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Abstract 

The feature selection (FS) techniques aim to reduce the subset size of 
an original data set, which are retained in the most useful information 
by selecting the most informative feature instead of irrelevant or 
redundant features. The benefits of FS for classification analysis can 
reduce the input data, improved predictive accuracy, learned 
knowledge is that easily understood, and reduced execution time. 
Many approaches based on rough set theory up to now, have operated 
the dependency function for measuring the goodness of the feature. 
However, there is not tolerance to noisy or inconsistency data, 
especially on high dimensional data microarray data sets. Moreover, 
mostly relevant information could be invisible by using only 
information from a positive region but neglecting a boundary region, 
mostly relevant may be invisible. Therefore, this paper proposes the 
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maximal positive region and minimal boundary region criterion, based 
on rough set and mutual information, which use the different values 
among the information contained in the positive region, and the 
information contained in the boundary region. The experimental 
results indicate that our proposed method can increase the 
classification accuracy. 

1. Introduction 

Feature selection (FS) as known as subset selection is an important 
technique used in machine learning for selecting the best subset to input 
reducing in the preprocessing process for classification analysis. The best 
subset contains the least number of dimensions that remain of the most 
essential information of the original data set. From the good benefit of 
subset, it can improve the classification accuracy rate, the increasing speed of 
a learning algorithm, and the capability in understanding the results. 
Additionally, the result from an effective FS technique shows the high 
relevance of the subset with decision class, means the subset can predict the 
decision class correctly. Moreover, the attribute in the subset is not 
redundancy with other attributes. 

The many researches in the last decade applied FS into many fields such 
as statistical pattern recognition [1-3], machine learning [4-6], data mining 
[7, 8], text classification [9], intrusion-detection [10], and gene expression 
analysis [11, 12] to improve the performance. Besides, many researchers [13-
16] have concerned FS based on the rough set. There are shown high 
performance over other FS techniques. 

The rough set (RS) first proposed by Pawlak [17, 18] is a mathematic 
model. It can solve the uncertainty, incomplete and reducing dimensional of 
information without the knowledge from the experts. In addition, the RS 
emphasizes finding minimal subset (also known as reduct), which is not only 
minimal redundancy of data but also remains the most information. The most 
existing of research rough set [19, 20, 13-16] are based on feature selection 
approaches that associates with data in the only positive region for fining 
reduct. The dependency function is used for measuring the goodness of the 
subset in determining an effective reduct. Their approaches are successful 
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with numerous data sets. Nevertheless, there are neglectful on information 
within the boundary region. The FS process may lead to loss of much 
valuable information. The goodness of feature evaluation generally uses the 
dependency function that is not tolerant noisy data. 

Especially, the determined data from only positive region has ignored 
important information, and noisy problem on high dimensional data such as 
microarray data sets [11, 12]. Some approaches [21-25] are based on rough 
set considering the boundary region and positive region to solve this 
problem, which are supposed to be conceptually separated. However, these 
researches using dependency value for evaluate the goodness of feature 
ranking that is not tolerant noisy data. Consequently, many researches 
showing the method based on the rough set do not tolerate noise or 
vagueness. The problem is mentioned that concentrates on our literature. 

The RS supports the inconsistent data but ensures the value both of the 
condition attributes and the decision attributes are precision. In real world, 
the value of attributes may be imprecise. To solve noisy problem, Ziargo 
[26, 27] proposed variable precision rough set (VPRS) which extended from 
the original rough set theory as a tool for classification. VPRS deals with 
classification by introducing an admissible classification error (β). Many 
researches [22, 26-29] have been successfully applied the VPRS to solve the 
noisy problem. However, the feature ranking based on VPRS is calculated by 
dependency function that concerns with indiscernible relation and 
equivalence class as well as original RS theory. So, their methods based on 
dependency function unsuccessful applied on high relevance attributes. 

