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Abstract 

In this paper, the estimation for finite population total of a study 
variable will be considered, and the local linear regression will           
be used. The study variable is available for the sample and is 
supplemented by multiple auxiliary variables, which are available for 
every element in the finite population. Also, the resampling methods 
will be combined with the local linear regression method to estimate 
the total. The comparisons between different methods will be 
performed. These comparisons between the methods are based on the 
mean squared error (MSE), mean absolute error (MAE) and mean 
absolute percentage error (MAPE). A simulation study is carried out to 
assess the effects. 

1. Introduction 

Survey sampling often supplies information about a study variable only 
for sampled elements. However, auxiliary information is often available for 
the entire population. The relationship of the auxiliary information with the 
study variable across the sample allows inferences about the nonsampled 
portion of the population. Thus, the use of auxiliary information at the 
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estimation stage of a survey improves the precision of the estimation of 
parameters studied. One approach has used this auxiliary information in the 
estimation by assuming a working model. This working model describes the 
relationship between the study variable of interest and the auxiliary variables. 
Estimators are then derived on the basis of this model. 

Usually, a parametric approach is used to represent the relationship 
between the auxiliary variables and the study variable. But in some 
situations, the parametric model is not appropriate, and the resulting 
estimators do not achieve any efficiency gain over purely estimators. A 
natural alternative first suggested by Kuo [11] for the distribution function, is 
to adopt a nonparametric approach, which does not place any restrictions on 
the relationship between the auxiliary data and the study variable. Other 
important works in this topic are Chambers et al. [4], Dorfman [7], Dorfman 
and Hall [6] and Rueda and Arcos [12]. 

Breidt and Opsomer [2] used the traditional local polynomial regression 
estimator for the unknown regression function ( ).xm  They assumed that 

( )xm  is a smooth function of x and obtained asymptotically design-unbiased 
and consistent estimators of the finite population total. The local polynomial 
regression estimator has the form of the generalized regression estimator, but 
is based on a nonparametric superpopulation model applicable to a much 
larger class of functions. Breidt et al. [1] considered a related nonparametric 
model-assisted regression estimator, replacing local polynomial smoothing 
with penalized splines. Kim et al. [10] extended local polynomial 
nonparametric regression estimation to two-stage sampling, in which a 
probability sample of clusters is selected, and then subsamples of elements 
within each selected cluster are obtained. 

In practice, the approach of nonparametric regression in the case of 
multiple predictor variables is very important. Ruppert and Wand [13] 
studied the asymptotic bias and variance of multivariate local regression 
estimator. Ye et al. [18] presented a local linear estimator with variable 
bandwidth for nonparametric multiple regression models. In this paper, we 
will concern with the estimation of the finite population total in the presence 
of multiple auxiliary variables using the local linear regression. 
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2. Multiple Local Linear Regression 

Suppose now that the covariate is d-dimensional, where 

( ) ....,,, 21
′= idiii xxxX  

In this case, 
( ) ....,,, 21 ε+= dxxxmY  

For local linear regression, the kernel function K is now a function of d 
variables. Given a nonsingular positive definite dd ×  bandwidth matrix H, 
we define 

( ) ( ).1 21
21 xHK

H
xKH

−=  (1) 

Often, one scales each covariate to have the same mean and variance and 
then we use the kernel 

( ),hxKh d−  (2) 

where K is any one-dimensional kernel. Then there is a single bandwidth 
parameter h. 

At a target value ( ) ,...,,, 21
′= dxxxx  the local sum of squares is given 

by 

 ( ) ( ) ,
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= =
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where 

( ) ( ).hxxKxw ii −=  

In this case, the estimator is 

 ( ) ,ˆˆ 0axm =  (4) 

where ( )′= daaaa ˆ...,,ˆ,ˆˆ 10  is the value of ( )′= daaaa ...,,, 10  that 

minimizes the weighted sums of squares. The solution â  is 

 ( ) ,ˆ 1 WYXWXXa ′′= −  (5) 
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where X in this case is 
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And W is the diagonal matrix. For more details (see Casella et al. [3]). 

