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Abstract

In this paper, the estimation for finite population total of a study
variable will be considered, and the local linear regression will
be used. The study variable is available for the sample and is
supplemented by multiple auxiliary variables, which are available for
every element in the finite population. Also, the resampling methods
will be combined with the local linear regression method to estimate
the total. The comparisons between different methods will be
performed. These comparisons between the methods are based on the
mean squared error (MSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE). A simulation study is carried out to
assess the effects.

1. Introduction

Survey sampling often supplies information about a study variable only
for sampled elements. However, auxiliary information is often available for
the entire population. The relationship of the auxiliary information with the
study variable across the sample allows inferences about the nonsampled
portion of the population. Thus, the use of auxiliary information at the
Received: September 28, 2013; Revised: December 27, 2013; Accepted: January 2, 2014
2010 Mathematics Subject Classification: 62G08, 62D05.

Keywords and phrases: survey sampling, auxiliary variables, multiple local linear regression,
bootstrap, jackknife.




38 El-Housseiny A. Rady and Dalia Ziedan

estimation stage of a survey improves the precision of the estimation of
parameters studied. One approach has used this auxiliary information in the
estimation by assuming a working model. This working model describes the
relationship between the study variable of interest and the auxiliary variables.
Estimators are then derived on the basis of this model.

Usually, a parametric approach is used to represent the relationship
between the auxiliary variables and the study variable. But in some
situations, the parametric model is not appropriate, and the resulting
estimators do not achieve any efficiency gain over purely estimators. A
natural alternative first suggested by Kuo [11] for the distribution function, is
to adopt a nonparametric approach, which does not place any restrictions on
the relationship between the auxiliary data and the study variable. Other
important works in this topic are Chambers et al. [4], Dorfman [7], Dorfman
and Hall [6] and Rueda and Arcos [12].

Breidt and Opsomer [2] used the traditional local polynomial regression
estimator for the unknown regression function m(x). They assumed that

m(x) is a smooth function of x and obtained asymptotically design-unbiased

and consistent estimators of the finite population total. The local polynomial
regression estimator has the form of the generalized regression estimator, but
is based on a nonparametric superpopulation model applicable to a much
larger class of functions. Breidt et al. [1] considered a related nonparametric
model-assisted regression estimator, replacing local polynomial smoothing
with penalized splines. Kim et al. [10] extended local polynomial
nonparametric regression estimation to two-stage sampling, in which a
probability sample of clusters is selected, and then subsamples of elements
within each selected cluster are obtained.

In practice, the approach of nonparametric regression in the case of
multiple predictor variables is very important. Ruppert and Wand [13]
studied the asymptotic bias and variance of multivariate local regression
estimator. Ye et al. [18] presented a local linear estimator with variable
bandwidth for nonparametric multiple regression models. In this paper, we
will concern with the estimation of the finite population total in the presence
of multiple auxiliary variables using the local linear regression.
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2. Multiple Local Linear Regression
Suppose now that the covariate is d-dimensional, where

!
Xi = (%15 Xi25 o0 Xig) -
In this case,

Y =m(xy, x9, ..., Xz) + &

For local linear regression, the kernel function K is now a function of d
variables. Given a nonsingular positive definite d x d bandwidth matrix H,
we define
1 -1/2
Ky (x) = — o K(H /25). (1)
| H |
Often, one scales each covariate to have the same mean and variance and

then we use the kernel
K (| x|/R). @
where K is any one-dimensional kernel. Then there is a single bandwidth

parameter .

!
At a target value x = (xq, x5, ..., x7) , the local sum of squares is given
by

2
n d
ZWi(x) Yi_ao_zaj(xij_xj) > 3)
i=1 j=1
where
wi(x) = K(| x; = x||/h).
In this case, the estimator is
I’;i(X) = do, (4)
where a = (ay, aj, ..., dd)' is the value of a = (ay, aj, .., ad)' that

minimizes the weighted sums of squares. The solution a is

a=XxXmwx)xwy, (5)
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where X in this case is

Loxpp—x o Xg — Xy
1 x—x v Xog — X

X =|. 21‘ 1 ‘ 2d‘ d '
1 Xpl — X1 Xnd — Xd

And W is the diagonal matrix. For more details (see Casella et al. [3]).
3. Estimation of Total Using Multiple Local Linear Regression

Suppose that there is a finite population U = {1, ..., j, ..., N} for each
j € U. Also, suppose that there are d auxiliary variables known for the

entire population, and s is a sample of size n from U, for which Y values are

known.

