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Abstract 

In this paper, the modified S-iteration schemes are defined for 
approximating a fixed point of total asymptotically nonexpansive non-
self mappings in CAT(0) spaces. Some Δ-convergence theorems are 
proved under suitable conditions in CAT(0) spaces. 

1. Introduction 

In [1], Agarwal et al. introduced the S-iteration process and modified     
S-iteration process in a Banach space 
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where the sequences { }na  and { }nb  are in ( ).1,0  

These iterations have evoked many authors’ great interest, see [2-5] for 
details. 

Fixed point theory in a CAT(0) space has been first studied by Kirk [7]. 
He showed that every nonexpansive mapping defined on a bounded closed 
convex subset of a complete CAT(0) space always has a fixed point. Since 
then the fixed point theory in a CAT(0) space has rapidly developed and 
many papers have appeared (see, e.g. [9-22]). In [15], Dhompongsa and 
Panyanak obtained Δ-convergence theorems for the Mann and Ishikawa 
iterations for nonexpansive single-valued mappings in CAT(0) spaces. 
Laowang and Panyanak [17] extended results of [15] for nonexpansive non-
self mappings in CAT(0) spaces. 

The purpose of this paper is to construct a modified S-iteration process 
for approximating a fixed point of total asymptotically nonexpansive non-
self mappings. Some Δ-convergence theorems are proved under suitable 
conditions in CAT(0) spaces. Our results improve and extend the 
corresponding recent results in [2, 5, 17, 21, 22]. 

2. Preliminaries 

A geodesic space is said to be a CAT(0) if all geodesic triangles of 
appropriate sizes satisfy the following comparison axiom. 

Let Δ be a geodesic triangle in X and let Δ  be a comparison triangle for 
Δ. 

A geodesic space X is a CAT(0) space. Then geodesic triangle Δ is said 
to satisfy the CAT(0) inequality if or all Δ∈yx,  and all comparison points 

2, Eyx ⊂Δ∈  (Euclidean space) such that ( ) ( ).,, yxdyxd ≤  
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In this paper, we write ( ) tyxt ⊕−1  for the unique point z in the 

geodesic segment joining from x to y such that 

 ( ) ( ) ( ) ( ) ( ).;1,,,, yxdtyzdyxtdxzd −==  (2.1) 

A subset C of a CAT(0) space is convex if [ ] Cyx ⊂,  for all ., Cyx ∈  

The following lemma plays an important role in this paper. 

Lemma 2.1 [15]. A geodesic space X is a CAT(0) space if and only if the 
following inequality holds: 

( )( ) ( ) ( ) ( ) ( ) ( )yxdttyztdxzdttyxtzd ,1,,11, 2222 −−+−≤⊕−  (2.2) 

for all Xzyx ∈,,  and all [ ].1,0∈t  In particular, if Xzyx ∈,,  and 

[ ],1,0∈t  then 

 ( )( ) ( ) ( ) ( ).,,11, yztdxzdttyxtzd +−≤⊕−  (2.3) 

Let { }nx  be a bounded sequence in a CAT(0) space X. For ,Xx ∈  we 

set 

 { }( ) ( ).,suplim, n
n

n xxdxxr
∞→

=  (2.4) 

The asymptotic radius { }( )nxr  of { }nx  is given by 

 { }( ) { }( ){ }.:,inf Xxxxrxr nn ∈=  (2.5) 

The asymptotic center { }( )nxA  of { }nx  is the set 

 { }( ) { }( ) { }( ){ }.,: nnn xrxxrXxxA =∈=  (2.6) 

Proposition 2.2 [14]. Let X be a complete CAT(0) space, { }nx  be a 

bounded sequence in X and C be a closed convex subset of X. Then 

(1) there exists a unique point Cu ∈  such that { }( ) =nxur ,  

{ }( );,inf nCx
xxr

∈
 

(2) { }( )nxA  and { }( )nC xA  both are singleton. 
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Definition 2.3 [6, 9]. Let X be a CAT(0) space. A sequence { }nx  in X is 

said to Δ-converge to ,Xq ∈  if q is the unique asymptotic center of { }nu  

for each subsequence { }nu  of { }.nx  In this case, we write qxn
n

=−Δ
∞→

lim  

and call q the Δ-limit of { }.nx  

Lemma 2.4 [15]. Let X be a complete CAT(0) space and { }nx  be a 

bounded sequence in X with { }( ) { };qxA n =  { }nu  is sequence of { }nx  with 

{ }( ) { }uuA n =  and the sequence ( ){ }uxd n ,  converges. Then .uq =  

Lemma 2.5. (1) Let X be a complete CAT(0) space, C be a closed convex 
subset of X. If { }nx  is a bounded sequence in C, then the asymptotic center 

of { }nx  is in C [11]. 

