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Abstract 

In this note, we define an m-semihomomorphism f on an Abelian group 

as a function satisfying ( ) ( ) ( ) ( ),afyfxfyxf ++=+  ( )( ) 0=af m  

for some element a. We prove that the set of all m-semihomorphisms 
on Q, or ,pZ  p is a prime, is a commutative inverse semigroup and 

compute its order in case of .pZ  Then we compute the semigroup of 

2-semihomorphisms on a general .nZ  

Introduction 

Let G be an Abelian group. Then the set of all group homomorphisms is 
a commutative semigroup under composition. For if f, g are homomorphisms, 
then ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ).ygfxgfygxgfyxgfyxgf +=+=+=+o  There 

is another special kind of functions on G. A function GGf →:  is called an 

m-semihomomorphism (m-semhom for short) if there is an element Ga ∈  

such that ( ) ( ) ( ) ( )afyfxfyxf ++=+  with ( )( ) ,0=af m  where ( )mf  is 

the composition of m copies of f. For example a homomorphism GGf →:  

is a 1-semhom for it satisfies ( ) ( ) ( ) ( ),0fyfxfyxf ++=+  ( ) .00 =f  We 

notice that the composition of two 2-semhoms f, g, need not be a semhom. 
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For let f, g be two 2-semhoms on an Abelian group G. Thus ( ) =+ yxf  

( ) ( ) ( ),afyfxf ++  ( ) ( ) ( ) ( )bgygxgyxg ++=+  such that ( )( ) 0=aff  

( )( ).bgg=  Then 

( ) ( )( ) ( ) ( ) ( )( )bgygxgfyxgfyxgf ++=+=+  

 ( )( ) ( )( ) ( )( ) ( ),2 afbgfygfxgf +++=  

( )( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )afaffaffbgffafafbgff 2+++=++  

( )( )( ) ( )afbgff 2+=  

need not be 0 as shown by Example 5. In this note, we discuss some cases in 
which the set of m-semhoms on an Abelian group is a commutative 
semigroup and sometimes it is an inverse semigroup. 

The Results 

The simplest Abelian groups are the additive group of a field. We first 
discuss the existence of semhoms on the group ( )., +Q  This amounts to the 

following problem: Given a positive integer m find all functions QQf →:  

such that there exists Qa ∈  for which it holds that ( ) ( ) ( )yfxfyxf +=+  

( ),af+  ( )( ) ,0=af m  for all ., Qyx ∈  

Proposition 1. Let Qa ∈  and let QQf →:  be an m-semhom with a 

corresponding element .Qa ∈  Then for all ,Qx ∈  ( ) ( ) ( )( ) xffxf 01 −=  

( ),af−  ( ) ( ).0faf −=  If ,2=m  then ( ) .2axxf −=  If ,2>m  then 

( ) ( ) .1 xfxf =  

Proof. If we take ,0, =yx  then ( ) ( ).0 aff =−  Thus for all ,, Qyx ∈  

( ) ( ) ( ) ( ).0fyfxfyxf −+=+  If we put ,1, =yx  then we get ( ) =2f  

( ) ( ).012 ff −  Using induction, we can show that for all integers ,Zm ∈  we 

have ( ) ( ) ( ) ( ).011 fmmfmf −+=  Also, ( ) ( ) ( ) ( )212121211 ffff +=+=  

( ) ( ) ( )02120 fff −=−  and so ( ) ( ) ( ) ( ) ( ).021112121 fff −+=  Using 
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induction, we can show that for all nonzero integers n, we have ( ) =nf 1  

( ) ( ) ( ) ( )01111 fnfn −+  and in general we have for all rational numbers x, 

( ) ( ) ( ) ( ).011 fxxfxf −+=  Thus 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ).1,1 affcafcxafxaffxf +=−=−+=  (1) 

It follows that ( )( ) ( ) ( )afacfaff −=  and in general 

( )( ) ( ) ( ) ( ) ( )afacfafcafcaf mmm −−−−= −− 21  

( ) ( ).121 −−−−= −− cccaf mm  (2) 

Let .2=m  Then we have ( )( ) ( ) ( ) ( ) ( ).10 −=−== cafafacfaff  If 

( ) ,0=af  then ( ) ( ) .1 xfxf =  If ( ) ,0≠af  then ,1=c  ( ) ( ),afxxf −=  

( ) ( ),afaaf −=  ( ) aaf =2  and ( ) .2axxf −=  

Let .2>m  From ( )( ) 0=af m  and from equation (2), we get 

 .0121 =−−−− −− ccc mm  (3) 

If this equation has a rational root, then it will be 1 or –1. Since ,11 >−m  it 
follows that 1 cannot be a root. If –1 is a root, then 