3. Estimation of Total Using Multiple Local Linear Regression 

Suppose that there is a finite population { }NjU ...,,...,,1=  for each 

.Uj ∈  Also, suppose that there are d auxiliary variables known for the 

entire population, and s is a sample of size n from U, for which Y values are 
known. 

Here, we want to estimate the total ∑ ∑ ∑
= = ≠

+==
N

j

n

i

N

ij
jij YYYT

1 1
.  Since y 

values are available to us on s, the problem is essentially to get a reasonable 
estimate of the remainder of the population, outside s. That is, we want the 
second sum in T above. Thus, a natural idea is estimating the second term 
and add these to the first term in T. According to Dorfman [7], the estimate 
of total is 
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where ( )jxm̂  is local linear regression of the unobserved population. To 

estimate ( ),jxm  define the ( )1+× dn  matrix 
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Let bjibbij xx −=∆  and ,10 =∆ ij  where db ...,,1,0=  and ....,,2,1 ni =  

Then the transpose matrix of X is 
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Also, define the nn ×  matrix 
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Let re  represent the rth column of the identity matrix. The local linear 

regression estimator of ( ),jxm  based on the entire population, is given by 

( ) ( ) ,ˆ 1
1 WYXWXXexm ′′′= −  

where ( )WXX ′  is well-defined and it is invertible. 

Now, we will substitute in the previous equation by X, W and Y to get the 

estimation of the total. Hence 
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and 

,
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where .1...,,2,1,1...,,2,1,
1

,,1,,1∑
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n

i
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Note that ( )WXX ′  is a symmetric matrix. 

Let WXXD j ′=  and let S be the adjoint matrix of ( )WXX ′  as the 

form 
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Hence, the inverse of the matrix ( )WXX ′  is 

( ) ( ).11 SDWXX
j

=′ −  

Now, we need to get on WYX ′  
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Since our primary interest is to compute an estimate of ,jy  by substituting in 
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the equation ( ) WYXWXXey j ′′′= −1
1ˆ  we get on 

 ( ) .1ˆˆ
0 1
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Now, our main purpose is to estimate the total ( ).T  Therefore, according 

to Dorfman [7], the estimate of the total is 
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Substituting from equation (6) in (7), the estimated total is 
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According to the value of d, we can obtain the special cases. These 
special cases will be studied below when 2=d  and ,3=d  where the 
special case 1=d  was studied by Ziedan et al. [19]. 

(i) Estimation of total in the case of 2=d  

In this case, we have two auxiliary variables and the estimation of the 
total has the following form: 

∑ ∑ ∑ ∑
= ≠ = =

+











∆+=

n

i

N

ij c

n

i
iiijjicjc

j
i ywsDyT

1

2

0 1
,,,1,1

1ˆ  

,11
1

2

0
,,,1,1∑ ∑ ∑

= ≠ =
+ 













∆+=

n

i
i

N

ij c
iijjicjc

j
ywsD  (9) 



El-Housseiny A. Rady and Dalia Ziedan 44 

where 
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(ii) Estimation of total in the case of 3=d  

When ,3=d  the estimation of the total will be more complicated, but 
we can calculate it as the following: 
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4. Bootstrapping Multiple Local Linear Regression for 
Estimating the Total 

Efron [8] has developed a new resampling procedure named as 
“Bootstrap”. Bootstrap is a resample which consists of n elements that are 
drawn randomly from the n original data observations with replacement 

