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Abstract 

Powers of operators from any class, including the normal operators, 
are not in general members of the same class. For instance, if T is a 

class ( )A  operator, then 2T  is not necessarily a class ( )A  operator, 

but if T is an invertible class ( )A  operator, all of its powers happen to 

be class ( )A  operators. Unlike in class ( )A  operators, every power of 

a w-hyponormal operator is a w-hyponormal operator. In this paper, 
we investigate the normality of the powers of generalized Aluthge 
transforms of w-hyponormal operators and that of the generalized 
Aluthge transforms of the powers of w-hyponormal operators. 

Introduction 

One interesting problem in the operator theory is to investigate some 
conditions under which certain operators are normal. Several mathematicians 
have paid attention to this problem, see [16, 20, 22, 24, 25, 27, 28, 37, 39-42, 
46] and references therein. One of interesting articles, which presents some 
results about this topic is that of Stampfli [49]. He showed, among other 

things, that for a hyponormal operator A, if nA  is normal for some positive 
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integer n, then A is normal. The problem had already been considered in the 
case when 2=n  by Putnam [47]. The results were generalized later to the 
other classes of operators by a number of authors, for instance, Embry [45], 
Radjavi and Rosenthal [48] and Duggal [44]. There is another point of view 
about this issue via spectrum of an operator. In [49], it is proved that if the 
spectrum of a hyponormal operator contains only a finite number of limited 
points or has zero area, then the operator is normal. Using Aluthge transform, 
this aspect is generalized to p-hyponormal and log-hyponormal operators 

[41]. In fact, if T is p-hyponormal or log-hyponormal, then 2
~T  is hyponormal. 

The singular value decomposition [16, 27, 41], leads to another form of 
decomposition, popularly referred to as the polar decomposition. That is, 
every operator T can be written as ,UPT =  where U is unitary and P is 
positive. In this type of decomposition, the positive part P is unique, U is 
unique if T is invertible and the kernels of both T, U and P are the same. It is 
well known that T is normal iff U and P commute. However, given any two 
normal operators, say ( ),, HBBA ∈  it is known that in general, AB is not 

normal. The question of characterizing those pairs of normal operators for 
which the products become normal has been solved for finite dimensional 
spaces by F. R. Gantmaher and M. G. Klein in 1930, [16, 30], and for 
compact normal operators by N. A. Wiegmann in 1949, [27]. Actually, in the 
aforementioned cases, the normality of AB is equivalent to that of BA. A 
more general result by Kittaneh [39], implies that, it is sufficient that AB be 
normal and compact to obtain that BA is also normal. 

All log-hyponormals constitute a subclass of p-hyponormals and                  
p-hyponormal operators extend hyponormal operators only when ( ].1,0∈p  
Otherwise, by the highly cerebrated Lowner-Heinz inequality, that is if A, B 

are any two positive operators such that ,BA ≤  then ,rr BA ≤  ( ],1,0∈∀r  
it follows easily that every p-hyponormal is a q-hyponormal whenever 

.qp ≥  Thus, the class of semi-hyponormal operators is larger than the               
class of p-hyponormals. However, if ,1≥p  then the inclusion series,                  

viz., hyponormal ⊂ p-hyponormal, might be reversed. And thus, some                   

p-hyponormal operators might become hyponormal operators. However, in 
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almost all extensions of p-hyponormal or hyponormal operators, such as the 
w-hyponormals, class ( ),A  class ( ),, tsA  class ( ),kA  class wA, class ( ),, tswA  
etc., this reverse in the inclusion series is not exhibited. In particular,             
class ( ) ( )2211 ,class, tsAtsA ⊂  and class ( ) ( )2211 ,class, tswAtswA ⊂  for 
every pair of positive-real pairs ,1s  2s  and ,1t  2t  such that 21 ss ≤  and 

.21 tt ≤  Before finding conditions which restrict all powers of a given 
operator from a particular non-normal operator class to normal operators - a 
process which in some cases become imponderable -, it is good, at least to 
know which of these operator classes are closed under non-zero power 

scaling. That is, if an operator T is a member of class, say { },Z  is { },ZT n ∈  
for every positive integer n? 

