Far East Journal of Mathematical Sciences (FJMS)

INDEPENDENCE SATURATION NUMBER OF SOME CLASSES OF GRAPHS

T. Muthulakshmi and M. Subramanian

Anna University: Tirunelveli Region
Tirunelveli 627007
India
e-mail: laxmemu@gmail.com
ms_akce@yahoo.com

Abstract

Let $I S(v, G)$ denote the maximum cardinality among all independent sets of G containing v. Then $\operatorname{IS}(G)=\min \{\operatorname{IS}(v): v \in V(G)\}$ is called the independence saturation number of G. In this paper, we compute the independence saturation number of some classes of graphs such as central graph, total graph, line graph of star graph $K_{1, n}$ and double star graph $K_{1, n, n}$, central graph of cycle graph, expansion graphs, corona graphs, Mycielskian graphs and maximal triangle free graphs.

1. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected graph without loops or multiple edges. The neighbourhood of a vertex $x \in V(G)$ in the graph G is denoted by $N(x)$ and the closed neighbourhood $\{x\} \cup N(x)$ by $N[x]$. If X is a subset of $V(G)$, then $N[X]=\bigcup_{x \in X} N[x]$ and the subgraph induced by Received: October 21, 2013; Revised: December 27, 2013; Accepted: January 15, 2014 2010 Mathematics Subject Classification: 05C15, 05C69.
Keywords and phrases: domination, independent domination, independence, independence saturation number.
X is denoted by $G[X]$. Terms not defined here are used in the sense of Harary [11].

Acharya [1] initiated a study of domsaturation. Arumugam and Kala [3, 4, 5] obtained further results on domsaturation, connected domsaturation and global domsaturation. A collection of articles in graph saturation parameters have been focussed on [2, 8, 15]. Arumugam and Subramanian [6, 15] introduced the concept of independence saturation number. A subset S of V in a graph G is said to be independent if no two vertices in S are adjacent. The minimum cardinality of a maximal independent set is called the independent domination number of G and is denoted by $i(G)$. The maximum cardinality of an independent set in G is called the independence number of G and is denoted by $\beta_{0}(G)$. Let $I S(v, G)$ denote the maximum cardinality among all independent sets of G containing v. Then $\operatorname{IS}(G)=\min \{I S(v)$: $v \in V(G)\}$ is called the independence saturation number of G. A vertex $v \in V$ is called an $I S$-vertex if $I S(v)=I S(G)$. Let $v \in V$ be such that $I S(v)$ $=I S(G)$. Any maximal independent set of cardinality $\operatorname{IS}(G)$ containing v is called an $I S$-set of G. Thus $I S$-set is a maximal independent set and hence is a dominating set. Hence $i(G) \leq I S(G) \leq \beta_{0}(G)$.

In the graph shown below, $i(G)=2, \beta_{0}(G)=5$ and $\operatorname{IS}(G)=3$.

For the above graph, u and r are the $I S$-vertices. $\{u, v, w\}$ is an $I S$-set containing u and $\{r, s, t\}$ is an $I S$-set containing r. Hence $I S(u)=I S(r)=$ $I S(G)=3$. But $I S(v)=I S(w)=I S(s)=I S(t)=I S(z)=5$. Hence $I S(G)=$ $\min \{3,5\}=3$. Basic results are as follows:

Observation 1.1 [6]. (i) For the cycle C_{n} of length $n, I S(v)=\lfloor n / 2\rfloor$ for every vertex v and hence $\operatorname{IS}\left(C_{n}\right)=\lfloor n / 2\rfloor$.
(ii) $I S\left(K_{n}\right)=1$ and $\operatorname{IS}\left(K_{m, n}\right)=\min \{m, n\}$.

Theorem 1.2 [9]. Let G be a maximal triangle free graph of order $n \geq 2$ and minimum degree $\delta(G)$. For every vertex $v \in V(G), N_{G}(v)$ is an independent domination set and so $i(G) \leq \delta(G) \leq\lfloor n / 2\rfloor$.

Proposition 1.3. [10] For any graph G,
(a) $i(\exp (G, r))=r \cdot i(G)$,
(b) $i(\operatorname{cor}(G, r))=r|V(G)|-(r-1) \alpha(G)$.

