ON THE Δ-CONVERGENCE OF MODIFIED S-ITERATION SCHEMES FOR TOTAL ASYMPTOTICALLY NONEXPANSIVE NON-SELF MAPPINGS IN A CAT(0) SPACE

Yi-Xin Wen, Tao Wang and Li Yao

Department of Mathematics Kunming University Kunming, Yunnan 650214 P. R. China

Abstract

In this paper, the modified *S*-iteration schemes are defined for approximating a fixed point of total asymptotically nonexpansive non-self mappings in CAT(0) spaces. Some Δ -convergence theorems are proved under suitable conditions in CAT(0) spaces.

1. Introduction

In [1], Agarwal et al. introduced the *S*-iteration process and modified *S*-iteration process in a Banach space

$$\begin{cases} x_1 \in K, \\ x_{n+1} = (1 - a_n)Tx_n + a_nTy_n, & n \in \mathbb{N}, \\ y_n = (1 - b_n)x_n + b_nTx_n, \end{cases}$$
 (1.1)

Received: October 1, 2013; Accepted: December 3, 2013 2010 Mathematics Subject Classification: 47H09, 47J25.

Keywords and phrases: modified S-iteration scheme, CAT(0) spaces, total asymptotically nonexpansive non-self mappings, Δ -convergence.

$$\begin{cases} x_1 \in K, \\ x_{n+1} = (1 - a_n) T^n x_n + a_n T^n y_n, & n \in \mathbb{N}, \\ y_n = (1 - b_n) x_n + b_n T^n x_n, \end{cases}$$
 (1.2)

where the sequences $\{a_n\}$ and $\{b_n\}$ are in (0, 1).

These iterations have evoked many authors' great interest, see [2-5] for details.

Fixed point theory in a CAT(0) space has been first studied by Kirk [7]. He showed that every nonexpansive mapping defined on a bounded closed convex subset of a complete CAT(0) space always has a fixed point. Since then the fixed point theory in a CAT(0) space has rapidly developed and many papers have appeared (see, e.g. [9-22]). In [15], Dhompongsa and Panyanak obtained Δ -convergence theorems for the Mann and Ishikawa iterations for nonexpansive single-valued mappings in CAT(0) spaces. Laowang and Panyanak [17] extended results of [15] for nonexpansive nonself mappings in CAT(0) spaces.

The purpose of this paper is to construct a modified *S*-iteration process for approximating a fixed point of total asymptotically nonexpansive non-self mappings. Some Δ -convergence theorems are proved under suitable conditions in CAT(0) spaces. Our results improve and extend the corresponding recent results in [2, 5, 17, 21, 22].

2. Preliminaries

A geodesic space is said to be a CAT(0) if all geodesic triangles of appropriate sizes satisfy the following comparison axiom.

Let Δ be a geodesic triangle in X and let $\overline{\Delta}$ be a comparison triangle for Δ .

A geodesic space X is a CAT(0) space. Then geodesic triangle Δ is said to satisfy the CAT(0) inequality if or all $x, y \in \Delta$ and all comparison points $\overline{x}, \overline{y} \in \overline{\Delta} \subset E^2$ (Euclidean space) such that $d(x, y) \leq d(\overline{x}, \overline{y})$.

In this paper, we write $(1-t)x \oplus ty$ for the unique point z in the geodesic segment joining from x to y such that

$$d(z, x) = td(x, y), \quad d(z, y) = (1 - t)d(x; y).$$
 (2.1)

A subset C of a CAT(0) space is convex if $[x, y] \subset C$ for all $x, y \in C$.

The following lemma plays an important role in this paper.