N n N
Here, we want to estimate the total 7 = JZ:IY ;= ;Yi + JZ#Y ;- Since y
values are available to us on s, the problem is essentially to get a reasonable
estimate of the remainder of the population, outside s. That is, we want the
second sum in 7 above. Thus, a natural idea is estimating the second term
and add these to the first term in 7. According to Dorfman [7], the estimate
of total is

n N

f“zZYi+
J

i=l

n N
UEDREDIIEHE
i i=1 J#i
where m(x j) is local linear regression of the unobserved population. To

estimate m(x;), define the n x (d + 1) matrix

Loxyp—x; - Xg—xg

Lxop—x; 0 Xpg = Xy
X=|. ) Y

1 xnl—xlj xnd—xdj
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Let Abij = X;p — Xp; and AOij =1, where b=0,1,..,d and i =1, 2, ..., n.

Then the transpose matrix of X is

Aolj A02j Aonj

At Ains e Ay
X' = 1:11 1:21 ‘ l:n] .

Aaij Aazj o Aay

Also, define the n x n matrix

Wllj 0 0
0 % 0
W= 22 :
0 0 Wy

p 1/2
where Wll] =K %[ ZAzpl]J .
p=1

Let e, represent the rth column of the identity matrix. The local linear
regression estimator of m(x ;i ), based on the entire population, is given by
m(x) = (X' wx)  x'wy,
where (X'WX) is well-defined and it is invertible.
Now, we will substitute in the previous equation by X, # and Y to get the
estimation of the total. Hence
Aoljwl 1j A02jW22j T Aonjwnnj
Aiyiwmy; A iwoa; 0 AW
X'W = 11]: 115 12]: 22j ) ln]: nnj

Agumit;  Daz w0 DayWang
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and
Ly Ly SR WA
XWX = K%U 62:21' - fz’d:“’j :
Lavi, ;o Llasi2, ;o lasndsl,

n
where Egr] = ZAg—l,i,jAr—l,i,jWiij’ g = 1, 2, ooy d+ 1, r= 1, 2, . d+1
i=1

Note that (X'WX) is a symmetric matrix.

Let D; = X'WX | and let S be the adjoint matrix of (X'WX) as the

form
Sty S12j T SLd4L
s=| Y 2T AL g L.
Sd+1,1,j  Sd+1,2,j 7 Sd+ld+l, )

Hence, the inverse of the matrix (X'WX) is

= L
(xwx)™" = b, (S).
Now, we need to get on X'WY
- i
Z AgijWiij Vi
i=1

n
Xy = | 2 M |
i=1

n
Z AgigWi Vi

Li=1 i

Since our primary interest is to compute an estimate of y;, by substituting in
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the equation J; = ¢{(X'WX Y X'WY we get on

d n

R N 1

y;=mx;)= _Dj Zsl,c+1,jz Ac,i, Wiij Vi- (6)
c=0 i=1

Now, our main purpose is to estimate the total (7'). Therefore, according

to Dorfman [7], the estimate of the total is

. n N
T=> v+ ) ()
i=1

j=n+1

Substituting from equation (6) in (7), the estimated total is

n
S1, e+, jz Ac,i, jWiij i

d
=0 i=1

. n N |
P=20+ 252
i=l1

J#i c

n N 1 d
= 21: 1+ ZFZ(:)SLcH,jAc,i,jWiij Yi- (3)
i= c=

gz /

According to the value of d, we can obtain the special cases. These
special cases will be studied below when d =2 and d =3, where the

special case d = 1 was studied by Ziedan et al. [19].
(i) Estimation of total in the case of d = 2

In this case, we have two auxiliary variables and the estimation of the
total has the following form:

2

. n N 1 n
i=1 :

J#i J ¢=0 i=1

n N
1
) Z:‘ L+ 5 D Stest, Aei Wi |Vi ©)
1=

2
J#i J e=0
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where

S11; = ZAlij iij}(ZAZU ll]} (ZAIUAZU Wiij | >
S12j = ZAIUA%J‘ iij}{ZA%j zyj [ZAUJ Wiij [ZAIijAZUWiij}
i
2
S13j = ZAUJ‘ iij][ZAlyAZU IUJ [ZAlijWiij [ZAZijWiijJ-
i

(ii) Estimation of total in the case of d

When d = 3, the estimation of the total will be more complicated, but

we can calculate it as the following:

n N

T:Zyl-+ Z Vs
i=1 Jj=n+l1
n N 1 3

T:Z)’i"‘Z D. Zsl C+1]ZAC,Z,] Wi Vi
i=1 J#i J ¢=0 i=1

- 1+ZFZS1,C+1,jAc,i,jWizj Yio (10)

i=1 j#i 7 e=0

where

n n n

i=1 i=1 i=1
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2
n n n n
2 2
S12j = [Z Alz'jWiij] (Z AZijA3ijWiij} - (Z A2ijWiijJ (Z A3ijWiij]
i=1 i=1 i=1