2. Further Results on Independence Saturation Number

In the following propositions, we investigate the independence saturation number of the central graph of star graph $K_{1, n}$, double star $K_{1, n, n}$ and cycle graph C_{n}. Also we compute independence saturation number for the total graph, line graph of star graph $K_{1, n}$, and double star graph families $K_{1, n, n}$ as defined in [16, 19].

A study of harmonious, achromatic coloring on middle graph, central graph, total graph, line graph of various classes of graphs can be found in [16, 17, 18, 19]. Double star $K_{1, n, n}$ is a tree obtained from the star $K_{1, n}$ by adding a new pendant edge of the existing n pendant vertices. It has $2 n+1$ vertices and $2 n$ edges. Let

$$
V\left(K_{1, n, n}\right)=\{v\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}
$$

and

$$
E\left(K_{1, n, n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \cup\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} .
$$

The central graph $C(G)$ of a graph G is formed by adding an extra vertex on each edge of G and then joining each pair of vertices of the original graph which were previously non-adjacent. The total graph of G has vertex set $V(G) \cup E(G)$, and edges joining all elements of this vertex set which are adjacent or incident in G. The line graph of G denoted by $L(G)$ is the graph
with vertices are the edges of G with two vertices of $L(G)$ adjacent whenever the corresponding edges of G are adjacent.

Proposition 2.1. For any star graph $K_{1, n}$, we have
(i) $\operatorname{IS}\left(C\left(K_{1, n}\right)\right)=2$,
(ii) $\operatorname{IS}\left(T\left(K_{1, n}\right)\right)=1$,
(iii) $\operatorname{IS}\left(L\left(K_{1, n}\right)\right)=1$.

Proof. (i) By the definition of central graph, each edge $v v_{i}$ in $K_{1, n}$ is subdivided by the vertex e_{i} in $C\left(K_{1, n}\right)$ and the vertices $v_{1}, v_{2}, \ldots, v_{n}$ induce a clique of order n in $C\left(K_{1, n}\right)$, i.e.,

$$
V\left(C\left(K_{1, n}\right)\right)=\{v\} \cup\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{i}: 1 \leq i \leq n\right\} .
$$

Since $v_{i}(1 \leq i \leq n)$ induce a clique of order n and v_{i} is adjacent to e_{i}, $\left\{v_{i}\right\} \cup\left\{e_{1}, e_{2}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right\} \quad$ is a maximum independent set containing $v_{i}(1 \leq i \leq n)$. Hence, $I S\left(v_{i}\right)=n$. Also $\left\{e_{1}, e_{2}, \ldots, e_{i}, \ldots, e_{n}\right\}$ is a maximum independent set containing $e_{i}(1 \leq i \leq n)$. Hence, $I S\left(e_{i}\right)=n$. Moreover $\left\{v, v_{i}\right\}$ is a maximum independent set of $C\left(K_{1, n}\right)$ containing v. Hence, $\operatorname{IS}(v)=2$ and so $\operatorname{IS}\left(C\left(K_{1, n}\right)\right)=2$.
(ii) By the definition of total graph, we have $V\left(T\left(K_{1, n}\right)\right)=\{v\} \cup$ $\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{i}: 1 \leq i \leq n\right\}$, in which the vertices $v, e_{1}, e_{2}, \ldots, e_{n}$ induce a clique of order $n+1$. Since v is adjacent to all the vertices of $T\left(K_{1, n}\right), I S(v)=1$ and so $I S\left(T\left(K_{1, n}\right)\right)=1$.
(iii) Since $L\left(K_{1, n}\right) \cong K_{n}, \operatorname{IS}\left(L\left(K_{1, n}\right)\right)=1$.

Proposition 2.2. For any double star graph $K_{1, n, n}$, we have
(i) $\operatorname{IS}\left(C\left(K_{1, n, n}\right)\right)=n+1$,
(ii) $\operatorname{IS}\left(T\left(K_{1, n, n}\right)\right)=n+1$,
(iii) $\operatorname{IS}\left(L\left(K_{1, n, n}\right)\right)=n$.