Lemma 2.1 [15]. A geodesic space X is a CAT(0) space if and only if the following inequality holds:

$$d^{2}(z, (1-t)x \oplus ty) \leq (1-t)d^{2}(z, x) + td^{2}(z, y) - t(1-t)d^{2}(x, y)$$
 (2.2)

for all $x, y, z \in X$ and all $t \in [0, 1]$. In particular, if $x, y, z \in X$ and $t \in [0, 1]$, then

$$d(z, (1-t)x \oplus ty) \le (1-t)d(z, x) + td(z, y). \tag{2.3}$$

Let $\{x_n\}$ be a bounded sequence in a CAT(0) space X. For $x \in X$, we set

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n). \tag{2.4}$$

The asymptotic radius $r(\lbrace x_n \rbrace)$ of $\lbrace x_n \rbrace$ is given by

$$r(\{x_n\}) = \inf\{r(x, \{x_n\}) : x \in X\}. \tag{2.5}$$

The asymptotic center $A(\lbrace x_n \rbrace)$ of $\lbrace x_n \rbrace$ is the set

$$A(\{x_n\}) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\}.$$
 (2.6)

Proposition 2.2 [14]. Let X be a complete CAT(0) space, $\{x_n\}$ be a bounded sequence in X and C be a closed convex subset of X. Then

- (1) there exists a unique point $u \in C$ such that $r(u, \{x_n\}) = \inf_{x \in C} r(x, \{x_n\});$
 - (2) $A(\lbrace x_n \rbrace)$ and $A_C(\lbrace x_n \rbrace)$ both are singleton.

Definition 2.3 [6, 9]. Let X be a CAT(0) space. A sequence $\{x_n\}$ in X is said to Δ -converge to $q \in X$, if q is the unique asymptotic center of $\{u_n\}$ for each subsequence $\{u_n\}$ of $\{x_n\}$. In this case, we write $\Delta - \lim_{n \to \infty} x_n = q$ and call q the Δ -limit of $\{x_n\}$.

Lemma 2.4 [15]. Let X be a complete CAT(0) space and $\{x_n\}$ be a bounded sequence in X with $A(\{x_n\}) = \{q\}$; $\{u_n\}$ is sequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and the sequence $\{d(x_n, u)\}$ converges. Then q = u.

Lemma 2.5. (1) Let X be a complete CAT(0) space, C be a closed convex subset of X. If $\{x_n\}$ is a bounded sequence in C, then the asymptotic center of $\{x_n\}$ is in C [11].

(2) Every bounded sequence in a complete CAT(0) space always has Δ -convergent subsequence [9].

Lemma 2.6 [21]. Let X be a complete CAT(0) space and $x \in X$. Suppose $\{t_n\}$ is a sequence in $\{0,1\}$ and $\{x_n\}$, $\{y_n\}$ are sequences in X such that

$$\limsup_{n \to \infty} d(x_n, x) \le r, \qquad \limsup_{n \to \infty} d(y_n, x) \le r$$

and

$$\lim_{n\to\infty} d((1-t_n)x_n \oplus t_n y_n, x) = r$$

for some $r \ge 0$. Then $\lim_{n \to \infty} d(x_n, y_n) = 0$.

Lemma 2.7 [21]. Let $\{a_n\}$, $\{\lambda_n\}$ and $\{c_n\}$ be the sequences of nonnegative numbers such that

$$a_{n+1} \le (1 + \lambda_n)a_n + c_n, \quad \forall n \ge 1.$$

If $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $\sum_{n=1}^{\infty} c_n < \infty$, then $\lim_{n \to \infty} a_n$ exists. If there exists a subsequence of $\{a_n\}$ which converges to zero, then $\lim_{n \to \infty} a_n = 0$.

Let (X, d) be a metric space, and let C be a nonempty and closed subset of X. Recall that C is said to be a *retract* of X if there exists a continuous map $P: X \to C$ such that Px = x, $\forall x \in C$. A map $P: X \to C$ is said to be a *retraction* if $P^2 = P$. If P is a retraction, then Py = y for all y in the range of P.

Definition 2.8. A non-self mapping $T: C \to X$ is said to be *uniformly L-Lipschitzian* if there exists a constant L > 0 such that

$$d(T(PT)^{n-1}x, T(PT)^{n-1}y) \le Ld(x, y), \quad \forall n \ge 1, x, y \in C.$$
 (2.7)

Definition 2.9. Let K be a nonempty subset of X and $T: K \to X$ is said to be $(\{\mu_n\}, \{\upsilon_n\}, \rho)$ total asymptotically nonexpansive non-self mapping if there exist nonnegative sequences $\{\mu_n\}$ and $\{\upsilon_n\}$ with $\mu_n \to 0$, $\upsilon_n \to 0$ and a strictly increasing continuous function $\rho: [0, \infty) \to [0, \infty)$ with $\rho(0) = 0$ such that

$$d(T(PT)^{n-1}x, T(PT)^{n-1}y) \le d(x, y) + \upsilon_n \rho(d(x, y)) + \mu_n,$$

$$\forall n \ge 1, x, y \in C, \qquad (2.8)$$

where P is a nonexpansive retraction of X onto C.

