A NOTE ON SOLVING PRECONDITIONED LINEAR SYSTEM

LI-YING SUN

Department of Mathematics, Guang Dong Education Institute
Guangzhou 510303, People's Republic of China
e-mail: sly@gdei.edu.cn

Abstract

In this note we point out that there is an erroneous conclusion in Theorem 3b(ii) of [Linear Algebra Appl. 364 (2003), 253-279] due to a sufficient condition considered. By adopting a sufficient condition, already present in [Linear Algebra Appl. 364 (2003), 253-279], we prove that the correctness of the aforementioned conclusion is restored and a stronger result can then be proved.

1. Introduction

Consider the following linear system:

$$
\begin{equation*}
A x=b, \tag{1.1}
\end{equation*}
$$

where A is an $n \times n$ square matrix, x and b are n-dimensional vectors.
A preconditioned system of (1.1) is

$$
\begin{equation*}
P A x=P b . \tag{1.2}
\end{equation*}
$$

The preconditioner P can be taken as different types for solving linear

[^0]Key words and phrases: M-matrix, spectral radius, Jacobi iterative method, M-splitting.
This work was supported in part by Nature Science Foundation of Guangdong Province, China.

Received September 21, 2004
system (1.1). Here we let the preconditioner be $P(\alpha)=I+S(\alpha)$, where

$$
S(\alpha)=\left[\begin{array}{ccccc}
0 & -\alpha_{1} a_{12} & 0 & \cdots & 0 \tag{1.3}\\
0 & 0 & -\alpha_{2} a_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -\alpha_{n-1} a_{n-1, n} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

The preconditioned system (1.2) with preconditioner (1.3) has been discussed by many authors.

Let $A=I-L-U$, where L and U are a strictly lower triangular and a strictly upper triangular matrices, respectively. Applying the preconditioner $P(\alpha)=I+S(\alpha)$ on (1.1), we obtain the equivalent linear system

$$
\hat{A}(\alpha) x=\hat{b}(\alpha),
$$

with $\hat{A}(\alpha)=(I+S(\alpha)) A, \hat{b}(\alpha)=(I+S(\alpha)) b$, where $\hat{A}(\alpha)=\left(\hat{a}_{i j}(\alpha)\right)$,

$$
\hat{a}_{i j}(\alpha)= \begin{cases}a_{i j}-\alpha_{i} a_{i, i+1} a_{i+1, j} & i=1,2, \ldots, n-1, j \neq i+1, \\ \left(1-\alpha_{i}\right) a_{i, i+1} & i=1,2, \ldots, n-1, j=i+1, \\ a_{n j} & i=n, j=1,2, \ldots, n,\end{cases}
$$

$\alpha=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right] \in R^{n-1}, \alpha_{i} \geq 0, i=1,2, \ldots, n-1$. We rewrite

$$
\begin{equation*}
\hat{A}(\alpha)=\hat{D}(\alpha)-\hat{L}(\alpha)-\hat{U}(\alpha), \tag{1.4}
\end{equation*}
$$

with $\hat{D}(\alpha), \hat{L}(\alpha), \hat{U}(\alpha)$ diagonal and strictly lower and strictly upper triangular matrices. Defining the matrices $\hat{D}_{\alpha}=\operatorname{diag}\left(\alpha_{1} \alpha_{12} a_{21}, \ldots\right.$, $\left.\alpha_{n-1} a_{n-1, n} a_{n, n-1}, 0\right)$ and $S(\alpha) L=\hat{L}_{\alpha}+\hat{D}_{\alpha}$, where $\hat{D}_{\alpha}, \hat{L}_{\alpha}$ are the diagonal and the strictly lower triangular components of $S(\alpha) L$. Then from (1.4), we have

$$
\hat{D}(\alpha)=I-\hat{D}_{\alpha}, \quad \hat{L}(\alpha)=L+\hat{L}_{\alpha}, \quad \hat{U}(\alpha)=(I+S(\alpha)) U-S(\alpha) .
$$

Clearly, $U-S(\alpha), \hat{L}(\alpha), \hat{U}(\alpha)$ are nonnegative, the diagonal elements
of $\hat{D}(\alpha)$ are positive. We consider the following splittings:

$$
\hat{A}(\alpha)=\left\{\begin{array}{l}
M(\alpha)-N(\alpha)=(I+S(\alpha))-(I+S(\alpha))(L+U), \\
M^{\prime}(\alpha)-N^{\prime}(\alpha)=I-\left[L+\hat{L}_{\alpha}+\hat{D}_{\alpha}+(I+S(\alpha)) U-S(\alpha)\right], \\
M^{\prime \prime}(\alpha)-N^{\prime \prime}(\alpha)=\left(I-\hat{D}_{\alpha}\right)-\left[L+\hat{L}_{\alpha}+(I+S(\alpha)) U-S(\alpha)\right] .
\end{array}\right.
$$