(2) Every bounded sequence in a complete CAT(0) space always has          
Δ-convergent subsequence [9]. 

Lemma 2.6 [21]. Let X be a complete CAT(0) space and .Xx ∈  Suppose 
{ }nt  is a sequence in ( )1,0  and { } { }nn yx ,  are sequences in X such that 

( ) ( ) rxydrxxd n
n

n
n

≤≤
∞→∞→

,suplim,,suplim  

and 

( )( ) rxytxtd nnnnn
=⊕−

∞→
,1lim  

for some .0≥r  Then ( ) .0,lim =
∞→ nnn

yxd  

Lemma 2.7 [21]. Let { },na  { }nλ  and { }nc  be the sequences of 

nonnegative numbers such that 

( ) .1,11 ≥∀+λ+≤+ ncaa nnnn  

If ∑
∞

=
∞<λ

1n
n  and ∑

∞

=
∞<

1
,

n
nc  then n

n
a

∞→
lim  exists. If there exists a 

subsequence of { }na  which converges to zero, then .0lim =
∞→

n
n

a  
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Let ( )dX ,  be a metric space, and let C be a nonempty and closed subset 

of X. Recall that C is said to be a retract of X if there exists a continuous map 
CXP →:  such that ,xPx =  .Cx ∈∀  A map CXP →:  is said to be a 

retraction if .2 PP =  If P is a retraction, then yPy =  for all y in the range 

of P. 

Definition 2.8. A non-self mapping XCT →:  is said to be uniformly 
L-Lipschitzian if there exists a constant 0>L  such that 

 ( ( ) ( ) ) ( ) .,,1,,, 11 CyxnyxLdyPTTxPTTd nn ∈≥∀≤−−  (2.7) 

Definition 2.9. Let K be a nonempty subset of X and XKT →:  is said 
to be { } { }( )ρυμ ,, nn  total asymptotically nonexpansive non-self mapping if 

there exist nonnegative sequences { }nμ  and { }nυ  with ,0→μn  0→υn  and 

a strictly increasing continuous function [ ) [ )∞→∞ρ ,0,0:  with ( ) 00 =ρ  

such that 

( ( ) ( ) ) ( ) ( )( ) ,,,, 11
nn

nn yxdyxdyPTTxPTTd μ+ρυ+≤−−  

,,,1 Cyxn ∈≥∀  (2.8) 

where P is a nonexpansive retraction of X onto C. 

Remark 2.10. It is to know that each nonexpansive non-self mapping is 
an asymptotically nonexpansive non-self mapping with a sequence { },1=nk  

and each asymptotically nonexpansive mapping is a { } { }( )ρυμ ,, nn  total 

asymptotically nonexpansive mapping with ,0=μn  ,1−=υ nn k  1≥∀n  

and ( ) .0, ≥= ttts  

Recently, Wang et al. [22] proved the demiclosed principle total 
asymptotically nonexpansive non-self mappings in CAT(0) spaces. We cite 
as following two lemmas. 

Lemma 2.11. Let K be a nonempty closed convex subset of a complete 
CAT(0) space X and XKT →:  be a uniformly L-Lipschitzian and 
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{ } { }( )ρυμ ,, nn  total asymptotically nonexpansive non-self mapping. Let 

{ }nx  be a bounded sequence in K such that { } qxn  and ( )nnn
Txxd ,lim

∞→
 

.0=  Then .qTq =  

Lemma 2.12. Let K be a nonempty closed convex subset of a complete 
CAT(0) space X and XKT →:  be an asymptotically nonexpansive non-
self mapping with a sequence { } [ ) .1,,1 →∞⊂ nn kk  Let { }nx  be a bounded 

sequence in K such that qxn
n

=−Δ
∞→

lim  and ( ) .0,lim =
∞→

nn
n

Txxd  Then 

.qTq =  

3. Main Results 

Theorem 3.1. Let K be a nonempty, closed and convex subset of a 
complete CAT(0) space X. Let XKTi →:  be a uniformly L-Lipschitzian 

and total asymptotically nonexpansive non-self with sequence { ( )}i
nμ  and 

{ ( )}i
nv  satisfying ( ) 0lim =μ

∞→

i
n

n
 and ( ) ,0lim =υ

∞→
i

nn
 and strictly increasing 

function ( ) [ ) [ )∞→∞ρ ,0,0:i  with ( )( ) ,00 =ρ i  .2,1=i  Let { }nx  be 

defined as follows: 