Remark 2.10. It is to know that each nonexpansive non-self mapping is an asymptotically nonexpansive non-self mapping with a sequence $\{k_n = 1\}$, and each asymptotically nonexpansive mapping is a $(\{\mu_n\}, \{\nu_n\}, \rho)$ total asymptotically nonexpansive mapping with $\mu_n = 0$, $\nu_n = k_n - 1$, $\forall n \ge 1$ and s(t) = t, $t \ge 0$.

Recently, Wang et al. [22] proved the demiclosed principle total asymptotically nonexpansive non-self mappings in CAT(0) spaces. We cite as following two lemmas.

Lemma 2.11. Let K be a nonempty closed convex subset of a complete CAT(0) space X and $T: K \to X$ be a uniformly L-Lipschitzian and

 $(\{\mu_n\}, \{\upsilon_n\}, \rho)$ total asymptotically nonexpansive non-self mapping. Let $\{x_n\}$ be a bounded sequence in K such that $\{x_n\} \rightharpoonup q$ and $\lim_{n \to \infty} d(x_n, Tx_n) = 0$. Then Tq = q.

Lemma 2.12. Let K be a nonempty closed convex subset of a complete CAT(0) space X and $T: K \to X$ be an asymptotically nonexpansive non-self mapping with a sequence $\{k_n\} \subset [1, \infty), k_n \to 1$. Let $\{x_n\}$ be a bounded sequence in K such that $\Delta - \lim_{n \to \infty} x_n = q$ and $\lim_{n \to \infty} d(x_n, Tx_n) = 0$. Then Tq = q.

3. Main Results

Theorem 3.1. Let K be a nonempty, closed and convex subset of a complete CAT(0) space X. Let $T_i: K \to X$ be a uniformly L-Lipschitzian and total asymptotically nonexpansive non-self with sequence $\{\mu_n^{(i)}\}$ and $\{v_n^{(i)}\}$ satisfying $\lim_{n\to\infty} \mu_n^{(i)} = 0$ and $\lim_{n\to\infty} v_n^{(i)} = 0$, and strictly increasing function $\rho^{(i)}: [0, \infty) \to [0, \infty)$ with $\rho^{(i)}(0) = 0$, i = 1, 2. Let $\{x_n\}$ be defined as follows:

$$\begin{cases} x_1 \in K, \\ y_n = P((1 - b_n)x_n \oplus b_n T_2 (PT_2)^{n-1} x_n), \\ x_{n+1} = P((1 - a_n)T_1 (PT_1)^{n-1} x_n \oplus a_n T_1 (PT_1)^{n-1} y_n), \end{cases}$$
(3.1)

where $\{\mu_n^{(i)}\}, \{\upsilon_n^{(i)}\}, \rho^{(i)}, \{a_n\}$ and $\{b_n\}$ satisfy the following conditions:

(1)
$$\sum \mu_n < \infty$$
, $\sum \upsilon_n < \infty$;

- (2) there exist constants $a, b \in (0, 1)$ with $0 < b(1 a) \le \frac{1}{2}$ such that $\{a_n\}, \{b_n\} \subset [a, b];$
 - (3) there exists a constant M > 0 such that $\rho(r) \le rM$, $r \ge 0$;

(4)
$$d(x_n, T_1(PT_1)^{n-1}y_n) \le d(T_1(PT_1)^{n-1}x_n, T_1(PT_1)^{n-1}y_n).$$

Then the sequence $\{x_n\}$ defined in (3.1) Δ -converges to a fixed point of T.

Proof. We separate our proof in four steps as follows:

Step 1. Set
$$\mu_n = \max\{\mu_n^{(1)}, \, \mu_n^{(2)}\}$$
 and $\upsilon_n = \max\{\upsilon_n^{(1)}, \, \upsilon_n^{(2)}\}$, $n = 1, 2,$..., ∞ such that $\sum \mu_n < \infty$ and $\sum \upsilon_n < \infty$.