The mutual information (MI) is calculated between input and class 
variables to solve the problem of data classification. To solve the noisy 
problem, the most research [30-32] applied MI instead of dependency 
function for feature ranking. The technique concerns the information only 
positive region, which it may ignore the most information. Liu [32] applied 
MI for subset selection getting good results. The technique gets good result; 
however, it spends high computation time. Battiti [31] did modify the mutual 
information feature selector (MIFS) using feature ranking and the largest 
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mutual information value. Battiti showed that MI has many beneficial in 
feature selection and data. However, MIFS is successful with only nonlinear 
regression. Mutual information feature selector under uniform information 
distribution (MIFS-U) presenting by Kwak and Choi [30] is more effective 
evaluate value of MI between input and output classes. Minimal redundancy 
– maximum relevance (mRMR) [33] proposed by Peng at al. having two 
steps in feature selection. First, the mRMR selects the subset by lowest 
classification error value. Second, mRMR applies add or delete attribute to 
feature subset based on wrapper approach. This step is finding the least-
feature subset from the selected feature. Technique mRMR gives the high-
accuracy rate for classification system. Ideally, the good result of selection 
runs by complete search does not suitable because of spending high 
computation time. The feature sets from MIFS, MIFS-U and mRMS 
approaches may have many attributes that are irrelevant with decision class 
and redundancy with attributes. Because, measuring redundancy of their 
techniques causes to reduce feature, which relevant to the target class. 
Following, Estevez et al. [34] improving the measuring redundancy feature 
called normalized mutual information feature selection (NMIFS). The 
technique focuses the positive region only and ignoring the boundary region 
associating with the lost-useful information. 

Recently, Parthalain et al. [21] proposed distance measure rough set 
attribute reduction (DMRSAR) using the information gathered from both the 
positive region and boundary region. DMRSAR applies a distance metric to 
consider the relationship between objects within the boundary region and the 
positive region by distance of those objects. DRMSA remains the usage of 
dependency value to measure feature ranking that do not tolerance with noisy 
data. 

The main problem of RS is ignorant of the importance information in 
boundary region and not tolerance with noisy data in high dimensional data 
sets, especially microarray data sets. Therefore, we propose a new approach 
based on the VPRS. Moreover, the proposed technique considers managing 
with the noisy data or data inconsistency, relevance feature. In addition, we 



Mutual Information Rough Sets Feature Selection … 133 

apply MI for measuring the goodness of feature. For experiment, running the 
microarray data sets compare with RSAR, and DMRSAR based RS theory. 
Additionally, our approach is compared with the two well-known FS 
techniques CNS, and ReliefF on the microarray data sets. The experiment 
measures classification accuracy rate, subset size, and runtimes. 

This paper organizes topics as follows: Section 2 introduces the rough set 
theory, VPRS, and mutual information. In Section 3, we propose feature 
selection approach based on VPRS, mutual information and related 
algorithms. In the experimental Section 4, we compare our approach with 
four famous approaches RSAR, DMRSAR, CNS, and ReliefF. The results 
are compared in terms of classification accuracy, subset size, and runtimes. 
The classification accuracy rates are compared by four well-known 
classifiers SVM, C4.5, NB, and PART. Finally, Section 5 gives the 
conclusion.  

2. Background 

In this section, the basic concepts in the related theories of rough set 
consisting with variable precision and mutual information are described. 

2.1. Rough set [17, 18] 

Let ( )AUIS ,=  be an information system, where U is a finite nonempty 

set of N objects { },...,,, 21 Nxxx  A is a finite nonempty set of attributes. V is 

a value of a set of attribute values in A and f is an information function 
.,: VAUf →  ( )PIND  is called the P-indiscernibility relation. If 

( ) ( ),, PINDxx ji ∈  then ix  and jx  are indiscernible with respect to P. The 

equivalence classes of the P-indiscernibility relation are denoted by [ ] .Pix  

Therefore, the elements in [ ]Pix  are indiscernible by attributes from P. Any 

subset P of attributes A there is associated an equivalence relation ( )PIND   

can define as: 

( ) {( ) ( ) ( )}.,, jbibji xfxfPaUyxPIND =∈∀|∈=  (1) 
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For any concept UX ⊆  and attribute set ,AP ⊆  X can be approximated 
by the lower and upper approximations. The lower approximation of X is the 
set of objects of U that is exactly in X can be defined as: 

( ) { [ ] }.XxxXP pii ⊆|= ∪  (2) 

The upper approximation of X is the set of objects of U that is possibly in X 
can be defined as: 

( ) { [ ] }.∅≠|= XxxXP pii ∩∪  (3) 

The lower approximation ( )XP  is the union of all the elementary sets 

that are contained in X, and the upper approximation ( )XP  is the union of 

all the elementary sets that have a nonempty intersection with X. The rough 
set X is characterized by its lower and upper approximations ( )XP  and 

( ),XP  respectively. Here an object ix  can belong to at most one lower 

approximation. For any lower approximation does not contain ,ix  then ix  
can belong to two or more upper approximations. 

