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Abstract

In this paper, we introduce an iterative scheme for finding a common
solution of mixed equilibrium problems, fixed point problems and
variational inequality problems of a countable family of k-strict
pseudo-contractions in the framework Hilbert spaces. We prove a
strong convergence theorem of the proposed scheme. The results
presented in this paper improve and extend the corresponding results
announced by many others.

1. Introduction

Throughout of this paper, we always assume that K is a closed convex
subset of a real Hilbert space H with inner product and norm which denoted
by (-, -) and ||-|, respectively, R is the set of real numbers, and N is the set
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of positive integers. Let G : K x K — R be to find z € K such that
G(z,y) >0, Vy e K. (1.1)

The set of solution of (1.1) is denoted by EP(G). Numerous problems in
physics, optimization, and economics reduce to find a solution of (1.1). The
mixed equilibrium for two bifuctions of Gy, G, : KxK — R is to find
z € K such that

Gi(z, y)+Gy(z, y)+(Bz,y-12) >0, Vy € K. (1.2)

In the sequel, we will indicate by MEP(Gy, G,, B) the set of solution of
our mixed equilibrium problem. If B = 0, then we denote MEP(G;, G,, 0),
with MEP(G;, G,). We notice that for G, =0 and B = 0, the problem is
the well-known equilibrium problem (see [4]).

Let B: K —> H be a mapping. The classical variational inequality,
denoted by VI(B, K), is to find s € K such that (Bs, y —s) >0 for all
y € K.

Let T : K —> K be a self-mapping of K. Recall T is said to be k-strict
pseudo-contraction if there exists a constant k < [0, 1) such that

ITz-Ty[> < z—yP+K[(1-T)z-(1 -T)y|? (1.3)

for all z, y € K. The set of fixed points of T is denoted by Fix(T) (i.e.,
Fix(T) = {z € K : Tz = z}). Note that the class k-strict pseudo-contractions
includes the class of nonexpansive mappings which are mappings T on K
such that

ITz-Ty|<[z-v]| (1.4)

for all z, y € K (see [14]). That is, T is nonexpansive if and only if T is
0-strict pseudo-contractions.

In the recent years, many papers concern the convergence of iterative
schemes for nonexpansive mapping and k-strict pseudo-contractions have
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been extensively studied by many authors [1, 4-7, 10, 12, 14] and references
therein.

In this paper, motivated and inspired by these facts, we introduce the new
iterative scheme of a countable family of k-strict pseudo-contractions which
include [10], [6], and [12] as some special cases.

2. Preliminaries

For every point z € H, there exists a unique nearest point in K, denoted

by Pk z such that
|z-Pcz||<|z-vy]| forall ye K. (2.1)

Py is called the metric projection from H into K. It well known that P isa

nonexpansive mapping of H into K and satisfies

2
(z-vy, Pkz—Pcy) 2| Pcz-Pcy|" (2.2)
Recall that a mapping B : K — H is called B-inverse-strongly monotone,
if there exists a positive number B such that (Bz — By, z - y) > B| Bz — By |%,

Vz,y € K. Let | be the identity mapping on K. It is well known that

if B:K — H is B-inverse-strongly monotone, then B is 1-Lipschitz

B

continuous and monotone mapping. Moreover, if 0 < A < 2B, then 1— B

is a nonexpansive mapping (see [1, 2]).
The following lemmas will be useful for proving in our main results.

Lemma 2.1 (See [3]). For all z, y € H, there holds the inequality

lz+yl? <lz|® + 2y, z+y).

Lemma 2.2 (See [7]). Let H be a Hilbert space, K be a honempty closed
subset of H, f : H — H be a contraction with coefficient 0 < o <1, and A

be a strongly positive linear bounded operator with coefficient y > 0. Then,
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(1) if 0<y<L, then (z-y, (A-y)z=(A=yF)y)2 (T-yo)| 2=y %,
Z,yeH;
@)if 0<p<||A[, then |1 —pA| <1-p7.

For solving the mixed equilibrium problem for a bifunction G : K x K
— R, where R is the set of real numbers, let us assume that G satisfies the
following conditions:

(Al) G(z,z)=0 forall z e K;

(A2) G is monotone, that is, G(z, y) + G(y, z) <0 forall z, y € K;
(A3) foreach x, z, y € K, limi_,oG(tx+ (1—-1t)z, y) < G(z, y);

(A4) foreach z € K, y+> G(z, y) is convex and lower semicontinuous.