 (( ) ( ) )
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 (3.1) 

where { ( )} { ( )} ( ) { }n
ii

n
i

n a,,, ρυμ  and { }nb  satisfy the following conditions: 

(1) ∑ ∑ ∞<υ∞<μ ;, nn  

(2) there exist constants ( )1,0, ∈ba  with ( ) 2
110 ≤−< ab  such that 

{ } { } [ ];,, baba nn ⊂  

(3) there exists a constant 0>M  such that ( ) ;0, ≥≤ρ rrMr  
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(4) ( ( ) ) ( ( ) ( ) ).,, 1
11

1
11

1
11 n

n
n

n
n

n
n yPTTxPTTdyPTTxd −−− ≤  

Then the sequence { }nx  defined in (3.1) Δ-converges to a fixed point of T. 

Proof. We separate our proof in four steps as follows: 

Step 1. Set { ( ) ( )}21 ,max nnn μμ=μ  and { ( ) ( )},,max 21
nnn υυ=υ  ,2,1=n  

∞...,  such that ∑ ∞<μn  and ∑ ∞<υ .n  

For any ( ) ( ),21 TFTFq ∩∈  we have 

( ) ( ( ) ( ) ( ) )qyPTTaxPTTaPdqxd n
n

nn
n

nn ,1, 1
11

1
111

−−
+ ⊕−=  

(( ) ( ) ( ) )qyPTTaxPTTad n
n

nn
n

n ,1 1
11

1
11

−− ⊕−≤  

( ) ( ( ) ) ( ( ) )qyPTTaqxPTTda n
n

nn
n

n ,,1 1
11

1
11

−− +−≤  

( ) ( ) ( )( )( )nnnnn qxdqxda μ+ρυ+−≤ ,,1  

( ) ( )( )( )nnnnn qydqyda μ+ρυ++ ,,  

( ) ( ) ( )( )nnnnn qxMdqxda μ+υ+−≤ ,,1  

( ) ( )( )nnnn qydMa μ+υ++ ,1  

( ) ( ) ( ) ( ) ( ) ,,1,11 nnnnnnn qydMaqxdMa μ+υ++υ+−=  

 (3.2) 

where 

( ) ( ( ) ( ) )qxPTTbxbPdqyd n
n

nnnn ,1, 1
22

−⊕−=  

( ) ( ) ( ( ) )qxPTTdbqxdb n
n

nnn ,,1 1
22

−+−≤  

( ) ( ) ( ) ( )( )( )nnnnnnn qxdqxdbqxdb μ+ρυ++−≤ ,,,1  

( ) ( ) .,1 nnnnn bqxdMb μ+υ+≤  (3.3) 
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Substituting (3.3) into (3.2), we have 

( ) ( ) ( ) ( )qxdMaqxd nnnn ,11,1 υ+−≤+  

( ) ( ) ( )qxdMbMa nnnnn ,11 υ+υ++  

( ) nnnnn bMa μ+μυ++ 1  

( )( ) ( )qxdMMbaba nnnnnnn ,11 υυ+++=  

( )( ) .11 nnnn baM μυ+++  (3.4) 

Since ∑ ∞<μn  and ∑ ∞<υ ,n  it follows from Lemma 2.7 that 

( )qxd n
n

,lim
∞→

 exists for each ( ) ( ).21 TFTFq ∩∈  

Step 2. For each ( ) ( ),21 TFTFq ∩∈  we assume that ( ) .,lim rqxd nn
=

∞→
 

From (3.3), we have 

 ( ) ( ) ( ) nnnnnn bqxdMbqyd μ+υ+≤ ,1,  (3.5) 

and 

 ( ) ( ) .,suplim,inflim rqydqyd nnnn
≤≤

∞→∞→
 (3.6) 

