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Abstract 

Investors vary in how they locate a portfolio with a futures position, 
but the optimal hedging ratio typically relies on the equilibrium 
parameters. In contrast to optimal risk-return hedging, we employ two 
popular approaches - the Bayesian framework and a conditional 
regression - to examine the impact of investor’s views on hedging 
effectiveness. In terms of hedging effectiveness, this study suggests a 
feasible measure to determine whether the Bayesian learning compares 
favorably with the conditional regression updating. 

1. Introduction 

Risk-return hedging is one of the most important hedging strategies in 
the futures markets. The determination of the optimal hedging ratio and its 
hedging effectiveness measure are of both academic and practical interest. 
Starting with Howard and D’Antonio [5], a number of studies have fitted 
various risk-return relative measures to the hedging ratio and hedging 
effectiveness. Kuo and Chen [7] suggested a simplification to benefit 
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empirical studies. Lien [8] indicated that the risk-return approach produces a 
biased result. Chiu [3] presented a simple test for risk-return hedging 
effectiveness. The ostensible purpose of each of these portfolio selection 
processes is to generate an effective hedging strategy for investors. However, 
these risk-return analyses address optimal hedging policies, which are 
theoretically based on the equilibrium expected return vector and covariance 
matrix of a portfolio. Of course, the risk-return hedging also inherits the 
sensitivities of mean-variance analysis due to the changes in the assets means 
or covariance (see, e.g., Best and Grauer [1]). While using historical data to 
replace the equilibrium, previous studies nonetheless do not investigate the 
impact of the investor’s view on hedging effectiveness via a Bayesian 
learning process. 

To reduce the operational risk of a portfolio, an active investor is likely 
to impose his subjective view on the estimation of risk parameters. This 
process is intuitive for several reasons. First, investors may disagree over just 
what expected return vector and covariance matrix represent the equilibrium. 
As previously noted by Black and Litterman [2], combining historical data 
with “expert knowledge” (which is generally performed in practice) can lead 
to more reasonable results than relying on pure portfolio optimization. 
Second, a traditional way to estimate the equilibrium parameters is to 
substitute the sample counterpart (generally a long horizon time series) into 
the model parameters. However, investors may be interested in recent 
volatility rather than the long run equilibrium parameters. Lastly, the primary 
reason for using the sample counterpart is that we cannot reasonably expect 
to access the true equilibrium parameters. It is important to emphasize that, 
whenever we have information on these parameters, we will use it rather than 
the sample counterpart. 

To incorporate the investor’s view into the equilibrium parameters, a 
systematic adjusting mechanism of the parameters should explain the highly 
correlated relationship between spot and futures. This study will employ the 
appealing Black-Litterman [2] Bayesian model, which is one of the most 
important updating process in the finance literatures, to produce a forecast 
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view. For comparison, Qian and Gorman’s [9] simplification of Black-
Litterman framework is also used to obtain a conditional distribution of the 
mean vector and covariance matrix under normal assumptions. Our objective 
is to compare the hedging performance of the Black-Litterman model and the 
Qian-Gorman conditional distribution when the investor imposes his views 
on the futures’ return and its volatility. We also derive the conditions for the 
order of hedging effectiveness in these three approaches. 

The article proceeds as follows: Section 2 reformulates the Howard-
D’Antonio relative measure in a simple form. Section 3 examines the use of 
this measure to resolve the hedging performance in both the Black-Litterman 
framework and the Qian-Gorman conditional distribution. A measure of the 
marginal loss of the learning process and an example are given to illustrate 
our derivations. Section 4 presents the conclusions. 

2. Hedging Effectiveness Measure 

It is widely known in futures hedging that Ederington’s minimum-
variance approach [4] is based only on the viewpoint of risk reduction. 
Howard and D’Antonio [5] extended Ederington’s minimum-variance 
hedging policy to the risk-return framework, in which the investor 
determines the hedging ratio by maximizing the Sharpe ratio [10]. Consider 
an active investor who is endowed with a spot hedged by futures positions. 
Then, the Howard-D’Antonio approach is a straightforward result of    
solving a hedged portfolio allocation ( )”,“ fs xxx =  for the risk-return 

optimization: 

,max
1

⎟
⎠
⎞⎜

⎝
⎛

Σ′
μ′

=′ xx
x

x
 (1) 

where the excess return of a hedged portfolio is ffss rxrxrx +=′  with the 

expectation ffss xxx μ+μ=μ′  and the variance sffsss xxxxx σ+σ=Σ′ 222  

.22
ffx σ+  Also, the analytical solution employs the following notation: 
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r = The 12 ×  random vector of the returns of spot and futures. 