For any $q \in F(T_1) \cap F(T_2)$, we have

$$d(x_{n+1}, q) = d(P(1 - a_n)T_1(PT_1)^{n-1}x_n \oplus a_nT_1(PT_1)^{n-1}y_n, q)$$

$$\leq d((1 - a_n)T_1(PT_1)^{n-1}x_n \oplus a_nT_1(PT_1)^{n-1}y_n, q)$$

$$\leq (1 - a_n)d(T_1(PT_1)^{n-1}x_n, q) + a_n(T_1(PT_1)^{n-1}y_n, q)$$

$$\leq (1 - a_n)(d(x_n, q) + \upsilon_n\rho(d(x_n, q)) + \mu_n)$$

$$+ a_n(d(y_n, q) + \upsilon_n\rho(d(y_n, q)) + \mu_n)$$

$$\leq (1 - a_n)(d(x_n, q) + \upsilon_nMd(x_n, q) + \mu_n)$$

$$+ a_n((1 + \upsilon_nM)d(y_n, q) + \mu_n)$$

$$= (1 - a_n)(1 + \upsilon_nM)d(x_n, q) + a_n(1 + \upsilon_nM)d(y_n, q) + \mu_n,$$
(3.2)

where

$$d(y_n, q) = d(P(1 - b_n)x_n \oplus b_n T_2 (PT_2)^{n-1} x_n, q)$$

$$\leq (1 - b_n)d(x_n, q) + b_n d(T_2 (PT_2)^{n-1} x_n, q)$$

$$\leq (1 - b_n)d(x_n, q) + b_n (d(x_n, q) + \upsilon_n \rho(d(x_n, q)) + \mu_n)$$

$$\leq (1 + b_n \upsilon_n M)d(x_n, q) + b_n \mu_n. \tag{3.3}$$

Substituting (3.3) into (3.2), we have

$$d(x_{n+1}, q) \leq (1 - a_n)(1 + \upsilon_n M)d(x_n, q)$$

$$+ a_n(1 + \upsilon_n M)(1 + b_n \upsilon_n M)d(x_n, q)$$

$$+ a_n(1 + \upsilon_n M)b_n \mu_n + \mu_n$$

$$= (1 + (1 + a_n b_n + a_n b_n \upsilon_n M)\upsilon_n M)d(x_n, q)$$

$$+ (1 + (1 + \upsilon_n M)a_n b_n)\mu_n. \tag{3.4}$$

Since $\sum \mu_n < \infty$ and $\sum \upsilon_n < \infty$, it follows from Lemma 2.7 that $\lim_{n \to \infty} d(x_n, q)$ exists for each $q \in F(T_1) \cap F(T_2)$.

Step 2. For each $q \in F(T_1) \cap F(T_2)$, we assume that $\lim_{n \to \infty} d(x_n, q) = r$. From (3.3), we have

$$d(y_n, q) \le (1 + b_n v_n M) d(x_n, q) + b_n \mu_n \tag{3.5}$$

and

$$\lim_{n \to \infty} \inf d(y_n, q) \le \lim_{n \to \infty} \sup d(y_n, q) \le r.$$
 (3.6)

In addition, since

$$d(T_1(PT_1)^{n-1}y_n, q) \le (1 + v_n M)d(y_n, q) + \mu_n, \tag{3.7}$$

we have $\lim_{n\to\infty} \sup d(T_1(PT_1)^{n-1}y_n, q) \le r$, similarly, we also can show that

$$\lim_{n\to\infty}\sup d\big(T_2\big(PT_2\big)^{n-1}\,y_n,\,q\big)\leq r,\quad \lim_{n\to\infty}\sup d\big(T_1\big(PT_1\big)^{n-1}\,x_n,\,q\big)\leq r$$

and

$$\lim_{n\to\infty} \sup d(T_2(PT_2)^{n-1}x_n, q) \le r.$$

Since $\lim_{n\to\infty} d(x_{n+1}, q) = r$, it is easy to prove that

$$\lim_{n \to \infty} d((1 - a_n)T_1(PT_1)^{n-1}x_n \oplus a_nT_1(PT_1)^{n-1}y_n, q) = r.$$
 (3.8)