The corresponding Jacobi type iteration matrices as well as Gauss-Seidel type ones are as follows, respectively:

$$
\begin{aligned}
& B(\alpha)=M^{-1}(\alpha) N(\alpha)=L+U, \\
& \hat{B}^{\prime}(\alpha)=M^{\prime-1}(\alpha) N^{\prime}(\alpha)=L+\hat{L}_{\alpha}+\hat{D}_{\alpha}+(I+S(\alpha)) U-S(\alpha), \\
& \hat{B}^{\prime \prime}(\alpha)=M^{\prime \prime-1}(\alpha) N^{\prime \prime}(\alpha)=\left(I-\hat{D}_{\alpha}\right)^{-1}\left(L+\hat{L}_{\alpha}+(I+S(\alpha)) U-S(\alpha)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& H(\alpha)=(I-L)^{-1} U, \\
& \hat{H}^{\prime}(\alpha)=\left[I-L-\hat{L}_{\alpha}\right]^{-1}\left[\hat{D}_{\alpha}+(I+S(\alpha)) U-S(\alpha)\right], \\
& \hat{H}^{\prime \prime}(\alpha)=\left(I-L-\hat{L}_{\alpha}-\hat{D}_{\alpha}\right)^{-1}((I+S(\alpha)) U-S(\alpha)) .
\end{aligned}
$$

In Theorem 3.1 of reference [2] among others, the following inequalities were presented

$$
\begin{align*}
& \rho\left(\hat{H}^{\prime \prime}(\alpha)\right)<\rho\left(\hat{H}^{\prime}(\alpha)\right)<1, \tag{1.5}\\
& \rho\left(\hat{B}^{\prime \prime}(\alpha)\right)<\rho\left(\hat{B}^{\prime}(\alpha)\right)<1, \tag{1.6}
\end{align*}
$$

under the assumption that A is an irreducible nonsingular M-matrix and $\alpha_{i}=1, i \in\left\{j: a_{j, j+1} \neq 0\right\}$. But their proof of this result is based on the fact that $\hat{A}(\alpha)$ is irreducible. However it is not right. For example, let

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right)
$$

Then A is an irreducible nonsingular M-matrix with $a_{12} a_{23}=1$ and for $\alpha_{i}=1, i=1,2$, 3 , we have

$$
\hat{A}(\alpha)=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
-\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
-\frac{4}{9} & -\frac{1}{9} & 1 & 0 \\
-\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) .
$$

So $\hat{A}(\alpha)$ is an irreducible nonsingular M-matrix. Since $\hat{D}_{\alpha}=0$, it is easy to see that $\hat{H}^{\prime \prime}(\alpha) \equiv \hat{H}^{\prime}(\alpha)$ and

$$
\rho\left(\hat{H}^{\prime \prime}(\alpha)\right)=\rho\left(\hat{H}^{\prime}(\alpha)\right) .
$$

And so (1.5) is not right. By the following example one can see although A is an irreducible nonsingular M-matrix with $a_{12} a_{23}=1$,

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
-\frac{1}{2} & 0 & 0 & 1
\end{array}\right),
$$

let $\alpha_{i}=1, i=1,2,3$. Then

$$
\hat{A}(\alpha)=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-\frac{1}{2} & 0 & 1 & 0 \\
-\frac{1}{2} & 0 & 0 & 1
\end{array}\right),
$$

$\hat{A}(\alpha)$ is reducible and it is easy to see that $\rho\left(\hat{H}^{\prime \prime}(\alpha)\right)=\rho\left(\hat{H}^{\prime}(\alpha)\right)=\frac{1}{2}$. For the Jacobi type methods (1.6), there are also similar errors. In general, we cannot obtain the inequalities (1.5) and (1.6). Here we give an active assumption on A so that the two inequalities are true.

2. Preliminaries

We need some notations and definitions in this paper.
For an $n \times n$ matrix A, the directed $\operatorname{graph} \Gamma(A)$ of A is defined to be the pair (V, E), where $V=\{1, \ldots, n\}$ is a set of vertices and $E=$ $\left\{(i, j): a_{i j} \neq 0, i, j=1, \ldots, n\right\}$ is a set of arcs. A path from i to j of length k in $\Gamma(A)$ is a sequence of vertices $\sigma=\left(i_{0}, i_{1}, \ldots, i_{k}\right)$, where $i_{0}=i$ and $i_{k}=j$ such that $\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right), \ldots,\left(i_{k-1}, i_{k}\right)$ are arcs of $\Gamma(A)$. A path σ is called a closed path if $i=j$. We say a directed graph $\Gamma(A)$ to be strongly connected if for any two vertices i, j there is a path from i to j in $\Gamma(A)$. A matrix A is said to be irreducible if $\Gamma(A)$ is strongly connected.