(Friedl and Stampfer [9]). All the bootstrap samples are ,nn  but we choose B 
bootstrap samples. Bootstrapping can be done by either resampling the 
residuals, in which the regressors ( )dxxx ...,,, 21  are assumed to be fixed, or 

resampling the iy  values and their associated ix  values, in which the 

regressors are assumed to be random. In our study, we deal with the residuals 
resampling, where the bootstrap technique with nonparametric regression to 
estimate the total of the population will be used, the local linear regression 
will be considered. Suppose we have a univariate response variable Y and d 
auxiliary variables ( ),...,,, 21 dxxx  then the nonparametric regression model 
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is 

( ) nixxxmY idiiii ...,,1,...,,, 21 =ε+=  

and the bootstrap procedure based on the resampling errors can be 
summarized as following: 

(1) Let ( )nYYYY ...,,, 21=  denote the sample of observations selected 

from the generated population. Then based on the sample Y the local linear 
regression estimator ( )xm̂  is given by 

( ) ( ) ....,,,ˆˆ 1
121 WYXWXXexxxmy diiii ′′′== −  

(2) Calculate the residuals as following: 

( ) ....,,2,1,...,,,ˆˆ 21 nixxxmY diiiii =−=ε  

(3) Define the centered residuals by ∑
=
ε−ε=ε

n

i
iii n

1
.ˆ1ˆ~  

(4) Generate the ∗εi  by sampling with replacement from nεεε ~...,,~,~
21  

calculated in step (3) giving n1  probability for each iε
~  values (see Stine 

[15, 16] and Wu [17]). 

(5) The bootstrap sample of observations is constructed by adding a 
randomly sampled residual to the original predicted value for each 
observation. After resampling, new observation is given by 

( ) ....,,,ˆ 21
∗∗ ε+= idiiii xxxmY  

(6) Obtain the local linear estimate from the first bootstrap sample: 

( ) ( ) .ˆ 1
1

1 ∗−∗ ′′′= WYXWXXeYi  

(7) Repeat steps (4), (5) and (6) for B times. 

Then the bootstrap estimate is 

( ).ˆ1ˆ
1
∑
=

∗∗ =
B

t

t
ii YBY  (11) 
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Now, we will estimate the total using local linear regression estimation 
with bootstrap method, since we have 
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5. Jackknifing Multiple Local Linear Regression for 
Estimating the Total 

In this section, the algorithm of estimating the total using local linear 
regression method with jackknife technique will be given. The technique          
of deleting single case from the original sample (delete-one jackknife) 
sequentially will be used. Suppose the dataset consists of n vectors 
( ),...,,, 1 diii XXY  where iY  is the study variable and ( )dii XX ...,,1  are 

considered auxiliary variables. For simplicity, we will use ( )diii xxx ...,,1=  

and ( ),, kkk xyz =  nk ...,,2,1=  denote the values associated with ith 

observation. In this case, the set of observations is the vector ( )....,,, 21 nzzz  

Then the jackknife procedure based on delete-one is as follows: 

(1) Draw n sized sample from population randomly and label the 
elements of the vector ( ) ....,,2,1,, nkxyz kkk ==  

(2) Omit first observation of the vector ( )kkk xyz ,=  and label 

remaining 1−n  sized observation set ( )
( ) ( )n
J yyY ...,,21 =  and ( )

( ) =JX 1  

( )nxx ...,,2  as delete-one jackknife sample ( ).1
Jz  
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(3) Obtain the local linear regression estimate ( )1ˆ J
iY  from ( )

( ).1
Jz  

(4) Omit the second element of the vector ( )iii xyz ,=  and label 

remaining 1−n  sized observation set ( )
( ) ( )n
J yyyY ...,,, 312 =  and ( )

( ) =JX 2  

( )nxxx ...,,, 31  as ( ).2
Jz  

(5) Obtain the local linear regression estimate ( )2ˆ J
iY  from ( )

( ).2
Jz  

(6) Similarly, omit each one of the n observations (there is n samples 
jackknife each of them has 1−n  observations) and estimate the local linear 

regression ( ),ˆ Jk
iY  where ( )Jk

iŶ  is the jackknife local linear regression 

estimate after deleting of kth observation from ( )., kkk xyz =  

(7) Then the jackknife estimate of ( )jxm̂  is 
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1
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=
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i