In addition, since 

 ( ( ) ) ( ) ( ) ,,1,1
11 nnnn

n qydMqyPTTd μ+υ+≤−  (3.7) 

we have ( ( ) ) ,,suplim 1
11 rqyPTTd n

n
n

≤−
∞→

 similarly, we also can show that 

( ( ) ) ( ( ) ) rqxPTTdrqyPTTd n
n

nn
n

n
≤≤ −

∞→
−

∞→
,suplim,,suplim 1

11
1

22  

and 

( ( ) ) .,suplim 1
22 rqxPTTd n

n
n

≤−

∞→
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Since ( ) ,,lim 1 rqxd nn
=+∞→

 it is easy to prove that 

 (( ) ( ) ( ) ) .,1lim 1
11

1
11 rqyPTTaxPTTad n

n
nn

n
nn

=⊕− −−
∞→

 (3.8) 

It follows from Lemma 2.6 that 

 ( ( ) ( ) ) .0,lim 1
11

1
11 =−−

∞→ n
n

n
n

n
yPTTxPTTd  (3.9) 

It follows from condition (4), we have that 

( ( ) ) ( ( ) )n
n

nn
n

n yPTTxdxPTTxd 1
11

1
11 ,, −− ≤  

 ( ( ) ( ) )n
n

n
n xPTTyPTTd 1

11
1

11 , −−+  

( ( ) ( ) ).,2 1
11

1
11 n

n
n

n yPTTxPTTd −−≤  (3.10) 

According (3.9), we obtain 

 ( ( ) ) .0,lim 1
11 =−

∞→ n
n

nn
xPTTxd  (3.11) 

Since 

( ) ( ) ( ( ) )111111 ,,, +++ +≤ n
n

nnnnn xPTTxdxxdxTxd  

 ( ( ) ( ) ) ( ( ) )nn
n

n
n

n
n xTxPTTdxPTTxPTTd 1111111

1
11 ,, ++

− ++  

( ) ( ) ( ( ) )11111 ,,1 +++ ++≤ n
n

nnn xPTTxdxxdL  

 ( ( ) )nn
n xxPTTLd ,1

11
−+  

( ) ( ( ) ( ) ( ) )n
n

nn
n

nn yPTTaxPTTaxdL 1
11

1
111,1 −− ⊕−+≤  

 ( ( ) ) ( ( ) )nn
n

n
n

n xxPTTLdxPTTxd ,, 1
111111

−
++ ++  

( )( ) ( ( ) )n
n

nnn xPTTxdLaa 1
11,21 −−+−≤  

 ( ( ) ) ( ) ( ( ) )n
n

nnn
n

n yPTTxdaLxPTTxd 1
111111 ,1, −

++ +++  
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( ) ( ( ) ) ( ( ) )1111
1

11 ,,21 ++
− ++≤ n

n
nn

n
n xPTTxdxPTTxdL  

 ( ) ( ( ) ( ) ),,1 1
11

1
11 n

n
n

n
n yPTTxPTTdaL −−++  (3.12) 

it follows from (3.9) again and (3.11) that ( ) .0,lim 1 =
∞→

nn
n

xTxd  

Similarly, we also can prove that ( ) .0,lim 2 =
∞→

nn
n

xTxd  

In fact, observe that we have 

( ) ( ( ) ( ) )qxPTTbxbPdqydr n
n

nnnnnn
,1lim,lim 1

22
−

∞→∞→
⊕−==  

( ) ( ){ } .,1lim rbqxdMb nnnnnn
≤μ+υ+≤

∞→
 (3.13) 

So we have that 

 (( ) ( ) ) .,1lim 1
22 rqxPTTbxbd n

n
nnnn

=⊕− −
∞→

 (3.14) 

By assuming the same proof in Step 2, we have ( ) rqxd n
n

=
∞→

,lim  and 

( ( ) ) .,suplim 1
22 rqxPTTd n

n
n

≤−
∞→

 

From Lemma 2.6, we have that 

 ( ( ) ) .0,lim 1
22 =−

∞→
n

n
n

n
xPTTxd  (3.15) 