S13;

i=1

n n n
- ZAly‘Azy’WiiJ‘MZAzy'Asy'WiijJ(ZAsywwj
i=1 i=1 i=1
n n )
- ZA2UW”J ZA3UW”J
i=1 i=1
n n ) n
+ ZAIZ}A3UW”J ZA2UW1U ZA3UW”J
i=1 i=1 i=1

-

n n y
- ZA%‘WilJ’JLZAﬁjAhJWHjJ
i=1 i=1 i
n n n 2
=1 D Augwig ||| D AugAaymiy A3 Wi
i=1 i=1 i=1
n n
- ZAZUA3UWIU ZAIUA3UWIU
inl in1
= 2 A ||| 2 Ay || D A3y
inl in1 inl
n n
- ZA2ijA3ijWiij ZA3ijWiij
in1 im1
n " n n
+ ZAIUA3UWIU ZAzl]W”J ZAIUA3UWIU
i=1 L\ i=1 i=1

n n
_ ZAIUAzlJWUJ ZA3UWZUJ .
i=1 i=1

45
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n n

- ZAlyAzy‘WiyJ[zAzy’AsiijH
i=1 i=1

= 2 Agwiy ||| D Ay || D Ay
i=1 i=1 i=1
n n

| D Agygwi || D Aaywiy
P P
n n n
1= 1= 1=
n n

— ZAIUA3UWIU ZAZUWUJ .
i=1 i=1

4. Bootstrapping Multiple Local Linear Regression for
Estimating the Total

Efron [8] has developed a new resampling procedure named as
“Bootstrap”. Bootstrap is a resample which consists of n elements that are
drawn randomly from the n original data observations with replacement

(Friedl and Stampfer [9]). All the bootstrap samples are n”, but we choose B
bootstrap samples. Bootstrapping can be done by either resampling the
residuals, in which the regressors (xq, x5, ..., x;) are assumed to be fixed, or
resampling the y; values and their associated x; values, in which the
regressors are assumed to be random. In our study, we deal with the residuals
resampling, where the bootstrap technique with nonparametric regression to
estimate the total of the population will be used, the local linear regression
will be considered. Suppose we have a univariate response variable Y and d

auxiliary variables (x;, x5, ..., X7 ), then the nonparametric regression model
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is
Y, = m(xy;, Xpj, s Xgi)+ € i=1..,n

and the bootstrap procedure based on the resampling errors can be
summarized as following:

(1) Let Y =(%, Y3, ..., ¥,,) denote the sample of observations selected

from the generated population. Then based on the sample Y the local linear
regression estimator m(x) is given by
A A / ! _1 !/
Vi = m(X);, X9js oeer Xgi) = (X' WX) " X'WY.
(2) Calculate the residuals as following:

A

g = Y; - rﬁ(xli, XDy oo xdi), i= 1, 2, ey N

n
(3) Define the centered residuals by €, = €; — %Z g;.

~

(4) Generate the & by sampling with replacement from |, &5, ..., €,

calculated in step (3) giving 1/n probability for each g; values (see Stine
[15, 16] and Wu [17]).

(5) The bootstrap sample of observations is constructed by adding a
randomly sampled residual to the original predicted value for each
observation. After resampling, new observation is given by

Y= ai(xy, Xoj, s Xgr) + 87
(6) Obtain the local linear estimate from the first bootstrap sample:
7O = e (xwx ) xwy*
(7) Repeat steps (4), (5) and (6) for B times.

Then the bootstrap estimate is

B

5% 1 Sk (1

7, =§ZIY,-”- (1)
t=
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Now, we will estimate the total using local linear regression estimation
with bootstrap method, since we have

N n N
T=2 Y =2 %+
]:1 i=1 jil
N
but ZY f is unknown , so we will estimate it, hence
J#I
n N
=33
i=l J#i
n N 1 B 1 d n )
~u(t
=2 hi+t EZFZSI,C-!—I,jZAc,i,jWiini : (12)
i=1 j#i =1 7 =0 i=1

5. Jackknifing Multiple Local Linear Regression for
Estimating the Total

In this section, the algorithm of estimating the total using local linear
regression method with jackknife technique will be given. The technique
of deleting single case from the original sample (delete-one jackknife)
sequentially will be used. Suppose the dataset consists of n vectors
(Y;, Xy;5 ..y Xgi), where Y; is the study variable and (Xy;, ..., Xy ) are
considered auxiliary variables. For simplicity, we will use x; = (xq;, ..., Xz;)
and z; = (v, x¢), k=1,2,..,n denote the values associated with ith
observation. In this case, the set of observations is the vector (z;, z, ..., z,).

