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Abstract

In this note we point out that there is an erroneous conclusion in
Theorem 3b(ii) of [Linear Algebra Appl. 364 (2003), 253-279] due to a
sufficient condition considered. By adopting a sufficient condition,
already present in [Linear Algebra Appl. 364 (2003), 253-279], we prove
that the correctness of the aforementioned conclusion is restored and a
stronger result can then be proved.

1. Introduction

Consider the following linear system:

,bAx = (1.1)

where A is an nn ×  square matrix, x and b are n-dimensional vectors.

A preconditioned system of (1.1) is

.PbPAx = (1.2)

The preconditioner P can be taken as different types for solving linear
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system (1.1). Here we let the preconditioner be ( ) ( ),α+=α SIP  where
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The preconditioned system (1.2) with preconditioner (1.3) has been
discussed by many authors.

Let ,ULIA −−=  where L and U are a strictly lower triangular

and a strictly upper triangular matrices, respectively. Applying the

preconditioner ( ) ( )α+=α SIP  on (1.1), we obtain the equivalent linear

system

( ) ( ),ˆˆ α=α bxA

with ( ) ( )( ) ( ) ( )( ) ,ˆ,ˆ bSIbASIA α+=αα+=α  where ( ) ( ( )),ˆˆ α=α ijaA
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n  We rewrite

( ) ( ) ( ) ( ),ˆˆˆˆ α−α−α=α ULDA (1.4)

with ( ),ˆ αD  ( ),ˆ αL  ( )αÛ  diagonal and strictly lower and strictly upper

triangular matrices. Defining the matrices ( ...,,ˆ
21121 aadiagD α=α

)0,1,,11 −−−α nnnnn aa  and ( ) ,ˆˆ
αα +=α DLLS  where ,ˆ

αD  αL̂  are the

diagonal and the strictly lower triangular components of ( ) .LS α  Then

from (1.4), we have

( ) ( ) ( ) ( )( ) ( ).ˆ,ˆˆ,ˆˆ α−α+=α+=α−=α αα SUSIULLLDID

Clearly, ( ),α− SU  ( ),ˆ αL  ( )αÛ  are nonnegative, the diagonal elements
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of ( )αD̂  are positive. We consider the following splittings:

( )

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) [ ( )( ) ( )]
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The corresponding Jacobi type iteration matrices as well as Gauss-Seidel
type ones are as follows, respectively:

( ) ( ) ( ) ,1 ULNMB +=αα=α −

( ) ( ) ( ) ( )( ) ( ),ˆˆˆ 1 α−α++++=α′α′=α′ αα
− SUSIDLLNMB

( ) ( ) ( ) ( ) ( ( )( ) ( )),ˆˆˆ 11 α−α+++−=α′′α′′=α′′ α
−

α
− SUSILLDINMB

and

( ) ( ) ,1ULIH −−=α

( ) [ ] [ ( )( ) ( )],ˆˆˆ 1 α−α++−−=α′ α
−

α SUSIDLLIH

( ) ( ) ( )( ) ( )( ).ˆˆˆ 1 α−α+−−−=α′′ −
αα SUSIDLLIH

In Theorem 3.1 of reference [2] among others, the following
inequalities were presented

( ( )) ( ( )) ,1ˆˆ <α′ρ<α′′ρ HH (1.5)

( ( )) ( ( )) ,1ˆˆ <α′ρ<α′′ρ BB (1.6)

under the assumption that A is an irreducible nonsingular M-matrix and

{ }.0:,1 1, ≠∈=α +jji aji  But their proof of this result is based on the

fact that ( )αÂ  is irreducible. However it is not right. For example, let
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Then A is an irreducible nonsingular M-matrix with 12312 =aa  and for

,3,2,1,1 ==α ii  we have

( ) .
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So ( )αÂ  is an irreducible nonsingular M-matrix. Since ,0ˆ =αD  it is easy

to see that ( ) ( )α′≡α′′ HH ˆˆ  and

( ( )) ( ( )).ˆˆ α′ρ=α′′ρ HH

And so (1.5) is not right. By the following example one can see although A

is an irreducible nonsingular M-matrix with ,12312 =aa

,

100
2
1

1100

0110

0011























−

−

−

−

=A

let .3,2,1,1 ==α ii  Then
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( )αÂ  is reducible and it is easy to see that ( ( )) ( ( )) .
2
1ˆˆ =α′ρ=α′′ρ HH  For

the Jacobi type methods (1.6), there are also similar errors. In general,

we cannot obtain the inequalities (1.5) and (1.6). Here we give an active

assumption on A so that the two inequalities are true.
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2. Preliminaries

We need some notations and definitions in this paper.