The question of classifying nT  after identifying the class of T, has been 
looked into by a number of researchers. After introducing w-hyponormal 
operators, Aluthge and Wang [2] observed that if T is a w-hyponormal 

operator, then nT  is also a w-hyponormal if T is invertible. To extend this 

observation, Chō et al. [12] showed that 2T  is a w-hyponormal whenever T 
is a w-hyponormal under a weaker condition that ( ) .0ker =T  These two 

results were later generalized by Yanagida [23], who proved that if T is a 

class ( )tswA ,  operator, then nT  is a class ( )ntnswA ,  operator which led 

to the wonderful conclusion that nT  is a w-hyponormal operator even when 
T is not an invertible w-hyponormal operator. Yamazaki [20, 21] showed that 

if T is a log-hyponormal, then nT  is also a log-hyponormal and that if T is a 

class ( )tsAI ,  operator, then nT  is a class ( )ntnsAI ,  operator. Ito [19] 

proved that if T is a p-hyponormal, then nT  is a min [ ]p1,1 -hyponormal. He 

extended this result on p-hyponormal, to class ( )A  and paranormal operators 

and concluded that; if T is a class ( )A  operator, then nT  is a class ( )A  

operator under the condition that T is invertible, and that; if T is a paranormal 

operator, then nT  is also paranormal and if T is an invertible paranormal 

operator, then 1−T  is also a paranormal operator. 
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n-power normal and n-power quasinormal operators have been studied 
extensively by several authors. Some of these authors include Mecheri [37], 
Jibril [34, 35], Bala [28], Jeon et al. [36] and Ahmed [25]. Bala [28] was 
among the earliest researchers to study quasinormal operators. He proved 
that every normal operator is a quasinormal operator and gave some 
examples of quasinormal operators which are not normal. Mecheri [37] 
extended normal operators to n-power normal operators. This class of 
operators is not an extension of the quasinormal operators, neither is the class 
of quasinormal operators an extension of this class. However, Jibril [34, 35] 
studied the relationships between quasinormal, n-power normal and n-power 
quasinormal operators. He proved that if an operator is n-power normal, for 
some positive integer n, then the nth-power of this operator is normal and 
converse. In general, he proved that every n-power normal operator is an         
n-power quasinormal operator. Thus, the class of n-power quasinormal 
operators is very large. Conditions under which members of this class are 
relaxed to n-power normal were studied by Mecheri [37]. In this paper, he 
proved that the kernel condition does not hold in general in this class but 
every n-power quasinormal operator is n-power normal, for the same integer 
n, whenever this condition is satisfied. Recently, Ahmed [25] generalized 
results by Mecheri and Jibril. Amongst other beautiful observations, he 
proved that if any operator and its adjoint are both n-power quasinormal, 
then the nth-power of such an operator is normal; if any operator and its 
square are both n-power quasinormal and if in addition, such an operator is      
in the class of 3-power quasinormal, then its square happens to be a 
quasinormal operator and he also, in the same paper, gave an example of a       
2-power quasinormal operator which is not 3-power quasinormal. As far as 
the spectra of these operators are concerned, Ahmed also proved that if an 
operator is 2-power quasinormal, then such an operator is also normal 
provided zero is an isolated point in its spectrum. 

In the quest to come up with an easier method of conquering complicated 
operators, some analysts have, instead of ‘braking’, transformed them into 
other forms with common major properties but easier to handle. 