Lemma 2.3 (See [4]). Let K be a convex closed subset of a Hilbert space
H.Let G; : K x K —> R, where R is the set of real numbers, be a bifunction

such that
(11) Gy(z, z) =0 forall z € K;
(12) G; is monotone and upper hemicontinuous in the first variable;
(13) G, is lower semicontinuous and convex in the second variable.
Let G, : K x K — R be a bifunction such that
(hl) Gyo(z, z) =0 forall z € K;

(h2) G, is monotone and weakly upper semicontinuous in the first
variable;

(h3) G, is convex in the second variable.

Moreover, let us suppose that

(H) for fixed A > 0 and z € K, there exists a bounded set D < K and
a € D such that for all
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y € K\D, -Gy(a, y)+ Gs(y, a)+%(a -y, y—-2)<0.
For A>0and ze H, let F,, : H - K be a mapping defined by
F.(z) = {y e K:G(x, y)+ Ga(x, y)+%<y - X X—2)20, Vx e K}

called resolvent of G; and G,. Then
(1) F.(2) % 2;
(2) Fy, isasingle value;
(3) Fy, is firmly nonexpansive;
(4) MEP(Gy, G,) = Fix(F, (z)) and it is closed and convex.

Lemma 2.4 (See [11]). Let {x,} and {v,} be bounded sequences in a
Banach space X and let {B,,} be a sequence in [0, 1] with 0 < liminf,,_, . By
<limsup,_y0 By <1. Suppose Xpi1 = BnXn + 1 —B,)v, for all integers
n>0 and

limsupn o0 (|| Visz = Vi [| = [ Xn2 = X [) < O.
Then lim, 0| Vo — %o | = 0.

Lemma 2.5 (See [13]). Assume {a,} is a sequence of nonnegative real
numbers such that

an <l-ay)a, +8,, n=0,

where {a,} isasequencein (0,1) and {8} is a sequence in R such that
(1) Z:]O:lan =
(2) limsup 8—”<Oorzoo lag | <
n—o00 oy n=1!*n :

Then limp_,,, a, = 0.
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Lemma 2.6 (See [1]). Let K be a nonempty closed convex subset of a
Banach space and {T,} be a sequence mapping of K into itself. Suppose

that "~ sup{|| Tns1z —Taz : 2 € K ||} < 0. Then, for each y e K, {T,y}

converges strongly to some point of K. Moreover, let T be a mapping of
K into itself defined by Ty=Iim,_,T,y for all ye K. Then

limp o, sup{| Tz - Tpz||: z € K} = 0.

Lemma 2.7 (See [2]). Let K be a nonempty closed convex subset of a
Hilbert space H. Let S: K — H be a k-strict pseudo-contraction. Define

T:K—>H byTx=pux+(@-u)Sx foreach x € K. Then,as pn e [k,1), T

is a nonexpansive mapping such that Fix(T) = Fix(S).
3. Main Results

Theorem 3.1. Let K be a nonempty closed convex subset of a real
Hilbert space H, let G; and G, be bifunctions from K x K — R, where R

is the set of real numbers, satisfying (Al)-(A4), let B: K - H be a
B-inverse-strongly monotone mapping, and let {T,,} be a sequence of

k-strictly pseudo-contraction of K into itself with fixed point for all n e N
and k e [0, 1). Define S,‘?x =kx + (L - k)T,x. Let f be a contraction of K

into itself with the coefficient o € (0, 1). Let A be a strongly positive linear

bounded operator on K with coefficient ¥ > 0. Assume that 0 <y < % and

Q = Nh=1 Fix(T,) N MEP(Gy, G,) NVI(K, A) = &. Let x,, y, and u, be

sequences generated by x; € K and
1

Gyi(up, ¥) + Gy(up, y)+x—<y — Uy, Uy — Xp) 2 0, Vy € K,
n

Yn = Pc (up — @,Bup),

Xnse1 = 0¥ () + HnXn + (L= pn) | — 0nA)SE Y, (3.1)
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forall n e N, where ¢, € (0, 28), and a,,, u, are two sequences in [0, 1]
and A, < (0, ) satisfying

- - [ee] o0
(i) limp_ oy =0, anl(ln = o0, and Zn:1|an+1 —ap | < o

(ii) liminf,_, oy >0, D7 | Anyg = A | < o0}
(liiy)0<a<p,<b<lforalnx>1 lim,_,pu, =0;
(iv) limp_o(Pni1 — @) = 0.