μ = The 12 ×  equilibrium returns vector, ( ) ., ′μμ fs  

μ  = The 12 ×  returns vector of a prior distribution, ( ) ., ′μμ fs  

Σ  = The 22 ×  equilibrium covariance matrix of r. 

( )fs σσ  = The volatility (standard deviation) of spot (futures). 

ρ = The correlation coefficient between spot and futures. 

x = The 12 ×  portfolio weight vector of spot and futures positions. 

 = The 12 ×  vector of ones such that the total wealth is invested. 

v = The 12 ×  returns vector due to investor’s view, ( ) ., ′
fs vv  

Ω  = The 22 ×  residuals’ covariance matrix due to investor’s view. 

( )fs ωω  = The residuals’ standard deviation of spot (futures). 

sfω  = The residuals’ covariance between spot and futures. 

P = The 22 ×  transformation matrix of investor’s view. 

With respect to the mean vector and the covariance matrix, ( ),, Σμ  it is 

well known that the solution of model (1) is described as the maximum 
Sharpe ratio allocation, denoted by ,TPx  

μΣ′
μΣ= −

−

1

1
TPx  (2) 

and the maximum Sharpe ratio relative to TPx  is computed as 

.1μΣμ′=
σ
μ=θ −

TP
TP

TP  (3) 
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To evaluate the hedging potential of a portfolio, we reformulate the 
Howard-D’Antonio hedging effectiveness relative measure as 

( )
( )

,
1

1 2
2

21
λ+

ρ−
ρλ−=

θ
μΣμ′=

θ
θ

=
−

SS
TP

TPH  (4) 

where Sθ  denotes the Sharpe ratio of the spot position and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
μ

σ
μ

=λ
s
s

f

f  

is the relative risk-return of the futures against the risk-return ratio of the spot 
position. There is an important reason for employing Howard-D’Antonio 
relative measure as the comparison criterion. This relative measure resolves 
itself exclusively into two components: the correlation between spot and 
futures, and the risk-return relative of futures against the risk-return ratio of 
the spot position, which greatly simplifies the comparison among several 
approaches. 

3. Main Results 

Because the model parameters ( )Σμ,  are not directly observed, in 

practice, investors must instead use the equilibrium parameters based on 
historical measurements of asset return and volatility (see, e.g., Jobson and 
Korkie [6]). To reduce the operational risk of a portfolio, an active investor is 
likely to impose his subjective viewpoints on the estimation of the risk 
parameters, such as the expected return, volatility, and risk-return ratio, 
rather than the equilibrium parameters. Therefore, incorporating the 
investor’s view, market equilibrium, and sample information into estimates is 
desirable in practice. In this section, we solve a hedged strategy affected by 
the investor’s view. Based on the Howard-D’Antonio criterion, we employ 
two popular approaches to adjusting risk factors (including the futures’ return 
and the futures’ volatility). The corresponding formulas for the maximum 
hedging effectiveness are derived in each model. These approaches are 
described below: 
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1. Black and Litterman [2] pioneered a Bayesian model to obtain a 
weighted mean vector of the equilibrium return vector and the 
investor’s view, in which they set a prior distribution to the unknown 
distribution of the expected return vector. We may construe the 
Black-Litterman framework as a non-standard Bayesian model, as 
the weighted mean vector does not contain the sample information. 

2. Qian and Gorman [9] introduced a practical simplification of the 
Black-Litterman model. The Qian-Gorman method obtains not only 
an updating mean vector but also a conditional covariance based on 
the investor’s view regarding certain assets. This method is actually a 
regression-based framework to adjust both the mean and the 
covariance matrix. 