Recently, Aluthge et al. [2, 3, 13] generalized the polar decomposition by 
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transforming an operator T into another operator T~  called the Aluthge 

transform of T. That is, an operator 2121~ TTT +=  is called the Aluthge 

transformation of T whose polar decomposition is ,TUT =  where =T  

( ) .21TT∗  More precisely, 2121~ TTT +=  is called the first Aluthge 

transform and 2121
2

~~~~~ TTTT +==  is called the second Aluthge 

transform of T. In general, ,~~~ 21
1

21
1 −− += nnn TTT  Nn ∈∀  is called the 

nth-Aluthge transform of T, where nnn TUT ~~~
=  is the polar decomposition 

of .~
nT  It follows that ,~~

1 nn TT ≥−  +∈∀ Jn  in general. Note that =T  
21

0
21

0
~~ TT +  is called the null Aluthge transform of T. 

Aluthge transforms of different classes of operators have been studied 
extensively. For instance, it is well known [3, 23], that the Aluthge transform 
of an operator ‘improves’ p-hyponormality of an operator for 1≤p  since if 

T is p-hyponormal for ,121 <≤ p  then T~  is hyponormal and if T is              

p-hyponormal for ,210 << p  then T~  is 21+p -hyponormal. It is also 

known that if an operator T is w-hyponormal, then T~  is semi-hyponormal, 

T
~~  is hyponormal and if T~  happens to be a normal operator, then its 

counterpart T is normal. 

For both p- and log-hyponormal operators [7, 21] the kernel condition 
holds. But this condition is violated in general by w-hyponormal operators. 
However, many spectral properties satisfied by p- and log-hyponormal 
operators [21, 23] are inherited by w-hyponormal operators. Aluthge and 
Wang [2] studied the spectral properties of w-hyponormal operators. In           
this paper, they gave a characterization for an operator, say T to be w-
hyponormal. In the same paper, they proved that if a w-hyponormal operator 

T satisfies the inequality ,~ TT ≥  then T is also paranormal. In other 

words, they showed that every w-hyponormal operator is paranormal. Using 
Furuta’s inequality, they also showed the following: 
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  (i) if a w-hyponormal operator T satisfies the kernel condition and in 
addition if its first Aluthge transform is normal, then this T is also normal         
[2, Corollary 3]; 

 (ii) every square of an invertible w-hyponormal operator is also                
w-hyponormal [3, Theorem 5.2]; 

(iii) for w-hyponormal operators, the kernel condition does not hold in 
general; 

(iv) the non-zero points of the approximate and joint spectra of a              
w-hyponormal operator are identical [2, 3]. 

Chō et al. [12] generalized these results and proved that (i) holds without 
the kernel condition, (ii) holds without the invertibility if ( ) 0ker =T  and 

there exists a w-hyponormal operator T such that ( ) ( )TT kerker ⊂/∗  and 

( ) ( ).kerker ∗⊂/ TT  

In [22], we looked at some conditions under which the product of any 
two operators (each pair picked from either the class of n-power normal or 
that of n-power quasinormal operators) becomes normal even when the 
normality of the said operators is not necessarily clear. 

In [24], we proved that all nth-Aluthge transforms of any operator have 
equal spectra, and in the case of w-hyponormal operators, we proved that 
every nth-Aluthge transform is spectraloid. In [52], we extended results 
obtained in [22] and [24]. Amongst other observations, we proved that: 

Theorem A [52]. Let A, B be any two commuting operators such that 