Proof. (i) By the definition of central graph, each edge $v v_{i}$ and $v_{i} u_{i}$ $(1 \leq i \leq n)$ in $K_{1, n, n}$ are subdivided by the vertices e_{i} and s_{i} in $C\left(K_{1, n, n}\right)$. The vertices $v, u_{1}, u_{2}, \ldots, u_{n}$ induce a clique of order $n+1$ (say K_{n+1}) and the vertices $v_{i}(1 \leq i \leq n)$ induce a clique of order n in $C\left(K_{1, n, n}\right)$, i.e., $V\left(C\left(K_{1, n, n}\right)\right)=\{v\} \cup\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{i}: 1 \leq i \leq n\right\}$ $\cup\left\{s_{i}: 1 \leq i \leq n\right\}$. Now $\{v\} \cup\left\{s_{i}: 1 \leq i \leq n\right\}$ is a maximum independent set containing v. Hence, $\operatorname{IS}(v)=n+1$. Then $\left\{e_{i}: 1 \leq i \leq n\right\} \cup\left\{s_{i}: 1 \leq i \leq n\right\}$ is a maximum independent set containing e_{i} (or s_{i}). Hence, $\operatorname{IS}\left(e_{i}\right)=2 n$ and $I S\left(s_{i}\right)=2 n$. Also note that

$$
\left\{v_{i}\right\} \cup\left\{u_{i}\right\} \cup\left\{e_{1}, e_{2}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right\} \cup\left\{s_{1}, s_{2}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right\}
$$

is a maximum independent set containing v_{i} (or u_{i}). Hence, $I S\left(v_{i}\right)=2 n$ and $I S\left(u_{i}\right)=2 n$. Hence, $\operatorname{IS}(G)=\min \{n+1,2 n\}=n+1$.
(ii) By the definition of total graph, we have

$$
\begin{array}{r}
V\left(T\left(K_{1, n, n}\right)\right)=\{v\} \cup\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}: 1 \leq i \leq n\right\} \\
\bigcup\left\{e_{i}: 1 \leq i \leq n\right\} \cup\left\{s_{i}: 1 \leq i \leq n\right\}
\end{array}
$$

in which the vertices $v, e_{1}, e_{2}, \ldots, e_{n}$ induce a clique of order $n+1$. Note that $\{v\} \cup\left\{s_{i}: 1 \leq i \leq n\right\}$ is a maximum independent set containing v (or s_{i}). Hence, $\operatorname{IS}(v)=n+1$ and $\operatorname{IS}\left(s_{i}\right)=n+1$. Then for any $j=1$ to $n,\left\{e_{j}\right\} \cup$ $\left\{u_{i}: 1 \leq i \leq n\right\}$ is a maximum independent set containing e_{i} (or u_{i}), $i=1$ to n. Hence, $\operatorname{IS}\left(e_{i}\right)=n+1$ and $\operatorname{IS}\left(u_{i}\right)=n+1$. Also $\left\{v_{i}\right\} \cup\left[\cup_{j \neq i} u_{j}\right] \cup$ $\left\{e_{j}: j \neq i\right\}$ is a maximum independent set containing v_{i}. Hence $\operatorname{IS}\left(v_{i}\right)=$ $1+n-1+1=n+1$. Therefore, $\operatorname{IS}\left(T\left(K_{1, n, n}\right)\right)=n+1$.
(iii) By the definition of line graph, each edge of $K_{1, n, n}$ taken to be as vertex in $\left(L\left(K_{1, n, n}\right)\right)$. The vertices $e_{1}, e_{2}, \ldots, e_{n}$ induce a clique of order n and the vertices $s_{1}, s_{2}, \ldots, s_{n}$ are all pendant in $\left(L\left(K_{1, n, n}\right)\right)$, i.e., $V\left(L\left(K_{1, n, n}\right)\right)=\left\{e_{i}: 1 \leq i \leq n\right\} \cup\left\{s_{i}: 1 \leq i \leq n\right\}$. We observe that $\left\{e_{i}\right\} \cup$ $\left[\cup_{j \neq i} s_{j}\right]$ is a maximum independent set containing e_{i}. Hence, $I S\left(e_{i}\right)=n$. Then $\left\{s_{i}: 1 \leq i \leq n\right\}$ is a maximum independent set containing s_{i}. Hence, $\operatorname{IS}\left(s_{i}\right)=n$ and so $\operatorname{IS}\left(L\left(K_{1, n, n}\right)\right)=n$.