2.2. Variable precision rough set 

Although RST is able to handle inconsistencies in data, the values of 
condition or decision attributes are expected to be exact and accurate. Noisy 
or vague data are outside the scope of RST. In the application of many real 
data sets, the assumption of exact data is not fulfilled and some objects are 
misclassified or condition attribute values are corrupted. To overcome these 
drawbacks, Ziarko [26, 27] introduced an extension of RST that is a variable 
precision rough set. The principal idea of VPRS is to allow objects to be 
classified with an error smaller than a certain predefined level. Some 
fundamentals of VPRS are introduced in the following part. 

Let X and Y be the nonempty subsets of a finite universe U. The relative 
degree of misclassification of set X with respect to set Y is defined as 

( )
⎪⎩

⎪
⎨
⎧

=

>−=
.0if,0

,0if,1,
X

XX
YX

YXc
∩

 (4) 
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It is important to note that ( ) 0, =YXc  if and only if .YX ⊆  The 

majority inclusion relation which is the degree of inclusion obtained by 
allowing an admissible classification error (β), can be defined as 

( ) .5.00,, <β≤β≤↔⊆β YXcYX  (5) 

Let S be a decision table, X be a nonempty subset of U, 5.00 <β≤  and 

., CPP ⊆≠∅  The equivalence relation P, referred to as an indiscernibility 

relation, corresponds to a partitioning of the universe U into a collection of 
equivalence classes or elementary sets { }....,,, 21 nxxxP =  The central 

issue of VRPS is the specification of the discernibility limits of a set in U                
by means of elementary sets of P. By replacing the inclusion relation with             
a majority inclusion relation in the original definition of the lower 
approximation and the upper approximation of a set they obtain the 
following generalized notions of β-lower approximation and β-upper 
approximation are defined as: 

( ) [ ]( ){ },,: β≤∈=β XxcUxXP  (6) 

( ) [ ]( ){ }.1,: β−<∈=β XxcUxXP  (7) 

Therefore, the definitions of the positive region, the negative region and 
the boundary region based on VPRS are given by: 

( ) [ ]( ){ },1,: β−≤∈=β XxcUxXPOS  (8) 

( ) [ ]( ){ },1,: β−<<β∈=β XxcUxXBND  (9) 

( ) [ ]( ){ }.1,: β−≥∈=β XxcUxXNEG  (10) 

As well as, formally dependency can be defined based on original rough set 
that X depends on P in a degree ( ).10 ≤γ≤γ ββ PP  If 1=γ βP  means X 

depends totally on P, and if 1<γ βP  that D depends partially on C. The 

dependency is defined as: 

( )
.U

XPOSP
P

β
β =γ  (11) 
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Note that, according to the above definitions of set approximations, the 
lower approximation of set X can be interpreted as the collection of all the 
elementary sets which can be classified into X with the classification error 
not greater than β. The upper approximation of X includes all the elementary 
sets that cannot be classified into –X with the error not greater than β. 
Finally, the boundary region of X consists of all the elementary sets that 
cannot be classified either into X or into –X with the classification error that 
is not greater than β. Note also that ( ) ( )XPXP =β  for ,0=β  therefore, the 

traditional rough set becomes a special case of VPRS. 

2.3. Mutual information based on rough set 

This theory proposed by Shannon and Weaver [35] provides useful tools 
to measure the information of a data set with entropy and mutual 
information. The entropy can be interpreted as an estimation of the quantity 
of information represented in random variables. The MI is a measure of 
generalized correlation between two random variables. In addition, MI can 
be interpreted as the amount of information shared by two random variables. 
In information system, entropy can be an information measure for feature 
selection on probabilistic knowledge about a given feature. 

