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Abstract 

In a previous work, we investigated the stability of passive cloud flows 
at the stage of condensation and found that this process favored the 
instability of the flow. In the present paper, we diagnose the capacity 
of both gravity and entrainment to generate also instability 
mechanisms in passive cloud flows. The study shows that gravity 
waves cannot generate instability in the flow, whereas the entrainment 
is very destabilizing. Moreover, the amplification rate of the unstable 
modes is proportional to the entrainment rate and the flow becomes 
more and more unstable along with higher entrainment rate. 

I. Introduction 

Instabilities mechanisms are common physical phenomena occurring in 
one phase or multiphase fluid flows (Charru [1], Drazin [2], Danho [5], 
Takeuchi et al. [11], Timoshin and Smith [9], Malick and Singh [10], de 
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Verdière and Te Raa [12], Paşa [13], Wang et al. [14], Zhen et al. [15], Seo 
[16] and Milleta et al. [20]). 

Cloud flows in natural environment display multitude of regimes with 
variability in space as well as in time. However, any changing in the flow 
regime is most of the time accompanied by thermodynamics and momentum 
parameters variation leading to also phase changing in the cloud. All these 
processes determine the cloud status. The passive clouds are those which do 
not contain falling droplets and the active ones are those in which raindrops 
are present. Among many factors that influence the cloud dynamics, 
instabilities are some of the main mechanisms that impulse the changing. 
Many works have been done on this matter. Stability of atmospheric clouds 
flows has intensively been performed these last thirty years along with 
computational capacities. Most of those studies had been focused on frontal 
systems instabilities and particularly on conditional symmetric instabilities 
(Lemaître et al. [24] and Xu and Clark [21-23]). More recently, interest on 
the study of atmospheric clouds and those involving droplets dynamics as 
well has increased (Djué et al. [3, 6] and Shima et al. [17], Tao and Moncrieff 
[18] and Van Weverberg et al. [19]). Focus on interactions between air 
proper dynamics on the one hand and the cloud formation and maturity 
towards rainfalls dynamics has also increased (Djué et al. [3, 6], Grabowski 
et al. [25], Shima et al. [17] and Tao and Moncrieff [18]). On the other hand, 
these processes are very often sustained by instabilities mechanisms (Djué et 
al. [6, 8]). Recently, Djue et al. [4] have pointed out that the instability of a 
convective passive cloud is governed by an entrainment process between the 
cloud and its surrounding environment and that feeds the cloud parcel. They 
also found that convective passive clouds are stable to internal and gravity 
waves in the low atmosphere on the Jean vertical extent scale. In a newer 
paper, they pointed out [7] that the condensation process also enhances the 
flow instability in passive clouds. 

The present study is conducted to see if the accounting of cloud droplets 
in the passive cell contain can change the flow instability mechanisms. 
Indeed in [4], only the water vapor was considered in the cloud composition 
and this question was raised. 
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II. Linear Stability of an Isolated Passive Cloud Cell Flow in 
a Uniform Gravity Field 

The model governing the flow is similar to the one used in [3, 7] with a 
supplementary term accounting for gravity: 
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05321 =ξ=ξ=ξ=ξ   and  ( ).1 214 rrg ++−=ξ  (2) 

urra ,,, 21ρ  and p are, respectively, the dry air density, the water vapor 

mixing ratio, the cloud water mixing ratio, the velocity and the pressure, sc  

is the sound speed. 

It is easy to check that the following hydrostatic equilibrium flow 

;0;;; 2021010
======ρ=ρ bbb
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( ) cstepzrrgpp a
b =++ρ−= 020100 ;1

0
 (3) 

is a solution of (1). 

As usual, we add a perturbation to the above equilibrium stationary flow 
to investigate its stability. We can write 
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( ( ) ) ,~1 20100 0
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so that (1) becomes after linearization 
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The passive warm cloud model we are dealing with here is applicable to 
small cumuli at initial formation or fog which are located at altitude not 
higher than 1500 meters. These altitudes are compatible with the Jean’s scale 

hz  [1, 4], 
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such that 

 ( ) ( ( ) )zrrgPr ab 2010010 11.014.1
0

++ρ−−=β  (7) 

can be approximated by 

 ( ).1.014.1 1000 rP −=β  (8) 

hz  is approximately 9kms and (5) becomes 
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(9) admits solutions in the form ( ) ( ),expˆ,~ tkzjxtzx ω−=  where .12 −=j  

k is the wave number and ω is the pulsation. R∈k  and .C∈ω  We have 
then to solve the following algebraic system of equations: 
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which associated dispersion relation is 

 [ ] .02
0

223 =−ωω− ckj  (11) 

This leads to 

 021 ,0 kc=ω=ω   and  .03 kc−=ω  (12) 

These neutral modes, already encountered when we studied isolated 
convective atmospheric cells in a gravity field [4], show us that gravity has 
no destabilizing effect on passive clouds flow in absence of entrainment. 