Then the jackknife procedure based on delete-one is as follows:

(1) Draw n sized sample from population randomly and label the

elements of the vector z; = (v, x;), k =1, 2, ..., n.

(2) Omit first observation of the vector z; = (y;, x;) and label

remaining n —1 sized observation set Y((I{) = (2, . yy) and X ((IJ)) =

(x9, ..., x,) as delete-one jackknife sample ZI(J)'
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(3) Obtain the local linear regression estimate };i(Jl) from zéIJ)).

(4) Omit the second element of the vector z; = (y;, x;) and label
remaining n — 1 sized observation set Y((Z) = (V1> V35 - V) and X ((2)) =
(x1, X35 e X,,) @S zg‘]).

(5) Obtain the local linear regression estimate I}i(‘]z) from Z((zj))‘

(6) Similarly, omit each one of the n observations (there is n samples
jackknife each of them has n —1 observations) and estimate the local linear

regression };l-(‘]k), where f’i(Jk) is the jackknife local linear regression

estimate after deleting of kth observation from z; = (y;, x; ).

(7) Then the jackknife estimate of ri(x ;) is

o) _ L0 g
Y, ‘nkZYi . (13)

Now, we will estimate the total using local linear regression estimation with
jackknife estimate, since we have

T = ZY —ZY+ZY,

J#i
) Y, )
Z + JZ
= ZY + Z Z D Zsl c+1 jZAC,l,]Wll]Y Jk) (14)
j#i k=1 7/

6. Performance Criteria of the Models

The performance of the model is related with how close are the
prediction values to the observed values. Three different consistency criteria
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are used in order to compare between different methods. These are mean
square error (MSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE), respectively. These criteria are defined as follows:

1 & )
. MSE:;Z(%‘)’;’)-
i1

1< )
(] MAE:ZZlyl_yl .
i=1

n . — A.
o MAPE = lZM(IOO%).
ni5 il

7. Simulation Studies with Two Auxiliary Variables

Sometimes in sampling, we do not usually observe all the survey
information. That is, the survey variable Y is not observable for all the
population units. Auxiliary variable X is often used to estimate the
unobserved survey variables. One way of overcoming the above problem is
the super population approach, in which a working model relating the two
auxiliary variables is assumed. In this study, we simulate data from four
models, which are introduced by Ye et al. [18], each with ¥ = m(X|, X,) +

8(X;)e, where € ~ N(0, 1).

Model (1) ml(xl, XZ) = X1X2

2 2
81 (Xl, X2) = (xl —0.04)1(x12>0.04) +0.01.
Model (2): my(x{, x5) = x| exp(—2x3)
2 2
62(X1, XZ) = 2.5(x1 — 0'04)1(X12>0.04) + 0.025.

Model (3) ms (Xl, XZ) =X+ ZSin(l.sz)

83(x1, xp) = (xZ — 0.04)1

(25004 * 001
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Model (4): my(xy, x5) = sin(x; + x5) + 2 exp(—2x3)

83(x1, xp) = 3(x — 0.04)1

(25004 003

The populations of X; and X, are generated as independent and identically

distributed (iid) uniform (-2, 2) random variables.

The simulation experiments will be performed to compare the
performance of the local linear regression estimator with the classic linear
regression estimator. Also, the effects of the bootstrap and the jackknife
techniques on those estimators will be studied. The simulation will be carried
out as following: in the first, we generate population of size N =1000 as

above. The simple random samples will be chosen from the population,
different sizes will be considered n = 25, 50 and 100.

n N
Secondly, for each sample, we estimate the total 7 = Y Y; + > m(x i)

i=1 J#i
The linear regression and the local linear regression will be used to estimate
m(x). Also, the bootstrap and the jackknife techniques will be combined

with those regression methods to estimate m(x). We consider the normal

kernel function with different bandwidth values 4 = n_l/ 3, n_l/ > and n_l/ 7

for the local linear regression, each simulation setting is applied to all four
models and repeated M = 1000 times.

Thirdly, the mean square error (MSE) of the total (7)) under the two

types of the regression methods will be calculated. Also, the mean absolute
error (MAE) and the mean absolute percentage error (MAPE) will be
calculated.

Finally, the effects of the bootstrap and the jackknife techniques on the
estimation of total (7') will be studied, these effects are based on the bias,

MSE, MAE and MAPE.