Proposition 2.3. For any cycle $C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, we have $\operatorname{IS}\left(C\left(C_{n}\right)\right)$ $=n-1$

Proof. By the definition of central graph, each edge $v_{i} v_{j}(i<j$ and $1 \leq i, j \leq n)$ in C_{n} is subdivided by the vertex e_{i} in $C\left(C_{n}\right)$ and $\operatorname{deg}\left(v_{i}\right)=$ $n-1, \operatorname{deg}\left(e_{i}\right)=2$. Note that $\left\{v_{i}, v_{i+1}, e_{i+2}, e_{i+3}, \ldots, e_{i+n-2}\right\}$ is a maximum independent set of $C\left(C_{n}\right)$ containing $v_{i}(1 \leq i \leq n)$. Hence, $I S\left(v_{i}\right)=n-2$ $+1=n-1$. Also $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a maximum independent set containing e_{i}. Hence, $\operatorname{IS}\left(e_{i}\right)=n(1 \leq i \leq n)$ and so $\operatorname{IS}(G)=n-1$.

In the following proposition, we determine the independence saturation number of expansion and corona of graphs. For r a positive integer, the expansion $\exp (G ; r)$ of a graph G is the graph obtained from G by replacing each vertex v of G with an independent set I_{v} of size r and replacing each edge $v w$ by a complete bipartite graph with partite sets I_{v} and I_{w}. The corona $\operatorname{cor}(G)$ (sometimes denoted $G \circ K_{1}$) is the graph obtained from G by adding a pendant edge at each vertex of G. In general, the generalized corona $\operatorname{cor}(G ; r)$ is the graph obtained from G by adding r pendant edges to each vertex of G.

Proposition 2.4. For any graph G,
(a) $I S(\exp (G, r))=r \cdot I S(G)$,
(b) $I S(\operatorname{cor}(G, r))=r|V(G)|-r+1$.

Proof. (a) Let D be any independent set of $\exp (G, r)$. Each set I_{V} in D that corresponds a vertex v in G. Note that $\left\{v: I_{v} \subseteq D\right\}$ is an independent set of G. Let z be any $I S$-vertex of G and S be any $I S$-set of G containing z in G. Then $I S(G)=|S|=\min \{I S(v)\}$. For every two vertices v, w in S, there corresponds two sets I_{v}, I_{w} in $\exp (G, r)$. Since v and w are non-adjacent, all the vertices of $I_{v} \cup I_{w}$ are independent. Hence $\bigcup I_{v}, v \in S$ is a maximum independent set containing $w, w \in I_{z}$. Hence, $I S(\exp (G, r))=r \cdot I S(G)$.
(b) Let D be any maximum independent set of $\operatorname{cor}(G, r)$. For every vertex v of G, D contains all of r leaves adjacent to v. Let $v \in \operatorname{cor}(G, r)$ and I_{v} be any maximum independent set containing v. If v is not a leaf, then D contains $|V(G)|-1$ leaves and v. Hence, $I S(v)=(|V(G)|-1) r+1=$ $r|V(G)|-r+1$. If v is a leaf, then $I S(v)=r|V(G)|$. Therefore,

$$
I S(G)=\min \{r|V(G)|-r+1, r|V(G)|\}=r|V(G)|-r+1
$$

In Theorem 2.5, we investigate the independence saturation number $I S(G)$ of Mycielskian graph G. For a graph $G=(V, E)$, the Mycielskian of G is the graph $\mu(G)$ with vertex set $V \bigcup V^{\prime} \bigcup\{u\}$, where $V^{\prime}=\left\{x^{\prime}: x \in V\right\}$ and is disjoint from V, and edge set $E^{\prime}=E \bigcup\left\{x y^{\prime}, x^{\prime} y: x y \in E\right\} \bigcup$ $\left\{x^{\prime} u: x^{\prime} \in V^{\prime}\right\}$. The vertices x and x^{\prime} are called twins of each other and u is called the root of $\mu(G)$. Also the graph $\mu(G)-u$ is called the shadow graph of G and is denoted by $\operatorname{Sh}(G)$. A collection of articles related to Mycielskian graphs can be found in [12, 13, 14].