It follows from Lemma 2.6 that

$$\lim_{n \to \infty} d(T_1(PT_1)^{n-1} x_n, T_1(PT_1)^{n-1} y_n) = 0.$$
(3.9)

69

It follows from condition (4), we have that

$$d(x_n, T_1(PT_1)^{n-1}x_n) \le d(x_n, T_1(PT_1)^{n-1}y_n)$$

$$+ d(T_1(PT_1)^{n-1}y_n, T_1(PT_1)^{n-1}x_n)$$

$$\le 2d(T_1(PT_1)^{n-1}x_n, T_1(PT_1)^{n-1}y_n). \tag{3.10}$$

According (3.9), we obtain

$$\lim_{n \to \infty} d(x_n, T_1(PT_1)^{n-1} x_n) = 0.$$
 (3.11)

Since

$$d(x_{n}, T_{1}x_{n}) \leq d(x_{n}, x_{n+1}) + d(x_{n+1}, T_{1}(PT_{1})^{n} x_{n+1})$$

$$+ d(T_{1}(PT_{1})^{n-1} x_{n+1}, T_{1}(PT_{1})^{n} x_{n}) + d(T_{1}(PT_{1})^{n} x_{n+1}, T_{1}x_{n})$$

$$\leq (1 + L)d(x_{n+1}, x_{n}) + d(x_{n+1}, T_{1}(PT_{1})^{n} x_{n+1})$$

$$+ Ld(T_{1}(PT_{1})^{n-1} x_{n}, x_{n})$$

$$\leq (1 + L)d(x_{n}, (1 - a_{n})T_{1}(PT_{1})^{n-1} x_{n} \oplus a_{n}T_{1}(PT_{1})^{n-1} y_{n})$$

$$+ d(x_{n+1}, T_{1}(PT_{1})^{n} x_{n+1}) + Ld(T_{1}(PT_{1})^{n-1} x_{n}, x_{n})$$

$$\leq (1 - a_{n} + (2 - a_{n})L)d(x_{n}, T_{1}(PT_{1})^{n-1} x_{n})$$

$$+ d(x_{n+1}, T_{1}(PT_{1})^{n} x_{n+1}) + (1 + L)a_{n}d(x_{n}, T_{1}(PT_{1})^{n-1} y_{n})$$

$$\leq (1+2L)d(x_n, T_1(PT_1)^{n-1}x_n) + d(x_{n+1}, T_1(PT_1)^n x_{n+1})$$

$$+ (1+L)a_n d(T_1(PT_1)^{n-1}x_n, T_1(PT_1)^{n-1}y_n),$$
(3.12)

it follows from (3.9) again and (3.11) that $\lim_{n\to\infty} d(x_n, T_1x_n) = 0$.

Similarly, we also can prove that $\lim_{n\to\infty} d(x_n, T_2x_n) = 0$.

In fact, observe that we have

$$r = \lim_{n \to \infty} d(y_n, q) = \lim_{n \to \infty} d(P(1 - b_n)x_n \oplus b_n T_2(PT_2)^{n-1}x_n, q)$$

$$\leq \lim_{n \to \infty} \{ (1 + b_n \upsilon_n M) d(x_n, q) + b_n \mu_n \} \leq r.$$
 (3.13)

So we have that

$$\lim_{n \to \infty} d((1 - b_n) x_n \oplus b_n T_2 (PT_2)^{n-1} x_n, q) = r.$$
 (3.14)

By assuming the same proof in Step 2, we have $\lim_{n\to\infty} d(x_n, q) = r$ and

$$\lim_{n\to\infty} \sup d(T_2(PT_2)^{n-1}x_n, q) \le r.$$

From Lemma 2.6, we have that

$$\lim_{n \to \infty} d(x_n, T_2(PT_2)^{n-1} x_n) = 0.$$
 (3.15)