J
i YnY  (13) 

Now, we will estimate the total using local linear regression estimation with 
jackknife estimate, since we have 
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6. Performance Criteria of the Models 

The performance of the model is related with how close are the 
prediction values to the observed values. Three different consistency criteria 
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are used in order to compare between different methods. These are mean 
square error (MSE), mean absolute error (MAE) and mean absolute 
percentage error (MAPE), respectively. These criteria are defined as follows: 

• ( )∑
=

−=
n

i
ii yynMSE

1

2.ˆ1  

• ∑
=
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n

i
ii yynMAE
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y
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.%100
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7. Simulation Studies with Two Auxiliary Variables 

Sometimes in sampling, we do not usually observe all the survey 
information. That is, the survey variable Y is not observable for all the 
population units. Auxiliary variable X is often used to estimate the 
unobserved survey variables. One way of overcoming the above problem is 
the super population approach, in which a working model relating the two 
auxiliary variables is assumed. In this study, we simulate data from four 
models, which are introduced by Ye et al. [18], each with ( ) += 21, XXmY  

( ) ,1 εδ X  where ( ).1,0~ Nε  

Model (1): ( ) 21211 , xxxxm =  

( ) ( ) ( ) .01.004.0,
04.0

2
121

2
1 2

1
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>x
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Model (2): ( ) ( )2
21212 2exp, xxxxm −=  

( ) ( ) ( ) .025.004.05.2,
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2
121

2
2 2

1
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Model (3): ( ) ( )21213 5.1sin2, xxxxm +=  
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2
121

2
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1
+−=δ
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Model (4): ( ) ( ) ( )2
221214 2exp2sin, xxxxxm −++=  

( ) ( ) ( ) .03.004.03,
04.0

2
121

2
4 2

1
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>x
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The populations of 1X  and 2X  are generated as independent and identically 

distributed ( )iid  uniform ( )2,2−  random variables. 

The simulation experiments will be performed to compare the 
performance of the local linear regression estimator with the classic linear 
regression estimator. Also, the effects of the bootstrap and the jackknife 
techniques on those estimators will be studied. The simulation will be carried 
out as following: in the first, we generate population of size 1000=N  as 
above. The simple random samples will be chosen from the population, 
different sizes will be considered ,25=n  50 and 100. 

Secondly, for each sample, we estimate the total ( )∑ ∑
= ≠

+=
n

i

N

ij
ji xmYT

1
.  

The linear regression and the local linear regression will be used to estimate 
( ).xm  Also, the bootstrap and the jackknife techniques will be combined 

with those regression methods to estimate ( ).xm  We consider the normal 

kernel function with different bandwidth values ,31−= nh  51−n  and 71−n  

for the local linear regression, each simulation setting is applied to all four 
models and repeated 1000=M  times. 

Thirdly, the mean square error (MSE) of the total ( )T  under the two 

types of the regression methods will be calculated. Also, the mean absolute 
error (MAE) and the mean absolute percentage error (MAPE) will be 
calculated. 

Finally, the effects of the bootstrap and the jackknife techniques on the 
estimation of total ( )T  will be studied, these effects are based on the bias, 

MSE, MAE and MAPE. 

Tables from 1 to 4 show the values of the mean squared error (MSE), 
mean absolute error (MAE) and the mean absolute percentage error (MAPE) 



El-Housseiny A. Rady and Dalia Ziedan 52 

of the estimators for the four models, when the sample size ( )n  has different 

values ,25=n  50 and 100 and the bandwidth has values 5131 , −−= nnh  

and 71−n  in the case of two auxiliary variables. 