Suppose that Z:leup{" SK. 1z — SXz |:z e D} <o for any bounded
subset D of K. Let S be a mapping of K into itself defined by Su =
limp s Sr'fu for all u e K and suppose Fix(S)= ﬂcﬁ:lFix(Sr'f). Then {x,},
{yn} and {u,} converge strongly to @, where ® = Po(l — A+yf)(o) isa
unique solution of the variational inequality

(A-yf)o, o—x) <0, Vx € Q. (3.2)

Proof. Note that from the conditions (i) and (iii), we will assume that
o < (L—up)| At for all n>1. Since A is a strongly positive linear

operator, we have || A| = sup{|(Ax, x)|: x e K, | x| =1}. By Lemma 2.2,
we have

"(1_Hn)| _anA”S(l_Hn)_an?- (3.3)

From the definition of Srlﬁ, we have Srlf IS nonexpansive by Lemma 2.6.
We know that Px is nonexpansive. We now show that {x,} is bounded. Let

v € Q. By using Lemma 2.3, we have
I 'yn =V =P« Uy = @nBup) = Pc (v — @, BV) |
<[ (up = @nBUp) = (v — 9 BV) |

<Jup =]
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<[ F X = Fy, Vv

< % v (3.4)
forall n >1. Then, we have
[ Xnaz =V =] (@ = pn) 1 = nA)(SKYn — SKV)

+ any(F(%n) = F(V) + o (vf (V) = AV) + iy O = V) |

< (- an@ - an)] %o — V] + (7 - o)

yf(v) - AV" (3.5)
Y — oy
It follows from (3.5) and induction that
v (v) - AVII}
Xy — V| £ max -V, ———":, Vn>1 3.6
g =] < max{] - v}, L &0

This implies that {x,,} is bounded and hence the sets of {y,}, {un}, {Sr'fyn}
and {Bu,} are also bounded. Next, we show that | X1 — X, || = 0. Define

Xn41 = PnXn + X —Bp)e, forall n > 0. We see that

I ensa—en =l Xns1 = Xn |
o
=1 n+1 || v ner) |+ | ASEs1Ynen ||+ 7o - B v O) |+ 1| ASK v |l
k
+| Sn+1yn Sa¥n I+ 1 Ynxa = Yo I = Xns1 = Xa |- (3.7)

On the other hand, we see that
I Ynsr = Yn | <1 P (Upgg — @nBUny1) — P (Up — @ Bup ) ||
< " (I = opB)upsy — (1 — @ B)uy ”

<|lupgs —up |- (3.8)

Supposing Zn sup{]| sK.z-5kz |:z € D} < oo, we obtain

limy oo Sn-rlyn Kyn | =o0. (3.9)
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On the other hand, we note that
1
Gi(up, ¥) + Go(up, y) + m(y —Uy, Uy —Xp) 20, Vy e K (3.10)
and

1
G1(Uny1, ¥) + Go(Unyg, ¥) + m(y —Uny1, Ung1 — Xpy1) 2 0, Vy € K. (3.11)

By the same argument as that in the proof of [4, Lemma 3.7], we have

1— kn+1

2Ly, - x, ||j. (3.12)

2
Jun = e 2= 1ty = e 10 = 3001+

Since liminf,_,, A, > 0, we assume that »,, > d > 0 forall n e N. Thus,

we have
_ < — 1- m _
lun = unsa | <%0 = Xnga | + o [un = Xq |
L
< Xp = Xpaa || + E| My =AMt (3.13)

where L = sup{| up — X, || : n € N}.
Combining (3.7), (3.8) and (3.13) yields that
lenst —enll =1 Xne = Xn |

=1 _n+1 | vF (Xns1) = ASpya¥nas [ + 1 —o— [ v (xn) = ASpy |
Pn+1 Pn

L
(1% = a5 120 = 2asa])+ |90 = 0nea [l Bun |

+|| S#+1yn - SKYn | =1 %ns1 = Xn |- (3.14)
It follows from (3.9) and the conditions (i), (ii) and (iv) that
limn ool €ns1 —€n [ = [ Xnsa = %n [ = 0. (3.15)

Hence, Lemma 2.4, we obtain that lim,_, | e, — X, || = 0.
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Consequently, it follows that
imp ool Xns1 = Xn [ = 1imp (L= Bn)] & = Xq | = 0. (3.16)

Moreover, from (3.8), (3.13), (3.16), and the condition (ii), we also imply
that

limp ol Ynsa = Yn | = 0. (3.17)

Next, we will prove that lim,_,..| u, — X, || = 0.