Finally, since

$$d(x_n, T_2x_n) \le d(x_n, x_{n+1}) + d(x_{n+1}, T_2(PT_2)^n x_{n+1})$$

$$+ d(T_2(PT_2)^n x_{n+1}, T_2(PT_2)^n x_n) + d(T_2(PT_2)^n x_{n+1}, T_2x_n)$$

$$\le (1+L)d(x_{n+1}, x_n) + d(x_{n+1}, T_2(PT_2)^n x_{n+1})$$

$$+ Ld(T_2(PT_2)^{n-1}x_n, x_n)$$

$$\leq (1+L)d(x_{n}, (1-a_{n})T_{1}(PT_{1})^{n-1}x_{n} \oplus a_{n}T_{1}(PT_{1})^{n-1}y_{n})$$

$$+ d(x_{n+1}, T_{2}(PT_{2})^{n}x_{n+1}) + Ld(T_{2}(PT_{2})^{n-1}x_{n}, x_{n})$$

$$\leq (1+L)(1-a_{n})d(x_{n}, T_{1}(PT_{1})^{n-1}x_{n})$$

$$+ (1+L)a_{n}d(T_{1}(PT_{1})^{n-1}x_{n}, T_{1}(PT_{1})^{n-1}y_{n})$$

$$+ d(x_{n+1}, T_{2}(PT_{2})^{n}x_{n+1}) + Ld(T_{2}(PT_{2})^{n-1}x_{n}, x_{n}), \quad (3.16)$$

it follows from (3.9) again and (3.15) that $\lim_{n\to\infty} d(x_n, T_2x_n) = 0$. This is the end of proof of Step 2.

Step 3. Let
$$W_w(\{x_n\}) := \bigcup_{\{u_n\} \subset \{x_n\}} A(\{u_n\}).$$

Let $u \in W_w$. Then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By Lemma 2.5, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\Delta - \lim_{n \to \infty} v_n = v \in K$. Since $\lim_{n \to \infty} d(x_n, T_1x_n) = \lim_{n \to \infty} d(x_n, T_2x_n) = 0$, it follows from Lemma 2.11 that $v \in F(T_1) \cap F(T_2)$. So, $\lim_{n \to \infty} d(x_n, q)$ exists. By Lemma 2.4, we have that $q = v \in F(T_1) \cap F(T_2)$. This implies that $W_w(\{x_n\}) \subset F(T_1) \cap F(T_2)$.

Let $\{u_n\}$ be a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and let $A(\{x_n\})$ = $\{x\}$. Since $u \in W_w(x_n) \subset F(T_1) \cap F(T_2)$, according the conclusion of Step 1 we know that $\{d(x_n, u)\}$ is convergent.

By Lemma 2.4, x = u. This implies that $W_w(\lbrace x_n \rbrace)$ contains only one point.

Step 4. In fact, it follows the conclusion of Step 1 that $\{d(x_n, q)\}$ is convergent for each $q \in F(T_1) \cap F(T_2)$. According to the conclusion of Step 2, $\lim_{n \to \infty} d(x_n, T_1 x_n) = \lim_{n \to \infty} d(x_n, T_2 x_n) = 0$. Since $W_w(\{x_n\}) \subset F(T)$, and

 $W_w(\{x_n\})$ consists of exactly one point. This shows that $\{x_n\}$ Δ -converges to a point of F(T).

Theorem 3.2. Let K be a nonempty closed and convex subset of a complete CAT(0) space X. Let $T: K \to X$ be a uniformly L-Lipschitzian and total asymptotically nonexpansive non-self with sequence $\{\mu_n\}$ and $\{v_n\}$ satisfying $\lim_{n\to\infty} \mu_n = 0$ and $\lim_{n\to\infty} \upsilon_n = 0$, and strictly increasing function $\rho: [0, \infty) \to [0, \infty)$ with $\rho(0) = 0$. Let $\{x_n\}$ be defined as follows:

$$\begin{cases} x_1 \in K, \\ y_n = P((1 - b_n)x_n \oplus b_n T(PT)^{n-1}x_n), \\ x_{n+1} = P((1 - a_n)T(PT)^{n-1}x_n \oplus a_n T(PT)^{n-1}y_n), \end{cases}$$
(3.17)

where $\{\mu_n\}$, $\{v_n\}$, ρ , $\{a_n\}$ and $\{b_n\}$ satisfy the following conditions:

$$(1) \sum_{n=1}^{\infty} \mu_n < \infty, \sum_{n=1}^{\infty} \upsilon_n < \infty;$$

- (2) there exist constants $a, b \in (0, 1)$ with $0 < b(1 a) \le \frac{1}{2}$, such that $\{a_n\}, \{b_n\} \subset [a, b];$
 - (3) there exists a constant M^*r , r > 0 such that $\rho(r) \leq M^*r$, $r \geq 0$.