3.1. Qian-Gorman conditional distribution (method A) 

For simplicity, we use Qian and Gorman’s conditional distribution as                   
the reference model to evaluate the alternative model. Under a normal 
distribution, Qian and Gorman directly assign a conditional distribution to 
the asset returns even though ( )fs rr ,  deviates from its equilibrium 

distribution. Given a hedged portfolio with a spot asset and futures position, 
the conditional distribution of sr  given fr  can be formulated as 

( ) ( ) .1,~ 22
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−σμ−

σ
ρσ

+μ| sff
f
s

fs rNrr  (5) 

Let the investor forecast the expected return and risk of the futures position 
( )ff σμ ,  as ( ).~,~

ff σμ  The concept behind deriving the adjusted moments 

is to take the conditional expectation, variance, and covariance of (5). The 
adjusted returns vector and covariance matrix follow from the Qian-Gorman 
two-asset model as 

( )
,

~

~

~

~

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

μ

μ−μ
σ
ρσ

+μ
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

μ

μ
=μ

f

ff
f
s

f

s
A  (6) 
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and 

( )
.

~~

~1~

~~

~~

22

2222
2
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2

2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎢

⎣

⎡
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σ
σ
ρσ

ρ−σ+σ
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=
⎥
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⎦

⎤

⎢
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⎣

⎡

σσ

σσ
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f
s

f
f
s
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f

s

fsf

sfs
A  (7) 

According to equations (4), (6), and (7), we now proceed to derive Qian 
and Gorman’s risk-return hedging effectiveness and its properties as follows: 

Theorem 1. The hedging effectiveness relative to the Qian-Gorman 
procedures is given by 

( )
( )

,
1

1 2
2

2
AAH λ+

ρ−
ρλ−=  (8) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
μ

σ
μ

=λ
s
s

f

f
A ~

~
 is Qian and Gorman’s risk-return relationship of 

the futures against the risk-return ratio of the spot position. 

Proof. With respect to the adjusted mean vector and the covariance 
matrix ( ),, AA Σμ  the square of the maximum Sharpe ratio follows equations 

(6) and (7): 

( )

( )
.

1~

1~~

222
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2

2

1

ρ−σσ

ρ−σμ+⎥
⎦

⎤
⎢
⎣

⎡
μ

σ
ρσ

−μσ
=μΣμ′ −
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sff
f
s

f

AAA  

The adjusted Qian-Gorman hedging effectiveness can therefore be reduced to 

( )
( )
( )
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~

1
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2

2
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2

1
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Note that the expression for AH  has the same form as equation (4), 

except that the equilibrium hedging effectiveness relationship 2λ  is replaced 

by Qian and Gorman’s adjusted hedging effectiveness relationship .2
Aλ  � 

3.2. Black-Litterman learning (method B) 

We use a similar set of notations to the Black-Litterman model [2]. 
Under a bivariate normal distribution, we assign the mean vector μ a prior 
distribution expressed as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
ε
ε

+⎥
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⎤
⎢
⎣

⎡
μ
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μ
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ε
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sfs

f

s
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dd
N  

where d is the constant that reveals investor’s confidence that the mean 
vector μ is close to the prior equilibrium value ;μ  and the residual vector ε 

measures the deviation of the random vector μ from μ  with a zero mean and 

a covariance matrix .Σd  Black and Litterman show that the investor’s views 
on the relative performance of the spot and futures can be using in a matrix 
operator given by 

vvP ε+=μ    and    ( ),,0~ Ωε Nv  

where the residual vector vε  measures the deviation of the investor’s views 

vector from v with a zero mean and the residual covariance matrix .Ω  In our 
discussion, the investor expresses his view only on the futures’ return, and 
the spot return is then updated via a Bayesian scheme. We therefore may 
design the transformation matrix and the residual covariance matrix as 
follows: 

⎥⎦
⎤

⎢⎣
⎡=

10
00

P     and    .2

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ωω

ωω
=Ω

fsf

sfs  

Black and Litterman derive the Bayesian updated returns vector and 
covariance matrix of the model as follows: 

[( ) ] [( ) ],11111 vPdPPdB
−−−−− Ω′+μΣΩ′+Σ=μ  

[( ) ] .111 −−− Ω′+Σ+Σ=Σ PPdB  (9) 
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According to equation (9), we compute the updates to the expected return 
and covariance matrix as 

( )

( )
⎥
⎥
⎥
⎥
⎥
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⎢
⎢
⎢
⎢

⎣

⎡

μ−
ω

σ
γ
γ+μ

μ−
ω

σ
γ
γ

+μ

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

μ

μ
=μ

ff
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and 
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where 