Theorem 2.5. For any graph $G, \operatorname{IS}(\mu(G))=\min \left\{\beta_{0}(G)+1,2 I S(v, G)\right\}$, $v \in V(G)$.

Proof. Let u be the root of $\mu(G)$. Since u is adjacent to every $v^{\prime}, v \in$ $V(G), \beta_{0}$ set of $G \bigcup\{u\}$ is a maximum independent set containing u in $\mu(G)$. Hence, $I S(u, \mu(G))=\beta_{0}+1$. Let $v^{\prime} \in \mu(G)(G), v \in V(G)$. Let $S=$ $\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be any $I S$-set of G. Then $S^{\prime}=\left\{v, v^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, \ldots, v_{n}, v_{n}^{\prime}\right\}$
is a maximum independent set containing v in $\mu(G)$ and so $I S(v, \mu(G))=$ 2IS (v, G). We observe that $\left\{v^{\prime}: v \in V(G)\right\}$ is a maximal independent set containing v^{\prime}. Hence, $\operatorname{IS}\left(v^{\prime}, \mu(G)\right)=\max \{n(G), 2 I S(v, G)\}$ and $I S(v, \mu(G))$ $\leq \operatorname{IS}\left(v^{\prime}, \mu(G)\right)$. Hence, $\operatorname{IS}(\mu(G))=\min \left\{\beta_{0}(G)+1,2 I S(v, G)\right\}, v \in V(G)$.

For example, $\operatorname{IS}\left(\mu\left(C_{4}\right)\right)=3$. The graph Mycielskian of C_{4} is given below.

In the following theorem, we compute the independence saturation number of maximal triangle free graphs. A graph G is called maximal triangle-free (MTF) if G has no triangles but the addition of any edge produces a triangle. For instance, any complete bipartite graph is a maximal triangle-free graph.

Theorem 2.6. Let G be a maximal triangle free graph of order $n \geq 2$ and minimum degree $\delta(G)$. Then $\operatorname{IS}(G)$ is either $\delta(G)$ or $\Delta(G)$.

Proof. Let $u \in V(G)$ and I_{u} be any maximum independent set containing u. Choose a vertex $v \in V(G)$ such that $u \in N(v)$. Since G is a maximal triangle free graph, $N(v)$ is an independent set containing u. We show that $N(v)$ is maximal. Suppose there exists $w \in V(G)-N[v]$ such that w is not adjacent to any vertex of $N(v)$. Then $G+u v$ is triangle free, it contradicts the fact that G is maximal triangle free graph. Hence, $N(v)$ is maximal and so $\left|I_{u}\right| \geq \operatorname{deg}(v)$. Since every vertex in G is of degree either $\delta(G)$ or $\Delta(G)$, $\left|I_{u}\right| \geq \delta(G)$ or $\left|I_{u}\right| \geq \Delta(G)$. Let I be any independent set of G containing u. Now we show that $I \subseteq N(v)$ for some v such that $u \in N(v)$. Suppose not, then there exists $z \in I$ such that $z \notin N(v)$ for every v such that $u \in N(v)$. Then $G+v z$ is triangle free, it contradicts the fact that G is maximal triangle
free graph. Hence, $|I| \leq \operatorname{deg}(v)$ for some v such that $u \in N(v)$. Since every vertex in G is of degree either $\delta(G)$ or $\Delta(G)$ and $\left|I_{u}\right| \leq \operatorname{deg}(v)$ for some v such that $u \in N(v),\left|I_{u}\right|$ is either $\delta(G)$ or $\Delta(G)$. Note that $\operatorname{IS}(G)=$ $\min \left\{\left|I_{u}\right|: u \in V(G)\right\}$. Hence, $I S(G)$ is either $\delta(G)$ or $\Delta(G)$.

In Figure 1.1, we have $I S(G)=\delta(G)=2$ and in Figure 1.2, we have $I S(G)=\Delta(G)=3$.

Figure 1.1

Figure 1.2

Theorem 2.7. Let G be a maximal triangle free graph of order $n \geq 2$ and minimum degree $\delta(G)$. Then $\operatorname{IS}(G)=\delta(G)$ if and only if there exists v such that $\operatorname{deg}(w)=\delta(G)$ for all $w \in N(v)$.