Then the sequence $\{x_n\}$ defined in (3.17) Δ -convergences to a fixed point of T.

Proof. It can put S = T in Theorem 3.1 such that we use similar steps to obtain our conclusion.

Acknowledgement

This study was supported by the Scientific Research Fund of Yunnan Provincial Department of Education (No. 2012c215).

References

- [1] R. P. Agarwal, D. O'Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex. Anal. 8(1) (2007), 61-79.
- [2] A. Sahin and M. Basarir, On the strong convergence of a modified S-iteration process for asymptotically quasi-nonexpansive mappings in a CAT(0) space, Fixed Point Theory Appl. 2013, 2013:12, 10 pp, doi:10.1186/1687-1812-2013-12.
- [3] D. R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces, Nonlinear Anal. (TMA) 74(17) (2011), 6012-6023.
- [4] V. Kumar, A. Latif, A. Rafiq and N. Hussain, S-iteration process for quasicontractive mappings, J. Inequal. Appl. 2013, 2013:206, 15 pp, doi:10.1186/1029-242X-2013-206.
- [5] S. M. Kang, A. Rafiq and Y. C. Kwun, Strong convergence for hybrid *S*-iteration scheme, J. Appl. Math. 2013, Article ID 705814, 4 pp.
- [6] T. C. Lim, Remarks on some fixed point theorems, Proc. Am. Math. Soc. 60 (1976), 179-182.
- [7] W. A. Kirk, Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), Colecc. Abierta, Vol. 64, pp. 195-225, Seville University Publications, Seville, 2003.
- [8] W. A. Kirk, Geodesic geometry and fixed point theory II, International Conference on Fixed Point Theory and Applications, Yokohama Publications, Yokohama, 2004, pp. 113-142.
- [9] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., Theory Methods Appl. 68(12) (2008), 3689-3696.
- [10] S. Dhompongsa, A. Kaewkhao and B. Panyanak, Lim's theorems for multivalued mappings in CAT(0) spaces, J. Math. Anal. Appl. 312(2) (2005), 478-487.
- [11] S. Dhompongsa, W. A. Kirk and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8(1) (2007), 35-45.
- [12] W. A. Kirk, Fixed point theorems in CAT(0) spaces and *R*-trees, Fixed Point Theory Appl. 2004(4) (2004), 309-316.
- [13] N. Shahzad and J. Markin, Invariant approximations for commuting mappings in CAT(0) and hyperconvex spaces, J. Math. Anal. Appl. 337(2) (2008), 1457-1464.

- [14] S. Dhompongsa, W. A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., Theory Methods Appl. 65(4) (2006), 762-772.
- [15] S. Dhompongsa and B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56(10) (2008), 2572-2579.
- [16] W. Laowang and B. Panyanak, Strong and Δ-convergence theorems for multivalued mappings in CAT(0) spaces, J. Inequal. Appl. 2009 (2009), Article ID 730132.
- [17] W. Laowang and B. Panyanak, Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010, Article ID 367274, doi:10.1155/2010/367274.
- [18] S. Saejung, Halpern's iteration in CAT(0) spaces, Fixed Point Theory Appl. 2010, Article ID 471781, 13 pp, doi:10.1155/2010/471781.
- [19] B. Nanjaras and B. Panyanak, Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010, Article ID 268780, 14 pp, doi:10.1155/2010/268780.
- [20] N. Shahzad, Fixed point results for multimaps in CAT(0) spaces, Topol. Appl. 156(5) (2009), 997-1001.
- [21] S. S. Chang, L. Wang, H. W. J. Lee, C. K. Chan and L. Yang, Total asymptotically nonexpansive mappings in CAT(0) space demiclosed principle and Δ-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces, Appl. Math. Comput. 219 (2012), 2611-2617.
- [22] L. Wang, S. S. Chang and Zhaoli Ma, Convergence theorems for total asymptotically nonexpansive non-self mappings in CAT(0) spaces, J. Inequal. Appl. 2013 (2013), 135.