For an nn ×  matrix A, the directed graph ( )AΓ  of A is defined to be

the pair ( ),, EV  where { }nV ...,,1=  is a set of vertices and =E

{( ) }njiaji ij ...,,1,,0:, =≠  is a set of arcs. A path from i to j of length

k in ( )AΓ  is a sequence of vertices ( ),...,,, 10 kiii=σ  where ii =0  and

jik =  such that ( ) ( ) ( )kk iiiiii ,...,,,,, 12110 −  are arcs of ( ).AΓ  A path σ

is called a closed path if .ji =  We say a directed graph ( )AΓ  to be

strongly connected if for any two vertices i, j there is a path from i to j in

( ).AΓ  A matrix A is said to be irreducible if ( )AΓ  is strongly connected.

A matrix ( )ijaA =  is called a Z-matrix if for any ,ji ≠  0≤ija  and

M-matrix if ,BsIA −=  0≥B  and ( ),Bs ρ≥  where ( )Bρ  denotes the

spectral radius of B.

NMA −=  is said to be a splitting of A if M is nonsingular. A

splitting NMA −=  is said to be an M-splitting if M is a nonsingular

M-matrix and .0≥N

3. A Modified Result

Lemma 3.1 [4]. Let 2211 NMNMA −=−=  be both M-splittings of

A and

.0,, 22121 ≠≠≥ NNNNN

Then exactly one of the following statements holds:

(1) ( ) ( ) .10 1
1

12
1

2 <ρ≤ρ≤ −− NMNM

(2) ( ) ( ) .11
1

12
1

2 =ρ=ρ −− NMNM

(3) ( ) ( ) .11
1

12
1

2 >ρ≥ρ −− NMNM

In the case A irreducible, all inequalities of (1) and (3) are strict.
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Theorem 3.2. Let ( ) ( )3≥∈= × nRaA nn
ij  with ,0,11, >++ iiii aa

1...,,1 −= ni  and let A be a nonsingular M-matrix. Then for any

( ] ( ( )) ( ( )) .1ˆˆ,1...,,1,1,0 <α′ρ<α′′ρ−=∈α HHnii

Proof. Clearly, A is irreducible. From ( ) ( ( )),ˆˆ α=α ijaA  we know

( )
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Hence ( ) ,0ˆ ,1 <α+ iia  ni <≤1  and ( ) 2,11,2,2,ˆ +++++ α−=α iiiiiiiii aaaa

.11,0 −<≤< ni

This implies that ( ( ))αΓ Â  has some paths such as

( ),1,2,3...,,1, −nn  ( )n...,,3,1  and ( )1...,,4,2 −n  when n is odd, and

( ),1,2,3...,,1, −nn  ( )1...,,3,1 −n  and ( )n...,,4,2  when n is even, from

which one may deduce that ( )αÂ  is irreducible. Let

( )....,,ˆ
1 ndddiagD =α  Then =id  .1...,,1,0,11, −=>α ++ niaa iiiii  It is

easy to see that the splittings

( ) ( ) [ ( )( ) ( )]α−α++−−−=α αα SUSIDLLIA ˆˆˆ

 [ ] ( )( ) ( )[ ]α−α+−−−= α SUSILSLI

are both M-splittings of an irreducible nonsingular M-matrix with

[ ( )( ) ( )] ( )( ) ( )[ ].ˆ α−α+>α−α++α SUSISUSID

Then the inequality (1.5) follows from Lemma 3.1.

Remark. By the example given in Section 1 we know that the

condition ,0,11, >++ iiii aa  1...,,1 −= ni  cannot be omitted in Theorem

3.2. The same case to the inequality (1.6).
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