In RST, an equivalence relation induces a partition of the universe. The 
partition can be regarded as a type of knowledge. The meaning of knowledge 
in information-theoretic framework of rough sets is interpreted as follows. 
For any subset  

( ) ( ) ( )( )∑ =
−=

n
i ii XpXpPH

1
,log  (12) 

where ( ) .1, niU
XXp i

i ≤≤=  

Let P and Q be the subset of A. Let ( ) { },...,,, 21 nXXXPINDU =  
( ) { }mYYYQINDU ...,,, 21=  denote the partitions induced by the 

equivalence relations IND(P) and IND(Q), respectively. The conditional 
entropy ( )PQH |  of the knowledge Q given by the knowledge P is defined 

as 
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( ) ( ) ( ) ( ( ))∑ ∑= =
||−=|

n
i

m
j ijiji XYpXYpXpPQH

1 1
,log  (13) 

where ( ) ( ) .1,1,, mjniX
XY

XYpU
XX

i

ij
ij

i
i ≤≤≤≤=|=

∩
 

The mutual information is a measure of the amount of information that 
knowledge P contains about knowledge Q which is defined as 

( ) ( )
( )
( ) ( )∑ ∑= =

=
m
j

n
i ij

ij
ij XpYp

XYp
XYpPQI

1 1
,

,
log,;  (14) 

where ( ) ( ) .1,1,,, mjni
U

XY
XYp

U
XX ij

ij
i

i ≤≤≤≤==
∩

 

If the mutual information between P and Q are large (small), it means                    
P and Q are closely (not closely) related. The relation between the mutual 
information and the entropy can be defined as 

( ) ( ) ( ).; PQHQHQPI |−=  (15) 

When applying mutual information in feature selection, mutual 
information plays a key role in measuring the relevance and redundancy 
among features. The main advantages of mutual information are its 
robustness to noise and transformations. We focus on feature selection 
methods based on mutual information as a measure of relevance and 
redundancy of features to find the most relevant features subset. In this 
paper, mutual information used as information measure of correlation 
between the lower approximation ( )βXP  of positive region and class X. 

Furthermore, mutual information of the boundary region ( )XBNDPβ  with 

respect to the class X is measured. More details on information measuring of 
the lower approximation and the boundary region can be seen in the next 
section. 

3. Proposed Feature Selection Method 

As described previously, almost all techniques for rough set attribute 
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reduction adapt the approach to minimizing the values that determine only 
the information contained within the positive region of a set. Although the 
current mechanism (DMRSAR) [21] has been proposed on the rough-set-
based method to deal with the information on the boundary region. However, 
DMRSAR calculates the information of the boundary region still 
significantly depends on the information of the lower approximation. In 
addition, when each lower approximation of the features is an empty set, the 
set of the boundary region must not be empty. DMRSAR [21] is 
insufficiently efficient for feature selection when applied to noisy or vague 
data. Furthermore, it may not be successful when applying to the data in 
which few equivalence classes are consistent at the first stage of the feature 
selection process. Therefore, the useful information of the boundary region 
can be used to evaluate the goodness of a feature subset when the lower 
approximation is an empty set. 

The approach described in this section uses both the information 
contained in the lower approximation and the boundary region to search for 
the best feature subset. The calculation to approximate the sets of both lower 
approximation and boundary region are independent. In addition, mutual 
information is used as the information measure for both lower approximation 
and boundary region to guide the search for the best feature subset. This 
proposed approach selects the feature that gives the lower approximations 
information that is mostly relevant to class. The information of the lower 
approximations is subtracted by the information contained in the boundary 
region with respect to class. 

3.1. Minimal boundary regions 

As discussed above, the central problem of VPRS is the consideration in 
selecting a level of error in classification. Concerning the admissible 
classification error β, for most existing papers based on VPRS predefining is 
needed. Therefore, an optimal β value is taken by considering from the best 
results of the classification accuracy. This paper proposes a novel approach 
that chooses a β value automatically rather than manually predefine. This 
approach operates only on the information contained within the data itself. 
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Let D be a decision attribute, universe U can be partitioned into a 
collection of equivalence classes ( ) { }....,,, 21 mDDDDINDU =  Then the 

boundary region of ( )DINDU  with respect to the set of attributes P is 

defined as 

( )DBNDPβ  

{ ( ) ( ) ( ) ( ) ( ) ( ) }....,,, 2211 ββββββ −−−= mm DPDPDPDPDPDP  (16) 