Tables from 1 to 4 show the values of the mean squared error (MSE),
mean absolute error (MAE) and the mean absolute percentage error (MAPE)
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of the estimators for the four models, when the sample size (n) has different
values n = 25, 50 and 100 and the bandwidth has values h = n /3, n~Y/3

and n"7 in the case of two auxiliary variables.
8. Simulation Studies with Three Auxiliary Variables

Here also, we simulate data from four models, each with Y =

m(Xy, Xy, X3)+[8(X7) + S(Xz)]l/zs, where &€ ~ N(0, 1).
Model (1): ml(xl, X, X3) = X1Xp + XpX3 + X1X3

52(x;) = (x — 0.04)1

(x2>0.04) © 0.01,

5% (xy) = (x5 — 0.04)] +0.01.

(x3>0.04)
Model (2): my(x1, xo, X3) = X1 exp(=2x3 )+ x5 exp(—2x3 ) + x; exp(—2x7)

83(x;) = 2.5(x% — 0.04)1

(s00s) + 0025,

83 (xy) = 2.5(x3 — 0.04)1 +0.025.

(x3>0.04)
Model (3): m3 (xl, X, )C3) =X +Xx3+ 2sin(1.5x3)

82(x) = (xf —0.04)1 +0.01,

(x£>0.04)
83 (xy) = (x5 — 0.04)], +0.01
5(x2 2 = 0.04)/(y,>0.04) + 0.0L.

Model (4): my(x{, x5, x3) = sin(x; + xo + x3) + 2 exp(—2x7)

83(x)) = 3(x — 0.04)1 +0.03,

(x£>0.04)

83(xy) = 3(x5 — 0.04)7 +0.03.

(x3>0.04)



Estimation of Population Total Using Nonparametric Regression ... 53

Also, the populations of X;, X, and X3 are generated as independent and
identically distributed (iid) uniform (-2, 2) random variables, and the steps

of the simulation as the case of the two auxiliary variables.

Tables from 5 to 8 show the values of the mean squared error (MSE),
mean absolute error (MAE) and the mean absolute percentage error (MAPE)

of the estimators for the four models, when the sample size (n) has different

values n = 25, 50 and 100 and the bandwidth has values 4 = n_l/ 3 , n_l/ 3

17

and n~ 7" in the case of three auxiliary variables.

9. Results of the Simulation Study

Tables from 1-8 summarize the following conclusions about our

simulation study:

i.  For all the models, the local linear regression estimator dominates
the classical linear regression estimator when the regression model is

incorrectly specified.

ii.  The local linear regression estimator with bootstrap is overall the

best choice for all the models and bandwidths under study.

iii.  The effect of the bootstrap on the estimator is better than the

jackknife at the most.

1v. The bandwidth 4 = n_l/ > is the best choice at the most for all the

models.

v.  For all estimators, as the sample size increases, the mean squared
error (MSE), the mean absolute error (MAE) and the mean absolute
percentage error (MAPE) decrease, for the three bandwidths ()

considered and for all the models.
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Table 1. MSE, MAE and MAPE of the total estimation under different
methods with different sample sizes and bandwidths in the case of two
auxiliary variables for model 1

b= n—1/3

Method n=25 n =150 n =100

MSE | MAE | MAPE | MSE | MAE | MAPE | MSE | MAE | MAPE
CLR |404.25| 29.63 | 85.5% | 397.85| 27.24 | 74.2% | 396.56 | 25.99 | 27.0%
LLR |332.25| 25.85 | 68.8% | 325.87 | 23.49 | 57.9% | 324.58 | 22.26 | 17.8%
LLB |329.22| 21.55 | 42.1% | 322.84 | 19.23 | 32.2% | 321.55| 18.01 | 6.4%
LLJ |336.14| 28.14 | 72.3% | 329.76 | 25.76 | 61.2% | 328.47 | 24.52 | 19.6%
W= n /5
CLR |373.16 | 27.35 | 79.0% | 367.25 | 25.14 | 68.5% | 366.05 | 24.00 | 25.0%
LLR |306.69 | 23.86 | 63.5% | 300.81 | 21.68 | 53.4% | 299.61 | 20.55 | 16.4%
LLB |303.89 | 19.89 | 38.9% | 298.01 | 17.75 | 29.8% | 296.81 | 16.62 | 5.9%
LLJ |310.28 | 25.97 | 66.7% | 304.40 | 23.78 | 56.5% | 303.20 | 22.63 | 18.1%
b= n—1/7
CLR [43535| 31.90 | 92.1% | 428.46 | 29.33 | 79.9% | 427.06 | 27.99 | 29.1%
LLR |357.81| 27.84 | 74.1% | 350.94 | 25.30 | 62.3% | 349.55| 23.97 | 19.2%
LLB |354.54| 23.21 | 45.4% | 347.68 | 20.71 | 34.7% | 346.28 | 19.40 | 6.9%
LLJ |362.00| 30.30 | 77.8% | 355.13 | 27.74 | 65.9% | 353.74 | 26.41 | 21.1%