m

A2  and 
n

B2  are both normal for some ., +∈ Jnm  Then ( )qBA
p 22  is also 

a normal operator, ,, +∈∀ Jqp  where mp ≤  and ,nq ≤  if ( )AW∉0  

and ( ).0 BW∉  

Theorem B [52]. Let A, B be any two w-hyponormal operators. If nA~  

and nB~  are normal for some +∈ Jn  and [ ] ,0, =BA  then the following hold: 
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(1) [ ] ,0~,~
=nn BA  

(2) [ ] ,0~,~
=∗∗

nn BA  

(3) ( )nAB  and ( )nBA  are normal operators. 

We seek herein to extend the two results above. In fact, our major task is 
to compare the variations between the powers of the nth-Aluthge transform 
with the nth-Aluthge transform of the powers of w-hyponormal operators. 

Notations and Definitions 

In what follows by an operator we mean a bounded linear transformation 
of a Hilbert space H into itself. Let ( )HB  be the Banach algebra of all 

bounded linear operators on H. If ( ),HBT ∈  T is said to be self-adjoint if 

and only if ,TT =∗  unitary if and only if ,1== ∗∗ TTTT  an isometry if 

and only if ,1=∗TT  normal if and only if ,∗∗ = TTTT  quasinormal if and 

only if ( ) ( ) ,TTTTTT ∗∗ =  a projection if and only if TT =2  and ,TT =∗  

a hyponormal if and only if ,∗∗ ≥ TTTT  where BA ≥  means 0≥− BA  
for self-adjoint operators A and B. 

We will denote the spectrum, the spectral radius, the numerical range and 
the numerical radius by ( ),Tσ  ( ),Tr  ( )TW  and ( ),Tw  respectively. ( ) =σ T  

( ){ },invertiblenotis: IT λ−λ  where λ is a complex number. ( ) =TW  

{ }1:, =xxTx  for x in H. 

A complex number λ is said to be in the point spectrum ( )Tpσ  of T                              

if there is a non-zero vector x for which ( ) .0=λ− xT  If in addition 

( ) ,0=λ− xT  then λ is said to be in the normal point spectrum ( )Tnpσ  of 

T. Thus, ( )Tnpσ∋λ  if there is an eigenvector x corresponding to λ which is 

a normal eigenvector. λ is said to be in the approximate point spectrum, 
( )Taσ  of T if there is a sequence { }nx  of unit vectors for which ( ) nxT λ−  



S. K. Imagiri, J. M. Khalagai and G. P. Pokhariyal 32 

.0→  If in addition ( ) ,0→λ− nxT  then λ is said to be in the normal 

approximate point spectrum ( )Tnaσ  of T. 

An operator ( ),HBT ∈  is called ( )βα, -normal, ,10 β≤≤α≤  if 

,22 TTTTTT ∗∗∗ β≤≤α  n-power normal, for a positive integer n, if 

,nn TTTT ∗∗ =  n-power quasinormal if .,1 ++∗∗ ∈∀= JnTTTTT nn  

T is said to be p-hyponormal if ( ) ( ) ,0≥− pp TTTT  for ,10 ≤< p  

q-hyponormal if ( ) ( ) ,0≥− qq TTTT  for ,0 pq ≤<  

quasihyponormal if ( ) ( ) ,0≥− TTTTTT  

p-quasihyponormal if [( ) ( ) ] ,0≥− TTTTTT pp  for ,10 ≤< p  

q-quasihyponormal if [( ) ( ) ] ,0≥− TTTTTT qq  for ,0 pq ≤<  

k-quasihyponormal if [( ) ( )] ,0≥− kk TTTTTT  for .1≥k  

log-hyponormal if T is invertible and .loglog TTTT ≥  

Absolute- ( )ts, -paranormal if tsttts xTxTT +≥  for every 

unit vector x in H, where 0≥s  and .0≥t  

T is said to be normaloid if ( )TrT =  (spectral radius of T) and 

( )kp, -quasihyponormal for a positive number 10 ≤< p  and positive 

integer k, if [( ) ( ) ] .0≥− kppk TTTTTT  

The operator 2
1

2
1~ TUTT =  is called Aluthge transformation of an 

operator T whose polar decomposition is ,TUT =  where ( ) .2
1

TTT =  

T is a w-hyponormal operator if ,~~ TTT ≤≤∗  

T is in class A if ,22 TT ≥  



Restrictions on the Powers of nth-Aluthge Transforms ... 33 

T belongs to class ( )kA  for 0≥k  if ( ) ( ) ,21
12 TTTT kk ≥+  

T belongs to class ( )tswA ,  if for 0≥s  and ,0≥t  