; k
Since Xp = otn_1¥f (Xn_1) + Hn-1Xn-1 + (L= pp_1) | = an2A)Sy_1Yn-1,
we have that

k
" Xn = Sn Yn ”
k k k k k
< Xn = Sn=a¥Yn-1 |+ | Sn=a¥n-1 = Sn-a¥n |+ Sn-1¥n = Sn¥n |
k k
< ol vf (Xn—1) = ASp_1¥Yn-1 | + Hn-all Xn-2 — Sn-1¥Yn-1 |
k k
+ ] (Sn-1¥n-1) = Sn-1¥n |+ Yn-1 = ¥n |
+sup{] Sxaz — Sz | 2 € {yn}}- (3.18)

It follows by (3.17), the conditions (i), (ii), and sup{] S,']‘Hz—sﬁz | :

ze{yp}} >0, (as n — ), we have

limp o0l Xn — SKYn I=0. (3.19)

For s € Q, since uy = F;_X,, it follows from Lemma 2.3 that
2
lup —s|* < <Fknxn — Fpp S %n - $)=(Uy =S, Xy —5)
< 3ty =51+l = sIP =y = %0 1)
-2 n n n n !

and hence | uy — |7 < | xq = [ = [uy - xq |-
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We note that
| yn —s ||2 < ((up = ApBup) = (s —ABs), yn — )
< 24| Uy~ 2nBU) ~ (5~ 2BS) [ 4 Yo — 5
=l (U = %nBUn) = (s = 2nBS) = (yn = 5) |}
S%{Ilun =s[?+1yn = s ~un = va [?
+ 2% (Un = Yn, Bup — Bs) — 22 Bu, — Bs |*}
so, we have
[ =512 < up =512 = [un = ¥ P
+ 2% (Up = Yp, Bup — Bs) — 22| Bup - Bs[?.  (3.20)
Set M, = vf(x,) - ASr']‘yn, and let & > 0 be a constant such that

& > supy 14 M [, [ % — s [} (3.21)
We have

2 k 2
[ % =s|© < @—pn)(Sp¥n —S) + pp(Xy = 8) + apMy |
2 2
<@=up)|(Yn =) + pnll (Xq =) [ + 2?;2(xn
< @)% = 5P =ty = 50 2) = @ i)t~ v P
= ) (| % I© = llun = xn || )| Un = Yo |
+ 2k (L = 1) (un = yn) ||| Bup = Bs |
2 2
— 245 Bup = Bs [ + ppl X, = s |
+ 2820 — hn(L— 1) (2B — 1) | Buy — Bs |2 + 28%,
It follows that
An(L— ) (2B — )| Buy — Bs |2

<[ =X {0 =S 1+ [ e = s} + 28%an.
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Therefore, || Bu, — Bs| — 0 as n — oo. We also have that

L= p)lun =% 7 <%0 = Xnga [ X0 =S+ 1 Xne2 =5 |}
~hn(L=1p) (2B = )| Buy — Bs |+ 2¢%a
and
= p)lun = Yo [P < 1% = o 10 =S [+ [ Xn02 = s [}
~hn(@ = 1) (2B = 2y)| Bup — Bs| + 2&%a,,
by using the conditions (i), (ii) and (3.16), | Bup —Bs| — 0 imply that

[un =X, || — 0 and |up — yn | = O, respectively. In addition, according to

[ Xn = Yn | < %0 —Un ||+ [[un = yn [, we obtain that
iMool X0 = Y | = 0. (3.22)
By using (3.22), (3.19) and | Yn — SKVn | <1l Yn = Xn |+ X1 = SKya |l

we have

limp o0l Yn = Srlf)’n I=o0. (3.23)
Since

k k
ISYn = Yn I <1 SYn = Sa¥n [+ Sa¥n = Yn |l
k|- k
<sup{| Sz-Spz|:z e {yn}} +]Sn¥n —Yn
by (3.23), o, — 0 and Lemma 2.6, we have | Sy, — y, || > 0, as n — oo.

