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Abstract 

In this paper, the author derives a rephrased form of equations of 
conservation for a two-dimensional incompressible flow field inside a 
natural convection boundary layer. 

The novelty of this work is the obtainment of an approximate 
analytical solution to the system of equations of mass and momentum 
conservation for natural convection boundary layer flows with the 
related boundary conditions, without the contribution of energy 
equation. 

According to the adopted approach, there exists no distinction of the 
flow field as external or internal; hence this proposed method can be 
effective for both types of flow. 

1. Introduction 

Primarily, let us suppose the investigated flow patterns as incompressible 
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steady and laminar. The necessary and sufficient condition for the existence 
of such a flow is the following [6]: 
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Moreover, we can also assume that the work done by frictional forces 
during the fluid motion is insignificant, hence the dissipation of mechanical 
energy is negligible. 

In the sequel, by simplifying the initial original problem in a two- 
dimensional one, we can write out the fundamental equations of conservation 
as follows [11, 12, 14]: 

Mass conservation: 
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Momentum conservation for axes xx ′  and :yy ′  
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where the term x
P
∂
∂  depends on the geometry of the obstacle or the duct for 

external or internal flows, respectively. 

Energy conservation: 
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where a denotes the coefficient of thermal diffusion. 
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However, according to the particular method that we will develop     
here, the system of equations (1.2A), (1.2B) and (1.2C) will be solved 
approximately, without the association of equation (1.3). 

2. Towards a Rephrased Form of Momentum Equation 

If we concentrate on the two equations of momentum conservation, then 
we have to clarify primarily that by taking also into account the free 
convection of fluid matter due to buoyancy effect, then the components of 
gravitational acceleration on these equations cannot be neglected. Buoyancy 
is mainly caused by combination of differences in fluid density and also the 
circumstantial body force must be proportional to density [3, 4, 16]. Body 
forces can be either gravity, or Coriolis force in atmosphere and oceans. 
Convection flow is driven by buoyancy in unstable conditions [6, 16]. Next, 
we can implement the known from literature Prandtl’s simplified 
assumptions, which concern only boundary layer flows and are synopsized as 
follows [14]: 
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Hence, if one takes also into consideration the buoyancy effect in  
accordance with Prandtl’s approximations, then the fundamental equations  
of conservation are written out as follows [14]: 
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where β denotes the coefficient of thermal expansion and generally emerges 
from the following relationship [3, 11, 16]: 
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For boundary layer incompressible flows, this coefficient can be 
estimated by the following approximate expression [3, 11, 16]: 
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The boundary conditions which complete this system of PDEs are: 

 0=xV  

 00 =⇒= yVy  

 sTT =  (2.5A) 

and 

 0=xV  

 0=∂∂⇒+∞→ yVy y  

 ,∞= TT  (2.5B) 

where sT  is the temperature of the solid boundary and ∞T  is the temperature 

outside boundary layer. These terms are considered as a constant. We must 
also clarify that this boundary condition does not concern the frictionless 
core for internal flows. 
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By a combination of equations (2.1) and (2.2A), the following equality 
arises: 
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On the other hand, it is also known from multi-valued Calculus that the 
following identity holds: 
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Thus, the equation of momentum conservation for axis xx ′  which coincides 
with the governing direction of the flow, results in the following rephrased 
form: 
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Moreover, it is also known from single-valued Calculus that for any 
differentiable function ( ),xφ  the following identity holds [9]: 
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The above identity guaranties the validity of Prandtl’s simplified 
assumptions, for logarithmic scales as well. 

Hence, taking into account that ,yx VV >>  we can obtain the following 

approximate modified form for the equation of momentum conservation 
along the boundary layer direction: 
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Letting ,∞+→y  equation (2.10) yields: 

( ) ( ) .0limlim 2

2
=−β

μ
ρ−=⎟

⎠
⎞⎜

⎝
⎛ −β

μ
ρ−=

∂

∂
∞∞∞

+∞→+∞→
TTgTTg

y
V

y
x

y
 (2.11) 

Since Prandtl’s assumptions assert us that ,yx VV >>  ,x
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Obviously, the complementary homogeneous equation of equation (2.12) 
has the form: 
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The corresponding auxiliary algebraic equation is: 
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Hence, the general solution of equation (2.13) is [7, 8, 17]: 
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In continuing, according to the method of variation of parameters         
[7, 8, 12, 17], let us replace the constants, (or parameters), in equation (2.14) 
by the arbitrary single-valued functions ( )yu1  and ( ).2 yu  

Therefore, we can seek for a particular solution of the inhomogeneous 
equation (2.12) expressed in the form: 
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Since ( )yu1  and ( )yu2  are actually arbitrary functions, we can impose 

two auxiliary conditions on them without violating the generality of our 
presented mathematical formalism. The first condition is obviously that the 
function ( )yVxp  consists in a solution to equation (2.12). Concurrently, we 

can choose the second condition, such that to simplify our algebraic 
manipulations. 

Therefore, let us formulate the following constraint for these functions, 
which must hold identically: 
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On the other hand, by differentiating equation (2.16) with respect to 
variable y and also taking into account the above restriction, we deduce: 
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Substituting the above data back into equation (2.12), we find 
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antiderivatives of the function ( )yT  with respect to y. 

Returning to equation (2.15), we obtain 
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Thus, the complete solution of equation (2.12) reads 
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Apparently this solution ought to verify equations (2.12A), (2.12B) as 
well as the equation of energy conservation. 

3. Discussion 

In this paper, the author obtained an approximate rephrased form of 
equations of conservation for a two-dimensional, boundary layer 
incompressible flow field. 

The novelty of this paper mainly concentrates on the accomplishment of 
an approximate analytical solution to the system of equations of mass and 
momentum conservation for a generic type of natural convection boundary 
layer flows without the simultaneous contribution of energy equation. 

However, this resultant solution concerning velocity profile that is 
presented here ought to satisfy throughout energy equation. We also 
emphasize that the method that we performed in this article concerns both 
external and internal flows. 

Evidently, for isothermal flows this expression which describes the 
sequential velocity profiles along the boundary layer becomes more 
simplified. 
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