 .1
11

1
−
−=

−
−

c
cc

m
m  (4) 

If 1−m  is even, then it follows that 01 =  which is absurd. If 1−m  is odd, 
then it follows that 11 =−  which is absurd. Thus equation (3) has no rational 

solutions. Thus ( ) 0=af  and so ( ) ( ) xfxf 1=  if .2>m  This completes the 

proof. ~ 

Next we discuss the Abelian group ( )+,pZ  of the field ( ).,, ⋅+pZ  

Proposition 2. Let 2>p  be a prime number and let pp ZZf →:  be 

a 2-semhom: ,pZa ∈  ( ) ( ) ( ) ( ),afyfxfyxf ++=+  ( )( ) .0=aff  Then 

either ( ) ,0=af  ( ) ( ) xfxf 1=  or ( ) ( ) 202 fxaxxf +=−=  for all x. If 
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f is an m-semhom, ,2>m  then either ( ) ,0=af  ( ) ( ) xfxf 1=  or ( ) =xf  

( ) ( )( ) ( )afxaff −+1  such that ( ) ( )( ) ( ) ( )( ) .010101 1 =+−−− −mm ffff  

Proof. The proof is similar to that of the preceding proposition. If we 
take ,0, =yx  then ( ) ( )aff =− 0  and so ( ) ( ) ( ) ( ).0fyfxfyxf −+=+  

If we put ,1, =yx  then we get ( ) ( ) ( ).0122 fff −=  Using induction, we 

can show that for all integers ,pZm∈  we have ( ) ( ) ( ) ( ).011 fmmfmf −+=  

In general, we have for all x, ( ) ( ) ( ) ( ).011 fxxfxf −+=  Thus 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ).01,0001 ffcfcxfxffxf −=+=+−=  (5) 

Let .2=m  Thus ( )( ) ( ) ( ) ( )( ).10 −=−== cafafacfaff  If ( ) ,0=af  

then ( ) ( ) .1 xfxf =  While if ( ) 0≠af  and ( )af  is a unit, then .1=c  Thus 

( ) ( ).afxxf −=  Then ( ) ( )afaaf −=  and so ( ) .2 aaf =  If ,2=m  then 

.0=a  Thus ( ) .2axxf −=  Let .2>m  From ( )( ) 0=af m  and from 

equation (2), we get 

( ) ( ) ( ) ( ) .021 =−−−− −− afacfafcafc mm  

If ( ) ,0=af  then ( ) ( ) .1 xfxf =  If ( ) ,0≠af  then we get 

.1,01 2121 −−−− +++==−−−− mmmm cccccc  

We have three cases to consider: ,1 pm <−  ,1 pm =−  .1 pm >−  If 

,1 pm <−  then c cannot be 1 for this would imply pm mod11 −=  and 

this is impossible. If pm =− 1  and ,1=c  then 11 −= p  which is absurd. 

If pm >− 1  and ,1 rkpm +=−  ,0 pr <≤  then if ,1=c  we have =1  

prrkp mod=+  which is absurd even if .0=r  Thus we have =−1mc  

( ) ( ) .01211 11 =+−→−− −− mmm cccc  Thus c is a solution of the 

equation ,012 1 =+− −mm xx  ,1≠x  .2>m  For example, 12 23 +− xx  

,0=  1≠x  has no solution in 3Z  but it has a solution 3=x  in .5Z  ~ 
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Proposition 3. The set of 2-semhoms on the group ( )+,Q  with the 

composition operator is a commutative inverse semigroup. The set of           
2-semhoms on the group ( )+,pZ  with the composition operator is a finite 

commutative inverse semigroup. 

Proof. The proof is direct: ( ) ( ) ( ) 222 baxbxax +−=−−  which 

is a 2-semhom. Also, ( ) ( ) ( ) 222 axaxbxax −=−+−  implies that 

( ) ( ) ( )222 axabax −=−+−  and so 2ab =  and the inverse of 2ax −  

is .2ax +  Since the idempotents commute, the commutative semigroup is 

an inverse semigroup. ~ 

Now let us try to solve the following problem. Let 2>n  be a positive 
integer not necessarily a prime. Find all 2-semhoms on ;nZ  i.e., all functions 

nn ZZf →:  such that there is nZa →  which makes the following equation 

hold: ( ) ( ) ( ) ( ),afyfxfyxf ++=+  ( ) .0=aff  

We first notice that ( ) ( ) ( )( ) ( ) ( ) ( ).0,001 afffxffxf −=+−=  From 

( )( ) ,0=aff  it follows that ( )( ) ( ) ( )( ) ( )( ) ( ) =+−−==− 000100 ffffff  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ).11000100 2 fffffff −+=+−  Thus the 2-semhom f 