From th:px+(1—u)Tnx, we know by Lemma 2.7 that Srlf is

nonexpansive with Fix(Sr'f) = Fix(T,). We now show that z € Q. Since

{Xn} is bounded, there exists a subsequence {x,, } of {x,} which converges
weakly to z (denoted by X, —¥ 7). From ||uy — X, || = 0, we obtain
Up, ———> 2. We show z € MEP(Gy, G,). From [[u — Yy || - 0, it follows

that Yn; —¥ 7 From (3.1) and (A2), we obtain
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1
m(y —Un, Uy — Xy) = Gy(y, up) + Gy(y, up), (3.24)

and hence

Ly —up, 278 S 6y un) + Galys un) 3.25
o \Y 7 Une =5 ) = GulYs Un )+ Galy, Un). (3.25)
|

Up — Xp.
Since % — 0 and Up; — W% 47, it follows from (A4) that 0 >
N

|

Gi(y, 2) +Gy(y, z) forall y e K. Put gy =ty +(1—t)z forall t € (0, 1]
and y € K. Then, we have g; € K and hence 0 > G;(q, z) + Go(q, z). So,
from (Al) and (A4), we have

0 = Gy(at, ) + Go(at Gt)
=1Gy(qr, ¥) + Q- 1)Gi(ar, 2) + Ga(r, ¥) + (L~ 1)Go(qy, 2)
< Gy(qr, y) + Ga(at, Y)

and hence 0 < Gy(q, y) + Go(q, y). From (A3), we have 0 < Gy(z, y) +
G,(z, y) for all y e K. Therefore, z € MEP(G;, G,). We show that z

(N%y Fix(Ty)). Assume z ¢ (N7o_y Fix(SX)). Then we have z = SXz, vneN.
It follows by the Opial’s condition (see [4]) and lim_,.,| Syn — yn || = O that

liminf,_,.| yn — 2| < liminf, || yn — Sz |
< tliminfy_..{| yn = Syn [+ Syn — Sz}
< liminf,_,. [ yo - 2|.
This is a contradiction. So, we get z e (N1 Fix(Sr‘f)) and hence z e
(Mh=1 Fix(Ty)).

Finally, by the same argument as that in the proof of [8, Theorem 3.1,
pp. 197-198], we can show that z € VI(C, A). Hence z € Q. Next, we show
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that limsupp_,oo((A—yf )o, ®— X,) <0, where ® = Po(1 - A+7vf)(o) isa
unique solution of the variational inequality (3.2). We choose a subsequence
{Xn; } Of {Xy} such that

limsupy o (A = ¥f )0, @ = Xy) = limsupp_,o. (A = 7)o, ® = Xy.)
=(A-yf)o, ©-2) <0, (3.26)

Therefore,

| Xps1 — @
= [ (@ 1n) 1 =t A)(SK = )+ pn(%n — ©) + ot (+f (x5) - Aw) |
< (@= )T = anA)(SK = @)+ pp(Xy — ©) |2 + 200 (v (X)) — Ao, Xns1 — ©)
< (- un) - og D) (SKYn = @) 7 + uall (%9 — 0) P

+ 20070 Xp — O ||| Xns1 — @ | + 200 (¥f (0) = Aw, Xy — ©)
<(@= 1) = an?)] O = ©) |7 + gl (45 = @) |2

+ ool Xg = F + ] Xpi1 = ©f?) + 204 (4 (0) = Ao, Xn41 — ©)
< (0= un (7 =70 (% = ) [ + ]l (xq — @)

+ apya| (Xp11 — ©) ”2 + 20 (v (0) = Ao, X417 — ©)

which implies that

2 Y —oy)o 2
et - off < (1= T=20% s - g

20,

m(Yf (©) = A, Xpi1 — ).

It is easily verified from the condition (i), (3.29) and Lemma 2.5, we get
that {x,} converges strongly to w. This completes the proof.
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Remarks. In our Theorem 3.1,

(1) If setting Sr'f =S, k=0, u, =0, y,=u, forall ne N, B =1,
and G, =0 for all x, y € K, then our Theorem 3.1 reduces to theorem of

Plubtieng and Punpaeng [10].

(2) If setting Sr'f =S, k=0 pu,=0, yy=u, forallneN, B=1,
and G, =0 for all x, y € K, then our Theorem 3.1 reduces to theorem of
Khongtham and Plubtieng [6].

(3) If setting Sr'§ =S, k=0, u, =0, f(Xy) =Xy, An =1 u, =X,
forall neN, y=1 A=1 and G =0, G, =0 for all x, y € K, then
our Theorem 3.1 reduces to theorem of Takahashi and Toyoda [12].
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