Table 2. MSE, MAE and MAPE of the total estimation under different
methods with different sample sizes and bandwidths in the case of two
auxiliary variables for model 2

h = n—1/3

Method n =25 n =50 n =100

MSE | MAE | MAPE| MSE | MAE | MAPE| MSE | MAE | MAPE
CLR | 513.09 | 37.60 [108.6% | 504.97 | 34.57 | 94.2% | 503.32 | 32.99 | 34.3%
LLR |421.70 | 32.81 | 87.3% [ 413.61 | 29.81 | 73.4% | 411.97 | 28.25 | 22.6%
LLB |426.64 | 35.71 | 91.7% | 418.55| 32.69 | 77.7% | 416.90 | 31.12 | 24.9%
LLJ |417.85]| 27.35 | 53.5% | 409.76 | 24.40 | 40.9% | 408.12 | 22.86 | 8.1%
h=n/5
CLR | 502.83 | 36.85 |106.4% | 494.87 | 33.88 | 92.3% | 493.26 | 32.33 | 33.6%
LLR |413.27 | 32.16 | 85.5% | 405.34 | 29.22 | 72.0% | 403.73 | 27.68 | 22.2%
LLB | 409.49 | 26.80 | 52.4% | 401.57 | 23.92 | 40.1% | 399.96 | 22.40 | 7.9%

LLJ [418.11 ] 35.00 | 89.9% | 410.17 | 32.04 | 76.2% | 408.56 | 30.50 | 24.4%
-1/7

=n
CLR | 519.31| 38.06 [109.9%| 511.09 | 34.99 | 95.4% | 509.43 | 33.39 | 34.7%
LLR |426.81 | 33.21 | 88.3% | 418.62 | 30.18 | 74.3% | 416.96 | 28.59 | 22.9%
LLB [422.92] 27.68 | 54.1% | 414.73 | 24.70 | 41.4% | 413.06 | 23.14 | 8.2%
LLJ 43181 | 36.15 | 92.9% |423.62 | 33.09 | 78.7% | 421.96 | 31.50 | 25.2%
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Table 3. MSE, MAE and MAPE of the total estimation under different
methods with different sample sizes and bandwidths in the case of two
auxiliary variables for model 3

b= n—1/3

Method n=25 n =150 n =100

MSE | MAE | MAPE | MSE | MAE | MAPE | MSE | MAE | MAPE
CLR |466.44 | 34.18 | 98.7% | 459.06 | 31.43 | 85.7% | 457.57 | 29.99 | 31.2%
LLR |383.36| 29.83 | 79.4% | 376.01 | 27.10 | 66.8% | 374.51 | 25.68 | 20.6%
LLB |379.86| 24.86 | 48.6% | 372.51 | 22.19 | 37.2% | 371.02 | 20.78 | 7.4%
LLJ |387.85| 32.47 | 83.4% | 380.50 | 29.72 | 70.7% | 379.00 | 28.29 | 22.7%
W= n /5
CLR |444.68 | 32.59 | 94.1% | 437.64 | 29.96 | 81.7% | 436.21 | 28.59 | 29.7%
LLR |365.47 | 28.44 | 75.6% | 358.46 | 25.84 | 63.6% | 357.04 | 24.48 | 19.6%
LLB |362.14 | 23.70 | 46.3% | 355.13 | 21.15 | 35.5% | 353.70 | 19.81 | 7.0%
LLJ |369.75| 30.95 | 79.5% | 362.74 | 28.33 | 67.4% | 361.32 | 26.97 | 21.6%
b= n—1/7
CLR [478.88 | 35.10 |101.3%|471.30 | 32.26 | 87.9% | 469.77 | 30.79 | 32.0%
LLR |393.59| 30.62 | 81.5% | 386.03 | 27.83 | 68.5% | 384.50 | 26.37 | 21.1%
LLB |389.99| 25.53 | 49.9% | 382.44 | 22.78 | 38.2% | 380.91 | 21.34 | 7.5%
LLJ |398.20| 33.33 | 85.6% | 390.64 | 30.51 | 72.5% | 389.11 | 29.05 | 23.3%