8. Simulation Studies with Three Auxiliary Variables 

Here also, we simulate data from four models, each with =Y  

( ) ( ) ( )[ ] ,,, 21
21321 εδ+δ+ XXXXXm  where ( ).1,0~ Nε  

Model (1): ( ) 3132213211 ,, xxxxxxxxxm ++=  

( ) ( ) ( ) ,01.004.0
04.0

2
11

2
1 2

1
+−=δ

>x
Ixx  

( ) ( ) ( ) .01.004.0
04.0

2
22

2
1 2

2
+−=δ

>x
Ixx  

Model (2): ( ) ( ) ( ) ( )2
31

2
32

2
213212 2exp2exp2exp,, xxxxxxxxxm −+−+−=  

( ) ( ) ( ) ,025.004.05.2
04.0

2
11

2
2 2

1
+−=δ

>x
Ixx  

( ) ( ) ( ) .025.004.05.2
04.0

2
22

2
2 2

2
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>x
Ixx  

Model (3): ( ) ( )3313213 5.1sin2,, xxxxxxm ++=  

( ) ( ) ( ) ,01.004.0
04.0

2
11

2
3 2

1
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>x
Ixx  

( ) ( ) ( ) .01.004.0 04.0
2
22

2
3 2 +−=δ >xIxx  

Model (4): ( ) ( ) ( )2
33213214 2exp2sin,, xxxxxxxm −+++=  
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Also, the populations of ,1X  2X  and 3X  are generated as independent and 

identically distributed ( )iid  uniform ( )2,2−  random variables, and the steps 

of the simulation as the case of the two auxiliary variables. 

Tables from 5 to 8 show the values of the mean squared error (MSE), 
mean absolute error (MAE) and the mean absolute percentage error (MAPE) 
of the estimators for the four models, when the sample size ( )n  has different 

values ,25=n  50 and 100 and the bandwidth has values 5131 , −−= nnh  

and 71−n  in the case of three auxiliary variables. 

9. Results of the Simulation Study 

Tables from 1-8 summarize the following conclusions about our 
simulation study: 

i. For all the models, the local linear regression estimator dominates 
the classical linear regression estimator when the regression model is 
incorrectly specified. 

ii. The local linear regression estimator with bootstrap is overall the 
best choice for all the models and bandwidths under study. 

iii. The effect of the bootstrap on the estimator is better than the 
jackknife at the most. 

iv. The bandwidth 51−= nh  is the best choice at the most for all the 
models. 

v. For all estimators, as the sample size increases, the mean squared 
error (MSE), the mean absolute error (MAE) and the mean absolute 
percentage error (MAPE) decrease, for the three bandwidths ( )h  

considered and for all the models. 
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Table 1. MSE, MAE and MAPE of the total estimation under different 
methods with different sample sizes and bandwidths in the case of two 
auxiliary variables for model 1 

31−= nh  
25=n  50=n  100=n  Method 

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE 
CLR 404.25 29.63 85.5% 397.85 27.24 74.2% 396.56 25.99 27.0% 
LLR 332.25 25.85 68.8% 325.87 23.49 57.9% 324.58 22.26 17.8% 
LLB 329.22 21.55 42.1% 322.84 19.23 32.2% 321.55 18.01 6.4% 
LLJ 336.14 28.14 72.3% 329.76 25.76 61.2% 328.47 24.52 19.6% 

51−= nh  
CLR 373.16 27.35  79.0% 367.25 25.14 68.5% 366.05 24.00 25.0% 
LLR 306.69 23.86 63.5% 300.81 21.68 53.4% 299.61 20.55  16.4% 
LLB 303.89 19.89  38.9% 298.01 17.75 29.8% 296.81 16.62  5.9% 
LLJ 310.28 25.97 66.7% 304.40 23.78 56.5% 303.20 22.63 18.1% 

