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Abstract

Let S be a Schur multiplier in a multiscale system. Then there is a
quasi-coisometric linear system whose state space is the extension

space 15(8) of the de Branges-Rovnyak space H(S) and the transfer
function is S.

1. Introduction

In this paper, the relationships between the theory of non-stationary
linear systems indexed by the integers and the theory of stationary multiscale
systems indexed by a homogeneous tree are explained. Stationary multiscale
systems were first introduced by Basseville et al. [5, 6]. In the non-stationary
case, we replace the Hardy space by space of upper triangular Hilbert
Schmidt operators, complex variables by the bilateral backward shift
operators [2, 3]. This paper presents a construction of a stationary multiscale
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system indexed by a homogeneous tree using the methods first introduced by

de Branges and Rovnyak.

We first review some of definitions using in the theory of multiscale

systems introduced by Basseville, Benveniste, Nikoukhah and Willsky.

A homogeneous tree 7 of order ¢ > 2 is an infinite acyclic, undirected,
connected graph such that every node of 7 has exactly (¢ + 1) branches.
For each nodes s, r € 7, the notion of distance d(s, t) is the number of

edges along the shortest path between s and ¢ and denote s A ¢ by the first of

their common node.

Using these notation, define the partial order < by
s 2t ifd(s,snt)<d, s nt)
and the equivalence relation < by
st ifd(s, s ant)=d(t s At).
The primitive shift operator y : 7 — 7T is defined by
=<t dy,t)=1 VieT.

Let /,(7) be the Hilbert space of square summable sequences indexed by

the nodes of a homogeneous tree 7 of order ¢ > 2:

12(7)={f:7a6:||f||;22 =Y 1r@oF <oo}

teT

Define the upward shift operator 7 : /5(7) — [,(7) by
V() = = £(67).
Vg

Then ¥ is an isometry but not unitary since it is not surjective. Denote the

adjoint operator of y by y.



The Extended Space of a Stationary Multiscale System 169

Let X(7') denote the C* -algebra of bounded linear operators on /5(7).

A multiscale system is a linear system of the form

v = Su, where u, y € H(7), (1.1)

where the transfer function S is in X(7"). The multiscale linear system (1.1)

is said to be causal if
(u(®) =0, Vet < 15) > (y(t) = 0, Vt < 1)
and it is said to be stationary if for every tree isometry T with
tty <t VieT,

the corresponding operator t:1,(7) — ,(7) defined by /() = f(¢%)

commutes with the transfer function S.

In [4], it has been shown that a causal and stationary multiscale system
can be represented by a series which is convergent in the operator norm. The
following definitions and results were announced in [4].

Define
c,=7"v".09=1,09g=1-0y, and ®, =6, —G,,|, n€Z,.
Then we have Yo, = ®,,;y and con?k =0 if n < k. Define a Banach
algebra
U(T) = spang{y"c,, :n, m = 0,1, 2.},

where the closure is taken in the pointwise sense and define the commutative

C* algebra K as

o0
K = {c = chook tcp € C,osupy| e | < oo}
k=0

with the usual operator norm [lc|,, = sup;|c;|. Let S & X(7). From
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Theorems 4.2 and 4.3 in [1], we can characterize a causal and stationary

multiscale linear system.

S € U(T) if and only if

)
S = Z?ksk’ where " Sk ”op = " S "op'
k=0

The multiscale system y = Su is both causal and stationary if and only
if S e U((T).

2. Multiscale Systems and Point Evaluations

In the stationary multiscale case, we consider the Hardy space as the

following space. Define a Hilbert space
o0 o0
K, ={c= chwk eK:Z|ck|2 <oo}
k=0 k=0
with the inner product
o0 _ o0 o0
(e, d>K2 = deck, where ¢ = chcok and d = dewk.
k=0 k=0 k=0
Define the Hilbert space
o0 o0
—ke . 2 2
Uy (T) = {F = >V Ak e Ko, | F G0y = Dl i, < w}
k=0 k=0
with the inner product

o0

(F, G>U2(T) = Z<fk’ gk)Kz’ where F = Z?kfk and G = Z?kgk.
k=0 k=0 k=0

Then the space U,(7) is contained contractively in U(7).
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Now exploit the left and right point evaluation on U(7). Let ¢ € K.
Define