Table 4. MSE, MAE and MAPE of the total estimation under different
methods with different sample sizes and bandwidths in the case of two
auxiliary variables for model 4

h = n—1/3

Method n =25 n =50 n =100

MSE | MAE | MAPE| MSE | MAE | MAPE| MSE | MAE | MAPE
CLR |539.73| 41.02 |118.4% 550.88 | 37.71 |102.8%] 549.08 | 35.99 | 37.4%
LLR |440.04 | 35.79 | 95.2% [451.21 | 32.52 | 80.1% | 449.42 | 30.82 | 24.7%
LLB |435.84 | 29.84 | 58.3% | 447.01 | 26.62 | 44.6% |445.22 | 2494 | 8.8%
LLJ 44542 | 38.96 [100.1%] 456.60 | 35.67 | 84.8% | 454.80 | 33.95 [ 27.2%
h=n/5
CLR |522.42 | 38.29 |110.5%| 514.15 | 35.20 | 95.9% | 512.48 | 33.59 | 34.9%
LLR |429.37 | 33.41 | 88.9% | 421.13 | 30.36 | 74.8% | 419.46 | 28.76 | 23.0%
LLB |425.45| 27.85 | 54.4% | 417.21 | 24.85 | 41.7% | 415.54 | 23.27 | 8.2%
LLJ ]434.40| 36.36 | 93.4% | 426.16 | 33.29 | 79.1% | 424.48 | 31.69 | 25.4%
h= n—l/7
CLR | 565.95| 41.48 |119.8% 557.00 | 38.13 |103.9%] 555.18 | 36.39 | 37.9%
LLR |465.15| 36.19 | 96.3% | 456.22 | 32.89 | 81.0% | 454.41 | 31.16 | 24.9%
LLB |470.60 | 39.39 |101.2%] 461.67 | 36.06 | 85.7% | 459.86 | 34.33 | 27.5%
LLJ 146090 | 30.17 | 59.0% | 451.98 | 26.92 | 45.1% | 450.17 | 25.21 | 8.9%
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Table 5. MSE, MAE and MAPE of the total estimation under different
methods with different sample sizes and bandwidths in the case of three
auxiliary variables for model 1

b= n—l/3

Method n=25 n =150 n =100

MSE | MAE | MAPE | MSE | MAE | MAPE | MSE | MAE | MAPE
CLR [376.92 | 27.63 |79.72%] 370.96 | 25.40 [69.18% | 369.75 | 24.23 |25.17%
LLR |306.10 | 23.82 [63.39%| 300.22 | 21.64 [53.34%|299.04 | 20.51 |16.40%
LLB |[299.95| 19.63 [38.36%|294.14 | 17.52 [29.34% 292.96 | 16.41 |12.35%
LLJ |309.25| 25.89 [66.52% | 303.38 | 23.70 |56.30%| 302.19 | 22.56 [18.03%
W= n /5
CLR |347.93| 25.50 |73.66%|342.42 | 23.44 |63.87%|341.31 | 22.38 |23.31%
LLR |282.55| 21.98 [58.50%|277.14 | 19.97 |49.20%| 276.03 | 18.93 |15.11%
LLB |276.87 | 18.12 |35.44%|271.52 | 16.17 |27.15%|270.42 | 15.14 [{13.87%
LLJ |285.46| 23.89 |61.36%] 280.05 | 21.88 [51.98%]278.94 | 20.82 |16.65%
b= n—1/7
CLR [40592 | 29.74 |85.87%] 399.50 | 27.35 |74.50%| 398.19 | 26.10 |27.13%
LLR |329.65| 25.65 [68.27%| 323.32 | 23.31 [57.40%| 322.04 | 22.08 |17.69%
LLB |323.02 | 21.15 |41.36%|316.77 | 18.87 [31.62% | 315.50 | 17.68 |16.29%
LLJ |333.04| 27.88 |71.58%|326.72 | 25.52 |60.63%| 325.44 | 24.30 [19.41%

Table 6. MSE, MAE and MAPE of the total estimation under different
methods with different sample sizes and bandwidths in the case of three
auxiliary variables for model 2

h= n—l/3

Method n =25 n =50 n =100

MSE | MAE | MAPE | MSE | MAE | MAPE | MSE | MAE | MAPE
CLR | 677.79 | 49.67 |143.46%| 667.07 | 45.67 [124.44%| 664.89 | 43.58 |45.31%
LLR |510.68 | 39.73 [105.72%] 500.88 | 36.10 |88.89%|498.90 | 34.21 |27.37%
LLB |474.00 | 39.67 [101.88%] 465.01 | 36.32 |86.32% | 463.18 | 34.57 |27.66%
LLJ |505.60 | 33.09 |64.74%495.81 | 29.52 [49.49%|493.83 | 27.66 [25.21%
h=n/5
CLR | 664.24 | 48.68 |140.55%] 653.72 | 44.76 [121.93%| 651.60 | 42.71 |44.39%
LLR |500.47 | 38.95 [103.54%| 490.87 | 35.39 |87.19%|488.92 | 33.52 |26.88%
LLB | 454.94 | 29.77 |58.22%] 446.14 | 26.58 |44.55%|444.36 | 24.89 |21.32%
LLJ |505.91 ] 42.35 |108.78%]| 496.31 | 38.77 [92.20% | 494.36 | 36.91 |29.52%
h= n—l/7
CLR | 686.01 | 50.28 |145.18%] 675.15 | 46.22 [126.02%| 672.96 | 44.11 |45.84%
LLR |516.87 | 40.22 [106.93%] 506.95 | 36.55 |89.98% | 504.94 | 34.62 |27.73%
LLB |469.86 | 30.75 |60.11%460.77 | 27.44 |46.00% | 458.91 | 25.71 |19.67%
LLJ [522.49] 43.74 |112.41%]| 512.58 | 40.04 [95.23% 510.57 | 38.12 |[30.49%
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Table 7. MSE, MAE and MAPE of the total estimation under different
methods with different sample sizes and bandwidths in the case of three
auxiliary variables for model 3