71−= nh  
CLR 435.35 31.90 92.1% 428.46 29.33 79.9% 427.06 27.99  29.1% 
LLR 357.81  27.84  74.1% 350.94 25.30 62.3% 349.55 23.97 19.2% 
LLB 354.54 23.21 45.4% 347.68 20.71 34.7% 346.28 19.40 6.9% 
LLJ 362.00 30.30 77.8% 355.13 27.74 65.9% 353.74 26.41 21.1% 

Table 2. MSE, MAE and MAPE of the total estimation under different 
methods with different sample sizes and bandwidths in the case of two 
auxiliary variables for model 2 

31−= nh  
25=n  50=n  100=n  Method 

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE 
CLR 513.09 37.60 108.6% 504.97 34.57 94.2% 503.32 32.99 34.3% 
LLR 421.70 32.81 87.3% 413.61 29.81 73.4% 411.97 28.25 22.6% 
LLB 426.64 35.71 91.7% 418.55 32.69 77.7% 416.90 31.12 24.9% 
LLJ 417.85 27.35 53.5% 409.76 24.40 40.9% 408.12 22.86 8.1% 

51−= nh  
CLR 502.83 36.85 106.4% 494.87 33.88 92.3% 493.26 32.33 33.6% 
LLR 413.27 32.16 85.5% 405.34 29.22 72.0% 403.73 27.68 22.2% 
LLB 409.49 26.80  52.4% 401.57 23.92 40.1% 399.96 22.40 7.9% 
LLJ 418.11 35.00 89.9% 410.17 32.04 76.2% 408.56 30.50 24.4% 

71−= nh  
CLR 519.31 38.06 109.9% 511.09 34.99 95.4% 509.43 33.39 34.7% 
LLR 426.81 33.21 88.3% 418.62 30.18 74.3% 416.96 28.59 22.9% 
LLB 422.92 27.68 54.1% 414.73 24.70 41.4% 413.06 23.14 8.2% 
LLJ 431.81 36.15 92.9% 423.62 33.09 78.7% 421.96 31.50 25.2% 
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Table 3. MSE, MAE and MAPE of the total estimation under different 
methods with different sample sizes and bandwidths in the case of two 
auxiliary variables for model 3 

31−= nh  
25=n  50=n  100=n  Method 

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE 
CLR 466.44 34.18 98.7% 459.06 31.43 85.7% 457.57 29.99 31.2% 
LLR 383.36 29.83 79.4% 376.01 27.10 66.8% 374.51 25.68 20.6% 
LLB 379.86 24.86 48.6% 372.51 22.19 37.2% 371.02 20.78 7.4% 
LLJ 387.85 32.47 83.4% 380.50 29.72 70.7% 379.00 28.29 22.7% 

51−= nh  
CLR 444.68 32.59 94.1% 437.64 29.96 81.7% 436.21 28.59 29.7% 
LLR 365.47 28.44 75.6% 358.46 25.84 63.6% 357.04 24.48 19.6% 
LLB 362.14 23.70 46.3% 355.13 21.15 35.5% 353.70 19.81 7.0% 
LLJ 369.75 30.95 79.5% 362.74 28.33 67.4% 361.32 26.97 21.6% 

71−= nh  
CLR 478.88 35.10 101.3% 471.30 32.26 87.9% 469.77 30.79  32.0% 
LLR 393.59 30.62  81.5% 386.03 27.83 68.5% 384.50 26.37 21.1% 
LLB 389.99  25.53 49.9% 382.44 22.78 38.2% 380.91 21.34 7.5% 
LLJ 398.20 33.33 85.6% 390.64 30.51 72.5% 389.11 29.05 23.3% 

Table 4. MSE, MAE and MAPE of the total estimation under different 
methods with different sample sizes and bandwidths in the case of two 
auxiliary variables for model 4 