is completely determined by ( )0f  and ( ).1f  If ( )0f  is a unit, then ( ) =1f  

( ) .10 +f  Let for all ,nZm ∈  ( )mψ  denote the number of annihilators k of m 

in .nZ  Thus .mod0 nkm =  This is the same as the number of annihilators of 

( )nm,gcd  in nZ  and this is ( ).,gcd nm  Thus for any ( ),0f  there are ( )( )0fψ  

of 2-semhoms corresponding to ( ).0f  Thus the total number of 2-semhoms 

is ( ) ( )∑ ∑−
=

−
=+=1

0
1
1 .,gcd,gcdn

m
n
k nknnm  

We first notice that any 2-semhom is of the form ( ) ( ) ( )( ) xffxf 01 −=  

( ),0f+  ( ) ( ),0 aff −=  ( ) ( ) ( )( ) .01100 =−+ fff  Thus ( ) ( ),0fMxxf +=  

( ) ( ) .010 =− Mf  

Proposition 4. The set of 2-semhoms on the Abelian group ( )+,nZ  
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under the operation ( )( ) ( )( ) ( ) ( )0000 2121 gfxMMgxMfxM +=++  is 

a commutative semigroup of order ( )∑ −
=+ 1

1 .,gcdn
k nkn  

Proof. The first part of the proposition was proved earlier. The set of all 
2-semhoms is not closed under composition as was noted earlier and as 
shown in Example 5. But this set is a commutative semigroup under the 
operation ( ) ( ) .21212211 kkxmmkxmkxm +=++  For if ,11 kxm +  22 kxm +  

are 2-semhoms, then 

( ) ( ) 2221112211 ,01,01 kkmkkmkmkm ==⇒=−=−  (6) 

( ) .01 212121212121 =−⇒=⇒ kkkkmmkkkkmm  (7) 

Thus ( ) ( ) .21212211 kkxmmkxmkxm +=++  This operation is well defined 

and commutative. ~ 

Example 5. Let us find all 2-semhoms .: 66 ZZf →  If ( ),00 fk ==  

then ( ) ,Mxxf =  totalling to 6. If ( ),01 fk ==  then 1=M  and we have 

only one such function: ( ) .1+= xxf  If ,2=k  then 4,1=M  giving ,2+x  

.24 +x  If ,3=k  then 5,3,1=M  giving ,3+x  ,33 +x  .35 +x  If ,4=k  

then ,1=M  4=M  giving ,4+x  .44 +x  If ,5=k  then 1=M  giving 
.5+x  Thus we have: 0, x, 2x, 3x, 4x, 5x, ,1+x  ,2+x  ,24 +x  ,3+x  
,33 +x  ,35 +x  ,4+x  ,44 +x  5+x  totalling 15 functions. We notice that 

( ) ( ) ( ) ( ) ( ) 32166,5gcd6,4gcd6,3gcd6,2gcd6,1gcd6 +++=+++++  

1512 =++  as claimed. For example, if we pick ( ) ,44 += xxf  then 

( ) ,444 ++=+ yxyxf  ( ) ( ) 844 ++=+ yxyfxf  and we see that 

( ) ( ) ( ) ( ) ( ) ,24 =+=−+=+ yfxfyfxfyxf  ,442 1 += x  11 =x  and 

( ),12 f=  ( )( ) ( ) ( ) .042421 =+== fff  We notice that the composition 

of the two 2-semhoms: 5+x  after 44 +x  is 34 +x  which is not a 2-semhom. 
The resulting semigroup is a commutative semigroup of order 15. It is an 
inverse semigroup because it is commutative and the cube of every element 
is the element itself. 
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Example 6. Similarly we see that all such functions 99: ZZf →  are 

xxx 8...,,2,,0  and 1+x  and 2+x  and ,3+x  ,34 +x  ,37 +x  ,4+x  

,5+x  ,6+x  ,64 +x  ,67 +x  ,7+x  8+x  totalling 21. We notice that 

( )∑ = =++++++++=+ 8
1 211131131199,gcd9 n n  as expected. The 

resulting semigroup, although commutative, is not an inverse semigroup. 
( ) ( ) ( ) mxxdmxx =+++ 33  for every mx and so 3+x  is not a regular 

element in this semigroup. 

Problem 7. Is it true that the semigroup of all 2-semhoms on ,nZ  ,2>n  

n is not a prime, is an inverse semigroup if and only if n is square-free? 

Problem 8. What is the structure of the set of all m-semhoms, ,2>m  of 

the Abelian group ( )?, +nZ  

Problem 9. What is the structure of the set of all semhoms on the 
Abelian group ( )+× ,pp ZZ  or the like? 
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