( ) ( ) tts
ttst TTTT 22 ≥+  and ( ) ( ) ts

sstss TTTT +≥ 22  

and T is a class ( )tsA ,  operator if 

( ) ( ) .22 tts
ttst TTTT ≥+  

Clearly, among the classes of operators discussed above, the following 
inclusions hold and are known to be proper: 

(a) self-adjoint ⊂ normal ⊂ hyponormal ⊂ p-hyponormal ⊂                         

p-quasihyponormal ⊂ ( )kp, -quasihyponormal. 

(b) hyponormal ⊂ quasihyponormal ⊂ k-quasihyponormal ⊂ ( )kp, - 

quasihyponormal. 

p-hyponormal ⊂ semi-hyponormal ⊂ w-hyponormal ⊂ wA ⊂ class A ⊂ 

class A(k) ⊂ class A(s, t). 

(c) p-hyponormal ⊂ semi-hyponormal ⊂ w-hyponormal ⊂ wA ⊂              

class wA(s, t) ⊂ class A(s, t). 

(d) log-hyponormal ⊂ w-hyponormal ⊂ class AI(s, t) ⊂ class wA(s, t) ⊂ 

class A(s, t). 

Remark. To avoid confusions while talking about the nth-power and the 
nth-Aluthge transforms, we will use another positive integer k for the power. 
We would also like to assert that there is a difference between the                    
nth-Aluthge transform of the kth power and the kth power of the nth-Aluthge 

transform of an operator, say T. In other words, k
nn

k TT ~~
≠  for any pair of 
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positive integers n, k. However, in the case of invertible w-hyponormal 

operators, the equality holds. But if the invertibility is dropped, at least n
kT~  

and k
nT~  are spectraloid. 

We want to prove the following theorems: 

Theorem C. If T is a w-hyponormal operator, then both n
kT~  and k

nT~  

are spectraloid, ., +∈∀ Jkn  

Theorem D. Let T be a w-hyponormal operator. If there exists a pair of 

positive integers k and n such that ( )
k

nT 2~  is a normal operator, then the 

following are normal operators: 

(1) ( ) ,~ 2
1

k
nT  for every positive integer 1n  less than n. 

(2) ( ) ,~ 12k
nT  for each positive integer 1k  less than k, if ( ).0 TW∉  

(3) ( ) ,~ 1

1
2k

nT  for each pair of positive integers kk ≤1  and ,1 nn ≤  if 

( ).0 TW∉  

To achieve this, we will use the following well known results. 

Preliminary Lemmas 

Lemma 1.1 [2, 3]. If T is w-hyponormal, then T~  is semi-hyponormal 

and T
~~  is hyponormal. 

Lemma 1.2 [3]. If T is an invertible w-hyponormal operator, then nT  is 
w-hyponormal for all positive integers n. 

Lemma 1.3 [12]. Let T be a w-hyponormal operator. Then 2T  is 
w-hyponormal if ( ) { }.0ker =T  

Lemma 1.4 [23]. If T is a w-hyponormal operator, then nT  is also a         
w-hyponormal operator for every positive integer n. 
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Lemma 1.5 [19]. If T is a paranormal operator, then nT  is also a 
paranormal operator for every positive integer n and if T is invertible, then 

1−T  is also a paranormal operator. 

Lemma 1.6 [19]. Let T be a class ( )A  operator. Then nT  is a class ( )A  

operator if T is invertible. It follows that 1−T  is also a class ( )A  operator. 

Lemma 1.7 [20, 21]. Let T be a class ( )tsAI ,  operator for ( ].1,0, ∈ts  

Then nT  is a class ( )ntnsAI ,  operator for all positive integers n. 

Lemma 1.8 [23]. Let T be a class ( )tswA ,  operator for ( ].1,0, ∈ts  

Then nT  is a class ( )ntnswA ,  operator for all positive integers n. 

Lemma 1.9 [2, 3]. Let TUT =  be the polar decomposition of a             

w-hyponormal operator. If T~  is normal, then .~TT =  That is T is normal. 

Lemma 1.10 [2]. If T is a w-hyponormal operator, then 

( ).~ TrTT ==  

Lemma 1.11 [2]. nn TT ~~
1 =−  if and only if T is normaloid. 