Proof. Assume that $I S(G)=\delta(G)$. Suppose for every $v \in V(G)$, there exists $w \in N(v)$ such that $\operatorname{deg}(w)>\delta(G)$. Since G is MTF, $N(w)$ is a maximal independent set containing v. Hence, $\operatorname{IS}(v) \geq \delta+1$ and so $\operatorname{IS}(G) \geq \delta+1$. It contradicts the assumption. Conversely, to prove that $\operatorname{IS}(v)=I S(G)=\delta(G)$. Since $N(w)$ is a maximal independent set containing $v, I S(v) \geq \delta(G)$. Let I be any independent set containing v. From the Proof of Theorem 2.6, $I \subseteq$ $N(w)$ for some vertex w such that $w \in N(v)$. Hence, $I S(v)=\delta(G)$. Since $I S(G)$ is either $\delta(G)$ or $\Delta(G), I S(v)=I S(G)=\delta(G)$.

Conclusion and Scope

By the definition of $I S(G)$, we have $i(G) \leq I S(G) \leq \beta_{0}(G)$. It is clear that $I S(G)$ is equal to $i(G)$ for the graphs G mentioned in Proposition 2.1, Proposition 2.2 and Proposition 2.3. Hence, following is the interesting problem for further investigation.

Problem. Characterize the class of graphs G for which $\operatorname{IS}(G)=i(G)$.

References

[1] B. D. Acharya, The strong domination number of a graph and related concepts, J. Math. Phys. Sci. 14(5) (1980), 471-475.
[2] S. Arumugam, O. Favaron and S. Sudha, Irredundance saturation number of a graph, Australasian J. Combin. 46 (2010), 37-49.
[3] S. Arumugam and R. Kala, Domsaturation number of a graph, Indian J. Pure Appl. Math. 33(11) (2002), 1671-1676.
[4] S. Arumugam and R. Kala, Connected domsaturation number of a graph, Indian J. Pure Appl. Math. 35(10) (2004), 1215-1221.
[5] S. Arumugam and R. Kala, A note on global domination in graphs, Ars Combin. 93 (2009), 175-180.
[6] S. Arumugam and M. Subramanian, Independence saturation and extended domination chain in graphs, AKCE Int. J. Graphs. Comb. 4(2) (2007), 171-181.
[7] S. Arumugam and M. Subramanian, Edge subdivision and independence saturation in a graph, Graph Theory Notes of New York 52 (2007), 9-12.
[8] S. Arumugam and S. Sudha, Min-max dom-saturation number of a tree, Inter. J. Math. Combin. 2 (2010), 45-52.
[9] Changping Wang, The independent domination number of maximal triangle-free graphs, Australasian J. Combin. 42 (2008), 129-136.
[10] W. Goddard and M. A. Henning, Independent domination in graphs: a survey and recent results, Discrete Math. 313(7) (2013), 839-854.
[11] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1972.
[12] W. Lin, J. Wu, P. C. B. Lam and G. Gu, Several parameters of generalized Mycielskians, Discrete Appl. Math. 154(8) (2006), 1173-1182.
[13] D. A. Mojdeh and N. J. Rad, On domination and its forcing in Mycielski's graphs, Sci. Iran. 15(2) (2008), 218-222.
[14] J. Mycielski, Sur le colouriage des graphes, Colloq. Math. 3 (1955), 161-162.
[15] M. Subramanian, Studies in Graph Theory - Independence Saturation in Graphs, Ph.D. Thesis, Manonmaniam Sundaranar University, 2004.
[16] M. Venkatachalam, J. Vernold Vivin and K. Kaliraj, Harmonious coloring on double star graph families, Tamkang J. Math. 43(2) (2012), 153-158.
[17] J. Vernold Vivin, K. Thilagavathi and B. Anitha, On harmonious coloring of line graph of central graphs of bipartite graphs, J. Combinatorics, Information and System Sciences 32(1-4) (2007), 233-240.
[18] J. Vernold Vivin and K. Thilagavathi, On harmonious colouring of line graph of central graph of paths, Appl. Math. Sci. (Ruse) 3(5-8) (2009), 205-214.
[19] J. Vernold Vivin, M. Venkatachalam and M. M. Akbar Ali, A note on achromatic coloring of star graph families, Filomat 23(3) (2009), 251-255.