( ) .,, 2
31

222
2222

2
3

222
1 fsffs

sffs

s
sffsd σγγ+σ−σσ=γ

ω−ωω

ω
=γσ−σσ=γ  

Similar to Qian and Gorman’s approach, we now derive the Black-
Litterman risk-return hedging effectiveness and its properties as follows: 

Theorem 2. If both the Black-Litterman updating and Qian-Gorman 
updating have the same views on the futures’ return and volatility, then the 
hedging effectiveness of the Black-Litterman model is given by 

( )
( )

( )
( )

kH ABB
2

2

2
2

2

2

1
1

1
1 λ+

ρ−
ρλ−=λ+

ρ−
ρλ−=  (12) 
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⎜
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σ

σ
+

σ

σ
=
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s
f

f

f

f

f dk  (13) 

where k is an adjusted scalar compared to the Qian-Gorman procedures. 

Proof. For comparison on the same basis, without loss of generality, 

assume that ff μ=μ ˆ~  and 22 ˆ~
ff σ=σ  such that 
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( )ff
f
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The updated mean (10) and covariance matrix (11) are thus transformed into 

( )
( )

( ) ( ) ( )
( )

( )
( )

,
~~

~1~

22

2222
2

22

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

σσ
σ
σρ

σ
σ
σρ

σρ−+σ
σ

σρ

=Σ

ff
f

s

f
f

s
sf

f

s

B

k
k

k
kk

k
k

 

( )
( )

( )
,

~

~

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

μ

μ−μ
σ
σρ

+μ
=μ

f

ff
f

s

B k
k

 

.1
~~

222

2
2

2

2

2

2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ω−ωω

ω
σ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

σ

σ
+

σ

σ
=

sffs

s
f

f

f

f

f dk  (14) 

Given the algebraic relationship between (6), (7), and (14), Black and 
Litterman’s hedging effectiveness is therefore reduced to the following 
expression: 
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Note that the constant k is the adjusted constant compared to the Qian-
Gorman procedures: 
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This completes the proof.  � 
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3.3. The relationship between ,, BA HH  and TPH  

Equipped with Theorem 1 and Theorem 2, here we compare the 
relationship of the hedging effectiveness between ,, ATP HH  and .BH  Our 

goal is to reach a relative measure for assessing the hedging effectiveness, 
but the relationship in the below theorem still serves a useful purpose: to 
ascertain whether a subjective view results in overestimating or 
underestimating the true equilibrium hedging effectiveness. 

Theorem 3. If both the Black-Litterman learning and Qian-Gorman 
updating have the same views on the futures’ return and volatility, the 
relationship of the hedging effectiveness between the Black-Litterman 
tangency portfolio, the Qian-Gorman tangency portfolio, and the true 
tangency portfolio is summarized as follows: 

1. If ff σ<σ ~  and ,~
~

f

f

f

f
σ
μ

<
σ
μ

 then .BATP HHH <<  

2. If ff σ>σ ~  and ,~
~

f

f

f

f
σ
μ

>
σ
μ

 then .BATP HHH >>  

3. If ff σ>σ ~  and ,~
~

f

f

f

f
σ
μ

<
σ
μ

 then .BTPA HHH >>  

4. If ff σ<σ ~  and ,~
~

f

f

f

f
σ
μ

>
σ
μ

 then .ATPB HHH >>  

5. If ,~
ff σ=σ  then .BATP HHH ==  

Proof. Excluding the trivial case where the investor’s view coincides 
with the true equilibrium ,BATP HHH ==  there are five possibilities. 

First, it is straightforward to compare the difference between the hedging 
effectiveness of the Black-Litterman tangency portfolio and of the Qian-
Gorman tangency portfolio: 
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In the case that the investor’s view has a larger futures volatility and Sharpe 
ratio than the true futures volatility and Sharpe ratio, that is, ff σ<σ ~  and 

,~
~

f

f

f

f
σ
μ

<
σ
μ

 the Black-Litterman hedging will overestimate the hedging 

effectiveness compared to the Qian-Gorman hedging because 

.0~
ABABff HHHH >⇒>−⇒σ<σ  (15) 

In this case, we also compare the difference between the hedging 
effectiveness of the Qian-Gorman tangency portfolio and the true tangency 
portfolio 
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1
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1
1 2

2

2
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2
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A
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λ+
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ρλ−+λ+
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This comparison also implies that the Qian-Gorman hedging overestimates 
the true hedging effectiveness because 

.~
~

22
TPAA

f

f

f

f HH >⇒λ>λ⇒
σ
μ

<
σ
μ

 (16) 

Combining equations (15) and (16), we obtain the following relationship: 

.BATP HHH <<  

A series of similar arguments verify the remaining cases.  