Lemma 1.12 [2, 3]. For any operator T, the following are equivalent: 

 (i) ,kk TT =  

(ii) .~TT =  

Lemma 1.13 [24]. If T is a w-hyponormal operator, then ( ) =−1
~
nT  

( )nT~  for every natural number n and kk TT =  for every natural 

number k. 

Lemma 1.14 [24]. Every w-hyponormal operator is spectraloid. 

Lemma 1.15 [2]. For any operator T, ( ) ( ).~ TwTw ≤  

Lemma 1.16 [24]. If T is a w-hyponormal operator, then ( ) ( ).~~
nn TwTr =  
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Lemma 1.17 [31, 33]. Every normal operator can be written in the   
form UP, where P is positive and U can be taken to be unitary such that 

PUUP =  and U commutes with all operators that commute with T and .∗T  

Lemma 1.18 [3]. An operator T is normal iff the operator T~  is normal. 

Lemma 1.19 [24]. An operator nT  is normal iff the operator T is             
n-power normal, for some positive integer n. 

Lemma 1.20 [34, 36]. Let A be any operator. If 2A  is normal such that 
( ),0 AW∉  then A is also normal. 

Lemma 1.21 [33, 35]. Let A be a normal operator. If ( ),0 AW∉  then 

any other operator which commutes with A also commutes with .2A  

Lemma 1.22 [24]. If ( ),0 AW∉  then ( ).0 2AW∉  

Lemma 1.23 [24]. If ( ),0 AW∉  then ( ),0 2n
AW∉  .+∈∀ Jn  

Lemma 1.24 [16]. For any operator ( ),HBT ∈  ( ) ( ) ,nn TrTr =  but 

( ) ( ) ,nn TwTw ≤  for every positive integer n. 

Lemma 1.25 [24]. Let ( )HBA ∈  be any operator such that 
n

A2  is a 

normal operator for some .+∈ Jn  Then 
m

A2  is also a normal operator, 

,+∈∀ Jm  where ,nm ≤  if ( ).0 AW∉  

Lemma 1.26 [12]. If T is a class ( )A  operator, then 

(a) ( ) { } ( ) { }0\0\ TT pnp σ=σ  and 

(b) ( ) { } ( ) { }.0\0\ TT ana σ=σ  

Remark. Recall that Aluthge transform of an operator ‘improves’              
p-hyponormality of an operator for 1≤p  since if T is p-hyponormal for 

,121 <≤ p  then T~  is hyponormal and if T is p-hyponormal for p<0  
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,21<  then T~  is 21+p -hyponormal. From Lemma 1.1, we have that if an 

operator T is w-hyponormal, then T~  is semi-hyponormal, T
~~  is hyponormal, 

it follows easily that repeated Aluthge transformations of a w-hyponormal 
operator will result into a p-hyponormal operator and thus the class of          
all w-hyponormal operators is closed with respect to generalized Aluthge 

transformations. We also note from Lemma 1.18 that if T~  happens to be a 
normal operator, then its counterpart T is normal and conversely. Thus, 
repeated Aluthge transformations of a normal operator, begets another 
normal operator no matter the number of repetitions. However, if an operator 

T is normal, then nT  is not normal in general. It is also known that an 
operator T being not normal, does not imply that there cannot exist some 

positive integer n allowing nT  to be normal. In other words, normality of 

,nT  for some positive integer n does not imply that T is normal in general. 
The following theorem is in line with these observations: 

Theorem 1.27. Let T be a w-hyponormal operator. If there exists a pair 

of positive integers k, m such that n
kT~  is a normal operator, then T is a            

k-power normal operator but T is not a normal operator in general. 

Proof. It suffices only to show that T is a k-power normal operator since 
there are a number of k-power normal operators which are not normal. In 

fact, from Lemma 1.19, we need to show that kT  is a normal operator. Now 

