o
t

te2’, t>ty=2  (3.26)

5
f(x) = x3(L+ In(L+ x?))

[IEN)

1

Here azé, rl(t)=%, nt)=t3, qt)= o
t

3
and g(t)=2t >t.
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Conditions (Hy)-(H3) are clearly satisfied, (H4) holds with K =1, and

1 . 5
q(u Au} AsAt—I tj j = Aul| Asat
I rl(t)j [rz(s).[ () w2
:OO,
so (1.2) holds. Noting that
3 3
1 3 3
Ry(t, Tp) = as= [ _%A t* -Tg
s=| s SAs= :
110 JATOKr(s)) ITO 3
25 -1
8 3
t Ry(s, Tp) t 5 —Tps
Raltg, To) - [ e To) g [ 52 7T6S
2(0 O) To I’l(S) To 3
25 -1
B 1 3
t5 -T° Tt -T5)

R
N
ol w
|
|_\
~—
TN
™ =
o5
|
H
—
w
TN
N
gl w
|
|_\
N

w| N

3 3
5_75 5 _T5 512 _T2

|on

Let 5(t) =t, o(t) =t 3, since o(t) = 2t, we obtain

R'(1 To) = 5°(0) + 2080 “4 1)y o(0)g(o(0) =1+ 5 1 RIL o).
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OLR(t, To)

Qlt To) = 80 Ka(t) - (000" + 2410 (0O ofo(t)2]

1 (12 s 1)2 3 5
_tL_Z_(fj +§'t(§) 'R(t,To)}—EJFE‘R(t'TO)-

Let H(t, s) = (t - 3)2, that there exists a function

R*(s,To)- H{(t, 5) - 25(2t - 35) !

h(t, s) = : > R*(s, Tg) - H2(t, 5)
HE(t, s)
such that
Chfs(g o) R To) _hts) 3
H%(t, s) 50(9)) H(t, s) = 5(0(5)) H2(t, s)

and

) 1 t hf(t, s)ri(s)

1 2
[R*(S,TO)-HE(t,s)]
H1,9) o+ R To) |-

> limsup

1 J’t A
—_— S
t—w H(tiTl) T

%'52 ‘R(s,Tp)

. 1t 3 5 [R*(s, To)l"
= I|trrl;5£pijl{H(t, s)[[EJFE- R(s, To)}_Q.SZ . R(Os, TO)}AS

3

5 2
1+=-s5-R(s, Tp)
1 3
AS

N Dol (245 mem] |
"'[”j;‘pH(t,Tl)jTl H{ts) [E+ER(S’T")}_ 20

?-s ‘R(s, Tp)
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. 1 t 3 5
= “tnlfoljpmjﬁ{H(t' s)ﬁz—SJrE. R(s, TO)}
3 1 5
— |:20 oRG - HETRET R(s, TO)D}AS

. 1t 1 3
B “{Eﬁp H(t, Tp) ITl{H(t’ S)[E 2052 -R(s, TO)J}AS

. 1 t o1 3
> limsup {(t, s) [—— )}As =, T3 =T,
too (t-Tp) ITl S 20-s?

so (3.1), (3.2) hold. Then, by Theorem 3.1, every solution x(t) of (3.26) is

either oscillatory or converges to zero.

Example 3.2. Consider the third-order nonlinear delay dynamic equation

1 1) 1 7 —
(t 3((t_1xA(t))A)§] + t_z(x3(2t) + x3(2t)} =0, te2?, t>ty:=2
(3.27)
21 1
Here o =%, nt) =t )=t 3, qt)=t2, f(x)=x31+x%) and
glt)=2t>t.

Conditions (Hq)-(H3) are clearly satisfied, (H,) holds with K =1, and
. . . 1
) [% J. q(u)Au}aAsAt
0 '] 1 0 3 [e'e] [e’e]
= -[2 tjt [53-[5 u_ZAu} AsAt = 8J2 tL sT2AsAt

o0
:16J' At = o,
2
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s0 (2.12) holds. Noting that

1
R L
Ry(t, TO)_J.To(Wj As_J'TosAs_ .

Let H(t, s) = (t - s)z, 3(t) =t, since o(t) = 2t, there exists a function

¢

H(t, s) — 2s(2t - 35) 3

h(t, s) = — ] —H4(t, s)——(t—s)z
H4(t, s)
such that
A
HAs (1, s)+§c—8)H(t, ) = g‘((t(:))) HTva (L, 5)
and
_ 1t _ h®, s)Rt(s) }
I'?lsﬂp H(t'Tl)JTl{KH(t’ *)als)als) 1+ ) U[8(s)Ry (s, To)]* as
4 21
L N P h3(t,s)-s 3
_“tnligp(t—Tl)z ITl 1-(t—s)"-s 2 . . 1 As
SR
3 3
5
1 tt-s? 3%  (t-s)f
43 s3.[s°-T§[3
E 2
R PR B U)ol VA
>IltrrLsOl:p(t__l_l)zJ‘T1 1 4% S As , I 2Ty,

s0 (3.18), (3.19) hold. Then, by Theorem 3.2, every solution x(t) of (3.27) is
either oscillatory or converges to zero.
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