Because both AH  and BH  may overestimate (or underestimate) ,TPH  

or one of them may overestimate TPH  while the other underestimates ,TPH  
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it is difficult to compare the Qian-Gorman updating with Black-Litterman 
learning. Basically, Theorem 3 should be viewed as a necessary but not 
sufficient procedure for controlling risk. It must be supplemented by limits 
and controls in addition to the risk-return hedging effectiveness. 

Note that an important property of ( )AB HH or  is that the larger the 

investor’s view on the futures volatility, the higher the ( )AB HH or  will 

be. It would then appear that if one wishes to achieve a substantial hedging 
effectiveness in a risk-return hedging, one must merely employ a higher 
futures volatility. However, we do not take this “advice” too seriously, 
because these updating results of ( )AB HH or  do not take into account the 

marginal learning effect. Thus, what we need is an intuitive measure of the 
model misspecification that is defined as the deviation from the equilibrium 
in the learning process. Such a measure may be considered as: 

The absolute marginal loss of the hedging effectiveness ,
λΔ

Δ= H  (17) 

where ( )BTPBATPA HHHHHH −=Δ−=Δ or  is the amount of the loss 

of hedging effectiveness due to the Black-Litterman learning or Qian-
Gorman updating; and ( )BBAA λ−λ=λΔλ−λ=λΔ or  is the difference 

between the investor’s view and the equilibrium state. Overall, investors 

prefer the more conservative 
λΔ

ΔH  when applying updating procedures. 

That is, we suggest that the investor should employ the Qian-Gorman 
updating if 

B
B

A
A HH

λΔ
Δ<

λΔ
Δ  (18) 

because it is relatively close to the equilibrium state. Otherwise, this study 
recommends the Black-Litterman learning. 

3.4. Illustration 

Based on the above discussions, we assume that the true mean vector  
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and covariance matrix, which may be obtained according to the sample 
estimation using a long horizon of returns series, are given as follows: 

⎥⎦
⎤

⎢⎣
⎡=μ

065.0
060.0

     and     .
090.0054.0
054.0040.0

⎥⎦
⎤

⎢⎣
⎡=Σ  

We can calculate the hedging effectiveness for the true tangency portfolio as 

72222.0=λ     and    ( )
( )

.07997.1
1

1 2
2

2
=λ+

ρ−
ρλ−=TPH  

First, assume that the investor predicts a higher futures return associated           
with a higher volatility in the coming transactions. Let the futures return                
and its volatility be forecasted as ( ) ( ).10.0,08.0~,~ =σμ ff  The hedging 

effectiveness and he marginal loss of the hedging effectiveness of the Qian-
Gorman updating are computed as 

,16441.1,84327.0 ==λ AA H   

.43366.172222.084327.0
07997.116441.1 =

−
−=

λΔ
Δ

A
AH  

We next assume that the investor chooses his belief degree 5.0=d  and the 
residual’s covariance matrix as follows: 

.
03000.000866.0
00866.001000.0

2

2

⎥⎦
⎤

⎢⎣
⎡=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ωω

ωω
=Ω

fsf

sfs  

The hedging effectiveness and the marginal loss of the hedging effectiveness 
of the Black-Litterman learning are computed as 

,31826.1,04550.1 ==λ BB H   

.73709.072222.004550.1
07997.131826.1 =

−
−=

λΔ
Δ

B
BH  

For the investor, the Qian-Gorman updating does not deviate far from the 
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true equilibrium hedging effectiveness. However, the absolute marginal loss 
of the hedging effectiveness indicates that 

.
B
B

A
A HH

λΔ
Δ

>
λΔ

Δ  

In our illustration, this result may suggest that the Black-Litterman 
learning compares favorably with the Qian-Gorman updating. 

4. Conclusion 

This article is to compare the hedging performance of the Black-
Litterman model and the Qian-Gorman conditional distribution when the 
investor imposes his views on the futures’ return and its volatility. We apply 
the Howard-D’Antonio relative measure to evaluate the hedging performance 
of these approaches. Finally, we provide a simple and feasible decision rule 
in the choice between two hedging models. This measure may also be used 
with other learning procedures. 
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