III. Linear Stability of an Open Passive Cloud Flowing in a 
Uniform Gravity Field 

As the cloud is open, it has exchanges with its surrounding [3, 4]. Let us 
now account for the entrainment rate in the model governing the cloud flow 
to investigate the entrainment impact on the flow stability. This model has 
already been used in [3]. For the present study, the terms present in the 
equations have been finely computed and the linearization of mixing ratios 
terms has been done with judicious care. This leads to 
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where 
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In the above equations, « e » is relative to the environment. 

As the entrainment rate is low, we can see that the equilibrium stationary 
flow defined in (3) is also solution of (13). 
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By introducing (4) into (13) and after linearization, we get 
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Working again within the Jean’s scale hz  range ( ),hzz  the approximations 

lead to a homogeneous system of PDEs which modal solutions verify the 
following system: 
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The dispersion relation associated to (18) is 
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Taking each mode alone, it is not easy to determine algebraically the sign of 
the imaginary part. However, we can see that their sum is a pure imaginary 
complex number: 
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As the mixing ratios are weak (of order ),10 2−  then ( +τ+τ−π 104110 ree  

)205reτ  is a negative number. Since in general ,0>γ  therefore the imaginary 

part of the sum 321 ω+ω+ω  is positive. This means that at least one among 

the eigen frequencies has a positive imaginary part. This result is sufficient to 
conclude that the flow is destabilized when the cloud is nourished by its 
surrounding through the entrainment process in which .0>γ  Moreover, 

when the cloud loses mass and energy for the benefit of its surrounding by an 
entrainment process in which ,0<γ  we remark that the flow is still 

destabilized since from (21), γ−=ω j  has a positive imaginary part. So, 

whatever the sense of the exchange between the open cloud cell and its 
surrounding, the entrainment lets the cloud cell unstable. This result is 
confirmed by the direct simulations. Some results of these simulations are 

presented below for respectively 234 10;10;10 −−− =γ=γ=γ  and :0=γ  
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Case .410−=γ  

( )ie 0057721.45352.3241 −+−=ω  

( )ie 0057721.45352.3242 −+=ω  

( )iee 0064666.20084131.13 −−−=ω  

 

Figure 1. Eigen frequencies for .10 4−=γ  

Case .310−=γ  

( )ie 0047721.45352.3241 −+−=ω  

( )ie 0047721.45352.3242 −+=ω  

( )iee 0054666.20074131.13 −−−=ω  

 

Figure 2. Eigen frequencies for .10 3−=γ  
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Case .210−=γ  

i0048.05352.3241 +−=ω  

i0048.05352.3242 +=ω  

( )iee 0044666.20064131.13 −−−=ω  

 

Figure 3. Eigen frequencies for .10 2−=γ  

Case .0=γ  

5352.3241 =ω  

5352.3242 −=ω  

03 =ω  

 

Figure 4. Eigen frequencies for .0=γ  
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Results and comments 

The simulations confirm the theoretical results. The red dots on the 
figures represent unstable modes affixes whereas the green ones represent the 
stable modes. When ,0≠γ  there are two unstable modes 1ω  and ,2ω  as 

illustrated by Figure 1, Figure 2 and Figure 3. The stable mode 3ω  is very 

close to 0. It appears that the real part of the unstable modes 1ω  and 2ω  does 

not depend on the entrainment rate γ. This real part defines the instability 
waves speed that is linked to the sound speed .0c  The two unstable modes 

1ω  and 2ω  have the same imaginary part that is very dependent upon the 

entrainment rate γ. We observe that this dependence is linear when we run 
the model for different values of γ from 0. For the stable mode ,3ω  the real 

part as well as the imaginary part are linearly dependent upon γ. Moreover, 
the result of the simulation for the case 0=γ  (Figure 4) shows that 03 =ω  

as well as the imaginary parts of the modes 1ω  and .2ω  Finally, we must say 

that the entrainment has a destabilizing effect on the passive cloud flows, in 
the presence of cloud water. 

IV. Conclusion 

The present paper aimed to investigate the impact of the surrounding air 
entrainment rate on the stability of small cumuli and fogs assimilated to 
passive clouds involving very small droplets flows. Those clouds matured 
inside the Jean’s layer of thickness less than 9kms from the ground and their 
stability is not affected by gravity waves. However, any nourishment of these 
clouds or dissipation of them by an entrainment of the surrounding 
environment makes them become very unstable to any infinitesimal 
perturbation. The digital simulations revealed that the instability is strongly 
governed by the entrainment rate. The entrainment process characterizes 
roughly the melting of the cloud cell with its nearby environment through an 
instability mechanism. We showed that the amplification rate of the unstable 
modes is proportional to the entrainment rate γ. Thus, the higher the value of 
the entrainment rate, the more unstable the flow becomes and is susceptible 
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to develop a chaotic behavior. The present result has already been pointed 
out in [4]. However, in [4], cloud droplets were not taken into account in the 
model and the question was, if they had been, the results would have been 
the same? Moreover, in [4], we did not know how the amplification rate 
varied with the entrainment rate. The present study closes definitely the 
question: gravity does not destabilize passive clouds flows whereas exchange 
of the cloud cell with its surrounding through the entrainment process 
generates an instability mechanism in the flow leading to potential changes in 
its dynamics as well as thermodynamics. 
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