31−= nh  
25=n  50=n  100=n  Method 

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE 
CLR 539.73 41.02 118.4% 550.88 37.71 102.8% 549.08 35.99  37.4% 
LLR 440.04 35.79 95.2% 451.21 32.52 80.1% 449.42 30.82  24.7% 
LLB 435.84 29.84 58.3% 447.01 26.62 44.6% 445.22 24.94 8.8% 
LLJ 445.42 38.96 100.1% 456.60 35.67 84.8% 454.80 33.95 27.2% 

51−= nh  
CLR 522.42 38.29 110.5% 514.15 35.20 95.9% 512.48 33.59  34.9% 
LLR 429.37  33.41 88.9% 421.13 30.36 74.8% 419.46 28.76  23.0% 
LLB 425.45 27.85 54.4% 417.21 24.85 41.7% 415.54 23.27 8.2% 
LLJ 434.40 36.36 93.4% 426.16 33.29 79.1% 424.48 31.69  25.4% 

71−= nh  
CLR 565.95 41.48 119.8% 557.00 38.13 103.9% 555.18 36.39  37.9% 
LLR 465.15 36.19  96.3% 456.22 32.89 81.0% 454.41 31.16 24.9% 
LLB 470.60 39.39 101.2% 461.67 36.06 85.7% 459.86 34.33 27.5% 
LLJ 460.90  30.17 59.0% 451.98 26.92 45.1% 450.17 25.21 8.9% 
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Table 5. MSE, MAE and MAPE of the total estimation under different 
methods with different sample sizes and bandwidths in the case of three 
auxiliary variables for model 1 

31−= nh  
25=n  50=n  100=n  Method 

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE 
CLR 376.92 27.63 79.72% 370.96 25.40 69.18% 369.75 24.23  25.17% 
LLR 306.10 23.82 63.39% 300.22 21.64 53.34% 299.04 20.51 16.40% 
LLB 299.95 19.63 38.36% 294.14 17.52 29.34% 292.96 16.41 12.35% 
LLJ 309.25 25.89 66.52% 303.38 23.70 56.30% 302.19 22.56 18.03% 

51−= nh  
CLR 347.93 25.50 73.66% 342.42 23.44 63.87% 341.31 22.38  23.31% 
LLR 282.55 21.98 58.50% 277.14 19.97 49.20% 276.03 18.93 15.11% 
LLB 276.87 18.12 35.44% 271.52 16.17 27.15% 270.42 15.14  13.87% 
LLJ 285.46  23.89  61.36% 280.05 21.88 51.98% 278.94 20.82 16.65% 

71−= nh  
CLR 405.92 29.74 85.87% 399.50 27.35 74.50% 398.19 26.10  27.13% 
LLR 329.65  25.65  68.27% 323.32 23.31 57.40% 322.04 22.08  17.69% 
LLB 323.02 21.15 41.36% 316.77 18.87 31.62% 315.50 17.68 16.29% 
LLJ 333.04  27.88  71.58% 326.72 25.52 60.63% 325.44 24.30  19.41% 

Table 6. MSE, MAE and MAPE of the total estimation under different 
methods with different sample sizes and bandwidths in the case of three 
auxiliary variables for model 2 

31−= nh  
25=n  50=n  100=n  Method 

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE 
CLR 677.79 49.67 143.46% 667.07 45.67 124.44% 664.89 43.58  45.31% 
LLR 510.68 39.73 105.72% 500.88 36.10 88.89% 498.90 34.21 27.37% 
LLB 474.00  39.67  101.88% 465.01 36.32 86.32% 463.18 34.57 27.66% 
LLJ 505.60 33.09  64.74% 495.81 29.52 49.49% 493.83 27.66  25.21% 

51−= nh  
CLR 664.24 48.68  140.55% 653.72 44.76 121.93% 651.60 42.71 44.39% 
LLR 500.47 38.95 103.54% 490.87 35.39 87.19% 488.92 33.52  26.88% 
LLB 454.94 29.77 58.22% 446.14 26.58 44.55% 444.36 24.89  21.32% 
LLJ 505.91 42.35 108.78% 496.31 38.77 92.20% 494.36 36.91 29.52% 