Therefore, the minimal mutual information between the knowledge D and the 

boundary region BNDP_(D) as the criteria used to select the optimal β~  value 

is given by 

{ ( ( ))},;min
5.00.0

DBNDDI Pβ
<β≤

=β  (17) 

where β varies in the range of [0.0, 0.5) in the step of 0.05. The β value that 
minimizes the mutual information between the knowledge D and boundary 

region BNDP_(D) is selected as the β~  value. Besides, in this paper, the 

minimal mutual information can be found with varying in the range of [0.3, 
0.45]. To verify that the minimal information of I(D; BNDP_(D)) is 
equivalent to the maximal quality of classification in VPRS, equation (11) is 
needed to be modified. This is because the positive region in VPRS 
comprises not only the objects that can be classified correctly, but also all 
objects of elementary sets that can be classified with respect to the admissible 
classification error β. Therefore, we have adopted the equation in (11) to 
determine only the objects which can be classified correctly. The quality of 
the classification can be redefined as 

( )
( )

,
U

DymisclassifPOS
PQC PP ββ

β
−

=  (18) 

where term ( )Dymisclassif Pβ  is a set of objects which cannot be classified 

by class categories when feature subset P and β are given. 
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3.2. Maximal positive region and minimal boundary region 

This criterion attempts to maximize the information of the region of 
certainty while minimizing those of uncertainty. The evaluation of the 
goodness of a feature subset can be done by selecting the features that 
contain most different amount of information calculated by subtracting the 
information of the boundary region from the information of the lower 
approximation. This concept is expected the most relevant features obtained 
from the result of a feature subset. This proposed criterion is a novel concept 
different from most existing rough-set-based FS approaches. Besides, it is 
contrary to the concept of DMRSAR method [21] that uses the information 
gathered from both the information contained in the lower approximation and 
the boundary region to search for reducts. By using (17), the minimal mutual 
information of the boundary region with respect to knowledge D, for any 

subset of features P with the optimal ,~
β  can be defined as 

( ) ( ( )).; DBNDDIPBndInf Pβ=  (19) 

The total information of mutual information between the lower 

approximation ( )β~iDP  and the equivalence class iD  with the optimal ,~
β  

denoted by PosInf (P), can be defined as 

( ) ( ( ) )∑ = β=
m
i ii DPDIPPosInf

1
~ .,  (20) 

Hence, the problem of selecting feature subset P is equivalent to 
maximizing LowerInf (P) and minimizing BndInf (P), that is to maximize the 
objective function ( ),PG  where 

( ) ( ) ( ).PBndInfPPosInfPG −=  (21) 

Obviously, if ( ) ( ),DHPPosInf =  then the objective function ( )PG  

value is maximum, it shows that the approximate information contains no 
uncertainty with respect to P. Therefore, the subset of features P is 
determined as strongly relevant features. Conversely, if ( ) ( ),DHPBndInf =  

then P brings to the approximating of information that has the highest 



Mutual Information Rough Sets Feature Selection … 141 

uncertainty. Consequently, P is the irrelevant features that have no useful 
information related to decision attribute D. The difference amount of both 
value is obtained as both operate in the range ( )[ ],,0 DH  and the ( )PG  has a 

value in the range ( ) ( )[ ]., DHDH−  A new feature selection mechanism can 

be constructed by using the difference amount of information between the 
certainty value and uncertainty value to guide the search for the best feature 
subset. 

3.3. PmaxBmin feature selection algorithm 

Figure 1 shows a VPRS-based PmaxBminReduct algorithm based on the 
rough set attribute reduction (RSAR) algorithm [13]. PmaxBminReduct is 
similar to the RSAR algorithm but uses the maximal the objective function G 
value of a subset to guide the feature selection process. If value G of the 
current reduct candidate is greater than that of the previous, then this subset 
is retained and used in the next iteration of the loop. The feature selection 
process terminates when an addition of any remaining features results in an 
information function value (PosInf) reaching that of the unreduced data set. 
However, in some situations without noisy data, a value of ( )DH  can be 

used as termination criterion by comparing with PosInf of reduct. The 
algorithm begins with an empty subset R. The do until loop works by 
determining the G value of a subset and incrementally adding a single 
conditional feature at a time. For each iteration, a conditional feature that has 
not already been evaluated will be temporarily added to subset R and an 

optimal β~  of this subset is then computed. If the difference amount of 

information of the current subset ( )xR ∪  is greater the previous subset (T), 

then the attribute added in is retained as part of the new subset T. 