b= n—l/3

Method n=25 n =150 n =100

MSE | MAE | MAPE | MSE | MAE | MAPE | MSE | MAE | MAPE
CLR |524.75| 38.45 |111.04%| 516.44 | 35.36 |96.41%| 514.77 | 33.74 |35.10%
LLR |376.08| 29.26 |77.89%]| 368.87 | 26.59 [65.53%|367.39 | 25.19 [20.21%
LLB |349.85| 22.90 [44.76%| 343.08 | 20.44 [34.26% | 341.71 | 19.14 |17.82%
LLJ |364.97 | 30.55 |78.48%| 358.05 | 27.97 |66.53%| 356.64 | 26.62 [21.36%
= n—l/s
CLR |500.27 | 36.66 [105.86%| 492.35 | 33.71 [91.91%|490.74 | 32.16 |33.41%
LLR |358.53 | 27.90 [74.16%|351.65 | 25.35 [62.39%| 350.26 | 24.01 |19.23%
LLB |333.53| 21.83 [42.64%|327.07 | 19.48 [32.70%| 325.76 | 18.25 |18.45%
LLJ |347.93| 29.12 |74.81%| 341.34 | 26.66 |63.42%| 340.00 | 25.38 |20.33%
Pl
CLR |538.74 | 39.49 |113.96%] 530.21 | 36.29 |98.89% | 528.49 | 34.64 |36.00%
LLR |386.11 | 30.04 {79.95%] 378.70 | 27.30 [67.20%|377.19 | 25.87 {20.70%
LLB |359.18| 23.51 |45.96%] 352.23 | 20.98 [35.18% | 350.82 | 19.65 |16.91%
LLJ |374.71 | 31.36 [80.55%|367.59 | 28.71 |68.22%] 366.15 | 27.34 {21.93%

Table 8. MSE, MAE and MAPE of the total estimation under different
methods with different sample sizes and bandwidths in the case of three
auxiliary variables for model 4

h= n—1/3

Method n =25 n =50 n =100

MSE | MAE | MAPE | MSE | MAE | MAPE | MSE | MAE | MAPE
CLR | 607.20 | 46.15 [133.20%] 619.74 | 42.42 [115.65%| 617.72 | 40.49 [42.08%
LLR |431.68 | 35.11 |93.39%442.64 | 31.90 |78.58% | 440.88 | 30.23 |24.23%
LLB |401.41 | 27.48 |53.69%|411.70 | 24.52 |41.08% | 410.05 | 22.97 |18.10%
LL] |419.14 | 36.66 |94.19%429.66 | 33.57 |79.80% | 427.97 | 31.95 |25.60%
h= n*l/S
CLR |587.72 | 43.08 [124.31%] 578.42 | 39.60 [107.89%| 576.54 | 37.79 39.26%
LLR |421.21] 32.78 |87.21%413.13 | 29.78 |73.38% | 411.49 | 28.21 |22.56%
LLB |391.84| 25.65 |50.10% | 384.25 | 22.89 |38.41%382.71| 21.43 |17.55%
LL) |408.77 | 34.21 |87.89%]401.02 | 31.33 |74.43%] 399.44 | 29.82 |23.90%
h = n_1/7
CLR | 636.69 | 46.67 [134.78%| 626.63 | 42.90 |116.89%]| 624.58 | 40.94 142.64%
LLR |456.31 | 35.50 |194.47% 447.55 | 32.27 |79.46% | 445.78 | 30.57 |24.43%
LLB |433.42| 36.28 |193.21%]425.20 | 33.21 |78.93%|423.53 | 31.62 [25.33%
LLJ |433.71 | 28.39 |55.52%]425.31 | 25.33 |42.44%] 423.61 | 23.72 |18.37%
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Abbreviation. CLR: classical linear regression, LLR: local linear

regression, LLB: local linear regression with bootstrap and LLJ: local linear

regression with jackknife.
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