A matrix $A=\left(a_{i j}\right)$ is called a Z-matrix if for any $i \neq j, a_{i j} \leq 0$ and M-matrix if $A=s I-B, \quad B \geq 0$ and $s \geq \rho(B)$, where $\rho(B)$ denotes the spectral radius of B.
$A=M-N$ is said to be a splitting of A if M is nonsingular. A splitting $A=M-N$ is said to be an M-splitting if M is a nonsingular M-matrix and $N \geq 0$.

3. A Modified Result

Lemma 3.1 [4]. Let $A=M_{1}-N_{1}=M_{2}-N_{2}$ be both M-splittings of A and

$$
N_{1} \geq N_{2}, N_{1} \neq N_{2}, N_{2} \neq 0 .
$$

Then exactly one of the following statements holds:
(1) $0 \leq \rho\left(M_{2}^{-1} N_{2}\right) \leq \rho\left(M_{1}^{-1} N_{1}\right)<1$.
(2) $\rho\left(M_{2}^{-1} N_{2}\right)=\rho\left(M_{1}^{-1} N_{1}\right)=1$.
(3) $\rho\left(M_{2}^{-1} N_{2}\right) \geq \rho\left(M_{1}^{-1} N_{1}\right)>1$.

In the case A irreducible, all inequalities of (1) and (3) are strict.

Theorem 3.2. Let $A=\left(a_{i j}\right) \in R^{n \times n}(n \geq 3)$ with $a_{i, i+1} a_{i+1, i}>0$, $i=1, \ldots, n-1$ and let A be a nonsingular M-matrix. Then for any $\alpha_{i} \in(0,1], i=1, \ldots, n-1, \rho\left(\hat{H}^{\prime \prime}(\alpha)\right)<\rho\left(\hat{H}^{\prime}(\alpha)\right)<1$.

Proof. Clearly, A is irreducible. From $\hat{A}(\alpha)=\left(\hat{a}_{i j}(\alpha)\right)$, we know

$$
\hat{a}_{i j}(\alpha)= \begin{cases}a_{i j}-\alpha_{i} a_{i, i+1} a_{i+1, j}, & 1 \leq i<n \\ a_{n j}, & i=n .\end{cases}
$$

Hence $\hat{a}_{i+1, i}(\alpha)<0,1 \leq i<n$ and $\hat{\alpha}_{i, i+2}(\alpha)=a_{i, i+2}-\alpha_{i} \alpha_{i, i+1} a_{i+1, i+2}$ $<0,1 \leq i<n-1$.

This implies that $\Gamma(\hat{A}(\alpha))$ has some paths such as $(n, n-1, \ldots, 3,2,1),(1,3, \ldots, n)$ and $(2,4, \ldots, n-1)$ when n is odd, and $(n, n-1, \ldots, 3,2,1),(1,3, \ldots, n-1)$ and $(2,4, \ldots, n)$ when n is even, from which one may deduce that $\hat{A}(\alpha)$ is irreducible. Let $\hat{D}_{\alpha}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. Then $d_{i}=\alpha_{i} a_{i, i+1} a_{i+1, i}>0, i=1, \ldots, n-1$. It is easy to see that the splittings

$$
\begin{aligned}
\hat{A}(\alpha) & =\left(I-L-\hat{L}_{\alpha}\right)-\left[\hat{D}_{\alpha}+(I+S(\alpha)) U-S(\alpha)\right] \\
& =\left[I-L-S_{\alpha} L\right]-[(I+S(\alpha)) U-S(\alpha)]
\end{aligned}
$$

are both M-splittings of an irreducible nonsingular M-matrix with

$$
\left[\hat{D}_{\alpha}+(I+S(\alpha)) U-S(\alpha)\right]>[(I+S(\alpha)) U-S(\alpha)]
$$

Then the inequality (1.5) follows from Lemma 3.1.
Remark. By the example given in Section 1 we know that the condition $a_{i, i+1} a_{i+1, i}>0, i=1, \ldots, n-1$ cannot be omitted in Theorem 3.2. The same case to the inequality (1.6).

References

[1] A. Gunawardena, S. K. Jain and L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154/156 (1991), 123-143.
[2] A. Hadjidimos, D. Noutsos and M. Tzoumas, More on modifications and improvements of classical iterative schemes for M-matrices, Linear Algebra Appl. 364 (2003), 253-279.
[3] T. Kohno, H. Kotakemori, H. Niki and M. Usui, Improving the Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997), 113-123.
[4] W. Li, L. Elsner and L. Lu, Comparisons of spectral radii and the theorem of SteinRosenberg, Linear Algebra Appl. 348 (2002), 283-287.

[^0]: 2000 Mathematics Subject Classification: 65F10.