The do until loop will be terminated when the amount information of the 
lower approximations of the current reduct candidate (PosInf (R)) equals the 
conditional attributes of the data set (PosInf (C)). We now analyze the time 
complexity of PmaxBminReduct before an empirical study of its efficiency. 

As we can see from Figure 1, major computation of the algorithm involves β~  
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value and G values for the lower approximation and boundary region, which 
have quadratic complexity in terms of the number of instances (M) in a data 
set. In terms of dimensionality N, to determine reduct, the algorithm has 

nonlinear complexity ( ).22MNO  To determine predominant features from 

reduct ones (assuming all features are selected as reduct ones), it has a best-

case complexity ( )2NMO  when only one feature is selected and all of the 

rest of the features are ignored, and a worse-case complexity ( )22MNO  

when all features are selected. 

 

Figure 1. The PmaxBminReduct algorithm. 

4. Experiment 

This section presents the results of experimental studies for microarray 
data sets. All methods run on the platform Intel Core i7 processor. The 
program was implemented on Java version 7.0. After that, the result of 
classification accuracy was measured the accuracy with Weka version 3.6.9. 

The PmaxBmin method is initially compared with the rough-set-based 
feature selection methods namely RSAR [13], and DMRSAR [21]. 
Additionally, PmaxBmin is also compared with well-known FS techniques 
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ReliefF [36] and the consistency based subset evaluator (CNS) [37]. For data 
sets containing features with continuous values, we apply the equidistance 
partitioning method before applying RSAR, DMRSAR, CNS and PmaxBmin 
to allow all methods to be compared fairly. We then apply SVM, C4.5, NB 
and PART classifiers on each of the newly obtained data sets and obtain 
overall accuracy of 10 fold cross validation. A comparison of all the feature 
selection techniques is made based on subset size, classification accuracy and 
time taken to discover subsets. 

4.1. Microarray data sets 

In this paper, three frequently microarray data sets are used in studies: 
Colon cancer [38], Leukemia [39], and Lung cancer [40]. The details of these 
data sets are summarized in Table 9. For each data set, we first apply all the 
above feature selection algorithms in comparison, and obtain the runtime and 
the selected genes for each algorithm. We then apply classifiers on each of 
the newly obtained data sets, and obtain overall classification accuracy by 
leave-one-out cross validation, a performance validation procedure due to a 
small sample size of microarray data. 

Table 9. The summary of microarray data sets 

Dataset Number of 
genes 

Number of 
samples 

Number of sample per class 

Colon Tumor  2000 62 tumor 40 normal 22 

Leukemia  7129 72 ALL 47 AML 25 

Lung Cancer 12533 181 MPM 31 ADCA 150 

4.2. Results and discussions on microarray data sets 

The effectiveness of these five algorithms based on the number of genes 
selected and the leave-one-out accuracy are reported in Table 10. The 
classification accuracies obtained with the PmaxBmin approach are higher 
than all other methods for Colon Tumor data, except accuracies obtained 
with CNS and ReliefF that are similar to that of PmaxBmin for two and one 
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classifiers, respectively. The results verify that the efficiency of PmaxBmin 
outperforms RSAR and DMRSAR in all classifiers, sometimes significantly. 