71−= nh  
CLR 686.01 50.28 145.18% 675.15 46.22 126.02% 672.96 44.11 45.84% 
LLR 516.87  40.22  106.93% 506.95 36.55 89.98% 504.94 34.62  27.73% 
LLB 469.86  30.75  60.11% 460.77 27.44 46.00% 458.91 25.71 19.67% 
LLJ 522.49  43.74  112.41% 512.58 40.04 95.23% 510.57 38.12  30.49% 
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Table 7. MSE, MAE and MAPE of the total estimation under different 
methods with different sample sizes and bandwidths in the case of three 
auxiliary variables for model 3 

31−= nh  
25=n  50=n  100=n  Method 

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE 
CLR 524.75 38.45 111.04% 516.44 35.36 96.41% 514.77 33.74  35.10% 
LLR 376.08  29.26  77.89% 368.87 26.59 65.53% 367.39 25.19  20.21% 
LLB 349.85 22.90 44.76% 343.08 20.44 34.26% 341.71 19.14  17.82% 
LLJ 364.97  30.55  78.48% 358.05 27.97 66.53% 356.64 26.62  21.36% 

51−= nh  
CLR 500.27 36.66 105.86% 492.35 33.71 91.91% 490.74 32.16  33.41% 
LLR 358.53 27.90 74.16% 351.65 25.35 62.39% 350.26 24.01 19.23% 
LLB 333.53  21.83  42.64% 327.07 19.48 32.70% 325.76 18.25  18.45% 
LLJ 347.93  29.12  74.81% 341.34 26.66 63.42% 340.00 25.38  20.33% 

71−= nh  
CLR 538.74 39.49 113.96% 530.21 36.29 98.89% 528.49 34.64  36.00% 
LLR 386.11  30.04  79.95% 378.70 27.30 67.20% 377.19 25.87  20.70% 
LLB 359.18 23.51 45.96% 352.23 20.98 35.18% 350.82 19.65 16.91% 
LLJ 374.71  31.36  80.55% 367.59 28.71 68.22% 366.15 27.34  21.93% 

Table 8. MSE, MAE and MAPE of the total estimation under different 
methods with different sample sizes and bandwidths in the case of three 
auxiliary variables for model 4 

31−= nh  
25=n  50=n  100=n  Method 

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE 
CLR 607.20 46.15 133.20% 619.74 42.42 115.65% 617.72 40.49 42.08% 
LLR 431.68 35.11 93.39% 442.64 31.90 78.58% 440.88 30.23  24.23% 
LLB 401.41  27.48 53.69% 411.70 24.52 41.08% 410.05 22.97  18.10% 
LLJ 419.14  36.66  94.19% 429.66 33.57 79.80% 427.97 31.95  25.60% 

51−= nh  
CLR 587.72 43.08 124.31% 578.42 39.60 107.89% 576.54 37.79  39.26% 
LLR 421.21  32.78  87.21% 413.13 29.78 73.38% 411.49 28.21  22.56% 
LLB 391.84 25.65 50.10% 384.25 22.89 38.41% 382.71 21.43 17.55% 
LLJ 408.77  34.21  87.89% 401.02 31.33 74.43% 399.44 29.82  23.90% 

71−= nh  
CLR 636.69 46.67 134.78% 626.63 42.90 116.89% 624.58 40.94 42.64% 
LLR 456.31  35.50  94.47% 447.55 32.27 79.46% 445.78 30.57  24.43% 
LLB 433.42 36.28 93.21% 425.20 33.21 78.93% 423.53 31.62 25.33% 
LLJ 433.71  28.39  55.52% 425.31 25.33 42.44% 423.61 23.72  18.37% 
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Abbreviation. CLR: classical linear regression, LLR: local linear 
regression, LLB: local linear regression with bootstrap and LLJ: local linear 
regression with jackknife. 
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