assume to the contrary, there does not exist a positive integer k such that kT  

is a normal operator. By Lemma 1.4, kT  is a w-hyponormal operator. Thus, 

there exists a positive integer n such that n
kT~  is a normal operator. But by 

Lemma 1.19, it follows that kT  is also normal. Thus, T is a k-power normal 
operator. 

Remark. When does the normality of n
kT~  imply the normality of T? To 

answer this question, we prove the following result: 

Theorem 1.28. Let T be a w-hyponormal operator such that ( ).0 TW∉  
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If there exists a pair of positive integers k, m such that n
k

T 2~  is a normal 
operator, then T is a normal operator. 

Proof. From the proof of Theorem 1.27 above, 
k

T 2  is a normal operator. 

By Lemma 1.25, 
m

T 2  is also a normal operator for every positive integer 

.km ≤  Thus, if ,1=m  then we have that 2T  is also normal. Consequently, 

the normality of T follows from the fact that ( ).0 TW∉  

Theorem 1.29. If T is an invertible w-hyponormal operator, then both 

n
kT~  and k

nT~  are also invertible operators, ., +∈∀ Jkn  Consequently, 

.~~ k
nn

k TT =  

Proof. We first note that the invertibility of T implies that kT  is also an 

invertible w-hyponormal operator for any positive integer k. If kT  is 
invertible, then by all its Aluthge transforms are the same operator, thus 

invertible. That is, n
kT~  is invertible and .,,~ +∈∀= JknTT k

n
k  

Now assume T is an invertible w-hyponormal operator. Then nT~  is also 

an invertible w-hyponormal operator and ,~ TTn =  .+∈∀ Jn  Thus, all of         

its powers are invertible. Hence, k
nT~  is also an invertible operator, and 

,~ kk
n TT =  .+∈∀ Jk  

Remark. The equality in Theorem 1.29 holds since T is invertible. 

Generally, if T is a w-hyponormal operator, then ,~~ k
nn

k TT ≠  for every pair 

of positive integers n and k. However, the two operators at least, share the 
same spectra as the following theorem shows: 

Theorem 1.30. If T is a w-hyponormal operator, then ( ) ( ),~~ k
nn

k TT σ=σ  

., +∈∀ Jkn  
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Remark. In order to prove the theorem above, we first prove the 
following Corollary 1.34 which follows immediately from the following well 
known results: 

Lemma 1.31 [29, 41]. If ( ),Tσ∈λ  then ( ).Tr≤λ  

Remark. We note that Lemma 1.31 confirms the fact that the spectrum 
of any operator is bounded from above by its spectral radius. Thus, any 
number larger than the spectral radius of any operator will be found in the 
resolvent of the operator in question. 

Lemma 1.32 [29, 41]. If ( ),Tσ∈λ  then for each positive integer k, we 

have ( ).kk Tσ∈λ  

Remark. By Lemma 1.32 above, it is easy to conclude that the spectrum 
of any operator is always contained in the spectrum resulting from raising the 

said operator to any power. That is, ( ) ( ).kTT σ⊂σ  In general, the following 

result is well known and follows as a consequence of the spectral mapping 
theorem: 

Lemma 1.33 [29, 41]. If ( ),Tσ∈λ  then ( ) ( )( )Tff σ∈λ  for any 

polynomial f. 

Remark. Before we prove Theorem 1.30, we first prove the following 
corollary: 

Corollary 1.34. If ( ) ,rTr =  then ( ) .kk rTr =  

Proof. Assume that ( )Tσ∈λ  is the scaler with the largest positive value 

.λ  Then ( ) λ=Tr  and ( ).kk Tσ∈λ  It follows that kλ  is the largest 

positive value in ( ),kTσ  if not, then there exists another number, say kn ≥  

such that nλ  is the largest positive value in ( ),kTσ  which contradicts our 