Table 10. The percentage of average classification accuracy-microarray data 

Microarray datasets FS method  Classifier 

Colon Tumor Leukemia  Lung Cancer 

RSAR SVM 72.58 79.78 96.13 

 C4.5 77.41 93.05 97.23 

 NB 72.58 91.66 97.79 

 PART 77.41 93.05 96.13 

DMRSAR SVM 72.58 79.78 96.13 

 C4.5 77.41 93.05 97.23 

 NB 72.58 91.66 97.79 

 PART 77.41 93.05 96.13 

CNS SVM 79.03 84.72 88.95 

 C4.5 82.25 88.88 96.13 

 NB 85.48 91.66 97.79 

 PART 82.25 84.72 96.68 

ReliefF SVM 79.03 90.27 97.34 

 C4.5 82.25 91.66 98.94 

 NB 85.40 88.88 97.79 

 PART 82.25 91.66 95.58 

PmaxBmin SVM 82.25 79.61 95.37 

 C4.5 85.48 97.22 97.23 

 NB 85.48 95.83 97.79 

 PART 82.25 98.22 97.79 

Table 11 records the number of genes selected by each feature selection 
algorithm. We can see that all these algorithms achieve significant reduction 
of dimensionality by selecting only a small portion of the original genes. 
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Table 11. The comparison of subset size and runtimes-microarray data 
Subset size Time taken in locate subset Dataset 

RSAR DMRSAR CNS ReliefF Pmax
Bmin

RSAR DMRSAR CNS ReliefF Pmax 
Bmin 

Colon Tumor 3 3 3 3 3 0.20 0.46 0.03 0.01 0.36 

Leukemia 2 2 3 3 3 2.25 8.36 0.15 0.06 10.85 

Lung Cancer 3 3 2 3 3 27.10 106.98 0.36 1.18 18.65 

Although the number of genes selected on Leukemia data set by 
PmaxBmin slightly increases in subset size when compared with RSAR and 
DMRSAR, PmaxBmin can lead to the highest accuracy by C4.5, NB and 
PART classifiers shown in Table 10. It is notable for Leukemia data that 
PmaxBmin shows an increase of up to 9.38% with C4.5 and more than 15% 
with PART when comparing CNS with PmaxBmin. For Lung cancer data, 
we can see that the PmaxBmin and ReliefF approaches achieve an accuracy 
of classification with two and three classifiers, respectively, except the 
RSAR, the DMRSAR, and the CNS approaches that are with only one 
classifier achieved. Although the subset size obtained with CNS is smaller 
than all other methods, accuracy obtained with CNS of SVM, C4.5 and 
PART is the smallest. 

As in Table 11, it is also clear from the runtime that CNS and ReliefF 
perform faster than all methods based on the data partition (RSAR, 
DMRSAR and PmaxBmin). However, the data containing a very small 
number of training samples and a large number of genes (thousands or tens 
of thousands of genes) in which PmaxBmin also runs faster than both RSAR 
and DMRSAR when the subset size is the same. Clearly, DMRSAR 
demonstrates a large increase in runtime for Lung cancer data when 
compared with PmaxBmin. The reason lies in the searching of the best subset 
in DMRSAR involves the calculation of the distance of objects in the 
boundary that is more costly for data containing a large number and high 
uncertainty of the attributes. 

5. Conclusion 

The comparison of PmaxBmin with RSAR and DMRSAR has shown 
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that the PmaxBmin method is a good starting point for further work based on 
the information measure both certainty and boundary region for exploring the 
variable precision rough set. 

The paper proposes a new PmaxBmin feature selection for high 
dimensional data such as microarry data. The new feature selection is a 
rough-set-based technique. It optimally combines both certainty and 
boundary region to be mutual information for measuring goodness of set of 
attributes obtained from modified VPRS training method. Instead of using a 
predefined admissible classification error as in previous techniques, the new 
method determines this value automatically using information of the 
boundary region. The experimental evaluation confirms that the PmaxBmin 
feature selection, compared with RSAR and DMRSAR, gives higher 
classification accuracy. 

In this paper, we have used mutual information that evaluates the 
goodness of a subset on the training data partitioned by using VPRS. As 
previously discussed, proposed by many papers based on the VPRS model, 
the admissible classification error (β) does need to be predefined. However, it 
does not need to be predefined for our method. This threshold value is 
automatically selected by determining from the minimal information of the 
boundary region or the region of uncertainty. The experimental evaluation 
emphasizing on much valuable information is extracted by maximizing 
information of the lower approximation and simultaneously minimizing 
information contained in the boundary region of a rough set. However, it is 
clear from the results obtained in the previous section that an increase in the 
accuracy of the PmaxBmin algorithm is highly desirable and will lead to 
further increase in efficiency of dimensionality reduction. 
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