Finally, since 

( ) ( ) ( ( ) )122112 ,,, +++ +≤ n
n

nnnnn xPTTxdxxdxTxd  

( ( ) ( ) ) ( ( ) )nn
n

n
n

n
n xTxPTTdxPTTxPTTd 212222122 ,, ++ ++  

( ) ( ) ( ( ) )12211 ,,1 +++ ++≤ n
n

nnn xPTTxdxxdL  

( ( ) )nn
n xxPTTLd ,1

22
−+  
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( ) ( ( ) ( ) ( ) )n
n

nn
n

nn yPTTaxPTTaxdL 1
11

1
111,1 −− ⊕−+≤  

( ( ) ) ( ( ) )nn
n

n
n

n xxPTTLdxPTTxd ,, 1
221221

−
++ ++  

( ) ( ) ( ( ) )n
n

nn xPTTxdaL 1
11,11 −−+≤  

( ) ( ( ) ( ) )n
n

n
n

n yPTTxPTTdaL 1
11

1
11 ,1 −−++  

( ( ) ) ( ( ) ),,, 1
221221 nn

n
n

n
n xxPTTLdxPTTxd −

++ ++  (3.16) 

it follows from (3.9) again and (3.15) that ( ) .0,lim 2 =
∞→

nn
n

xTxd  This is the 

end of proof of Step 2. 

Step 3. Let { }( ) { }( )
{ } { }
∪

nn xu
nnw uAxW

⊂
= .:  

Let .wWu ∈  Then there exists a subsequence { }nu  of { }nx  such that 

{ }( ) { }.uuA n =  By Lemma 2.5, there exists a subsequence { }nv  of { }nu  such 

that .lim Kvvn
n

∈=−Δ
∞→

 Since ( ) ( ) ,0,lim,lim 21 ==
∞→∞→

nn
n

nn
n

xTxdxTxd  

it follows from Lemma 2.11 that ( ) ( ).21 TFTFv ∩∈  So, ( )qxd n
n

,lim
∞→

 

exists. By Lemma 2.4, we have that ( ) ( ).21 TFTFvq ∩∈=  This implies 

that { }( ) ( ) ( ).21 TFTFxW nw ∩⊂  

Let { }nu  be a subsequence of { }nx  with { }( ) { }uuA n =  and let { }( )nxA  

{ }.x=  Since ( ) ( ) ( ),21 TFTFxWu nw ∩⊂∈  according the conclusion of 

Step 1 we know that ( ){ }uxd n ,  is convergent. 

By Lemma 2.4, .ux =  This implies that { }( )nw xW  contains only one 

point. 

Step 4. In fact, it follows the conclusion of Step 1 that ( ){ }qxd n ,  is 

convergent for each ( ) ( ).21 TFTFq ∩∈  According to the conclusion of 

Step 2, ( ) ( ) .0,lim,lim 21 ==
∞→∞→ nnnnnn

xTxdxTxd  Since { }( ) ( ),TFxW nw ⊂  and 
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{ }( )nw xW  consists of exactly one point. This shows that { }nx  Δ-converges 

to a point of ( ).TF  

Theorem 3.2. Let K be a nonempty closed and convex subset of a 
complete CAT(0) space X. Let XKT →:  be a uniformly L-Lipschitzian 
and total asymptotically nonexpansive non-self with sequence { }nμ  and { }nv  

satisfying 0lim =μ
∞→

n
n

 and ,0lim =υ
∞→ nn

 and strictly increasing function 

[ ) [ )∞→∞ρ ,0,0:  with ( ) .00 =ρ  Let { }nx  be defined as follows: 

 (( ) ( ) )

(( ) ( ) ( ) )⎪
⎪
⎩

⎪⎪
⎨

⎧

⊕−=

⊕−=

∈

−−
+

−

,1

,1

,

11
1

1
1

n
n

nn
n

nn

n
n

nnnn

yPTTaxPTTaPx

xPTTbxbPy

Kx

 (3.17) 

where { } { } { }nnn a,,, ρυμ  and { }nb  satisfy the following conditions: 

(1) ∑ ∑
∞

=

∞

=
∞<υ∞<μ

1 1
;,

n n
nn  

(2) there exist constants ( )1,0, ∈ba  with ( ) ,2
110 ≤−< ab  such that 

{ } { } [ ];,, baba nn ⊂  

(3) there exists a constant 0, >∗ rrM  such that ( ) .0, ≥≤ρ ∗ rrMr  

Then the sequence { }nx  defined in (3.17) Δ-convergences to a fixed point of 

T. 

Proof. It can put TS =  in Theorem 3.1 such that we use similar steps to 
obtain our conclusion. 
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