selection of ( ).Tσ∈λ  Consequently, ( ).kk Tr=λ  Thus, from Lemma 

1.31, ( ) .kk rTr =  
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Proof of Theorem 1.30. For any operator, all of its Aluthge transforms 

have the same spectra, [24]. Thus, ( ) ( ).~ k
n

k TT σ=σ  

On the other edge, ( )k
nT~σ  includes .~

nTσ  But ( )TTn σ=σ
~  and ( ) ⊂σ T  

( ).kTσ  Now letting ( ) ,rTr =  then ( ) ,kk rTr =  ( ) rTr n =
~  and thus ( )k

nTr ~  

.kr=  Hence ( ) ( ),~~ k
nn

k TT σ=σ  ., +∈∀ Jkn  

Proof of Theorem C. We only need to prove that n
kT~  is spectraloid, 

since from Theorem 1.30 above, n
kT~  and k

nT~  have the same spectra, kn,∀  

.+∈ J  We first note that kT  is also a w-hyponormal operator, by Lemma 

1.4. And from Lemma 1.14, n
kT~  is spectraloid for any pair of positive 

integers n, k. 

Theorem 1.35. Let T be a w-hyponormal operator. If there exists a pair 

of positive integers k and n such that n
kT~  is a normal operator, then n

kT
2~  

is a normal operator for every positive integer n. 

Proof. By Lemma 1.4, kT  is a w-hyponormal operator. And by Theorem 
1.27, if there exists a positive integer n such that the nth-Aluthge transform 

of kT  is normal, then kT  is also a normal operator. Thus, from the property 

of normal operators, 
2kT  is a normal operator. Hence, every Aluthge 

transform of 
2kT  is normal. 

Proof of Theorem D(1). From Lemma 1.18, we know that 1
~
nT  is normal 

for each positive integer 1n  less than n whenever nT~  is normal. Thus, ( )21
~
nT  

is also normal. Generally, ( )
k

nT 2
1

~  is also a normal operator for each positive 

integer k. 

Proof of Theorem D(2). If ( ),0 TW∉  then ( ).~0 TW∉  Moreover, ∉0  

( ).~
nTW  From Lemma 1.25, it follows that ( ).~0 2k

nTW∉  From Theorem 1.35, 
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we have that ( ) 12~ k
nT  is normal for each positive integer 1k  less than k, since 

( )
k

nT 2~  is a normal operator for any positive integer n. 

Proof of Theorem D(3). From the proof of (1) above, 1
~
nT  is normal for 

each positive integer 1n  less than n. Thus, ( )
k

nT 2
1

~  is also normal for any 

positive integer k. And from the proof of (2), ( ) 1

1
2~ k

nT  is normal for each pair 

of positive integers kk ≤1  and .1 nn ≤  

Remark. w-hyponormal operators contain all self-adjoint and all unitary 
operators. In the following last observation, we will use the spectra of         
nth-Aluthge transforms of a kth power of a w-hyponormal operator to tell 
under what circumstances are such operators restricted to either self-adjoint 
or unitary operators. 

Theorem 1.36. If T is a w-hyponormal operator such that ( ),0 TW∉  

then 

  (i) n
kT~  is self-adjoint if ( ) ,~ RT n

k ⊂σ  

 (ii) n
kT~  is positive if ( ) [ ),,0~

∞⊂σ n
kT  

(iii) n
kT~  is unitary if ( )n

kT~σ  is a unit circle. 

Proof. Let T be a w-hyponormal operator such that zero is an isolated 
point in the numerical range of T. It follows that T is invertible. Thus, every 

power of such an operator is also a w-hyponormal operator. That is, kT  is         
w-hyponormal for every positive integer k. But every Aluthge transform              
of w-hyponormal operator is also a w-hyponormal operator since Aluthge 

transformation reduces w-hyponormality to hyponormality. Thus, n
kT~  is a       

w-hyponormal for any pair of positive integers n and k. The rest of the proof 
follows from Lemma 1.25. 
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