e[l = (ey)"y", = 7" (ye)", 0 = ¢ = g,
) = "ey", ) = v "ey™" and ¢ =¢

for a non-negative integer n. Then

"l = (eyy'7" = " (e,
) =" (re)" = ("),
ymc(n) _ c(n+m)ym, c[n-ﬁ-l] _ c[n]c(n),

where

1
For ¢ € K with limsup,,_,.| cl”] [« <1, the series

Zc[k]sk and Z:sf,(_")cw>
k=0 k=0

are absolutely convergent in K. Define the space

1
I(7) ={c € K: p(c) = limsup| ol] [n <1}

n—»0

Let F = Z;::O?kfk € Uy(7) and ¢ € (7). The left point evaluation of

at ¢ is defined by

0

FNe) =Y elfl =3 (er) 7,
k=0

k=0
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and the right point evaluation of F at ¢ is defined by
. k) (k . =
FAe) = Y £l = 3" 75 (o).
k=0 k=0

The space U,(7) is a reproducing kernel space with respect to the left

and right point evaluations (Theorem 4.2 [4]).
Theorem 2.1. Let F € Uy(7T) and ¢ e D(T). For any k € K,, the
identities
A
(F, KxR)y, () = (F(e) K)g,» (F, KK{)y, (1) = (F7 (), k),
hold, where
K =(-7¢")", K§=(-¢7) eUyT).
We can apply similar argument on the space L(7 ), where
L(7T) = spang{o,y" :n,m=0,1,2, ..}
Define the Hilbert space
o0 o0
k. 2 2
Ly(T) = {G = kZ:gkY gk € Ko, [ Gl = kZ:" g [k, < OO}
=0 =0

with the inner product

0

o0 o0
(F, G>L2(T) = Z(fk, gk>K2’ where F = kayk and G = ngyk.
k=0 k=0 k=0

Theorem 2.2. Let G € X(7). Then G € L(T) if and only if it can be

represented as a row-wise converging series

o0
G = Zskyk, s; € K.
k=0
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Proof. G € L(7) ifand only if G* € U(T). O
We can define the left and right point evaluation on L,(7). Let G =

Z?:o gkyk , where g; € K, for each k. Define the left point evaluation of
G at c by
o0
k(= \k
G¥(e)= ) g (7o)
k=0
and the right point evaluation of F at ¢ by
o0
\% —\k k
V()= Y (P gt
k=0

Theorem 2.3. Let G € Ly(7) and ¢ € I(T). For any k € K,, the

identities
\Y
<Ga kK\c/>L2(T) = <GV(C), k)KZ’ <Ga K%k>L2(T) = <G (C), k>K2
hold where
KS=(I-cy)', K =(I-ve") " e Ly(7).

Proof. Since (cy)k = c[k]vk’

S=-eyy = Y () = YA
k=0 k=0

and
k
(G, kKC Z gr» ke'lk K, = <ngc[ ], k>
k=0 k=0 K,

= <Gv (C), k>K2
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Since (ye)f = yFelh) = (MFH) )k,

= (L —yet ) = Y (e = Y Ry
k=0 k=0

and

(G, KVK)y (1) = <Z ] > = (GV(e), k). O
k=0 K,

3. The Extension Space D(S)

In this section, we construct the extension space @(S) associated with

H(S) using the method introduced by de Branges and Rovnyak [8].

Definition 3.1. An operator S € U(7) is called a Schur multiplier if
IS oy <

Let S be a Schur multiplier and F € U,(7). Then the multiplication

operator

MS . Uz(T) —d Uz(T)

defined by M ¢F = SF is contractive [1]. Hence, the de Branges-Rovnyak
space H(S) also can be constructed in the multiscale cases [7, 8].
The space
H(S)={F € Uy(T): k(F) < o},
where

k(F)= sup {|F+SU ”U »T) ™ ||U"U2(T)}
UGUz(T)

is a Hilbert space with the inner product | ||$_{( s) = kL (F).
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Let k € K, and ¢ € (7). From

MSKSk = S™(c) Kk

DRHHEA
j=0

k=0

i i () L+

the reproducing kernel function K§ of the space H(S) is of the form

K§ = (1 - SM3)KS
00 k
_ S[kz: Z (J) J

For a Schur multiplier S, there exists a co-isometric linear system whose
transfer function is S (Theorem 6.1 in [1]).

Theorem 3.2. Let S be a Schur multiplier. Then there exists a linear

system
,_ [A BJ : (H(S)] . [H(S)J
c »p) K, K,
defined by
(4F) = (F = F"(0))v,
(Bk) = (S - 5"(0))ky,
CF = F/\(0),
and

Dk = S™(0)k, (3.1)
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i (W OJ
Vvt = (3.2)
0 I

where

and S can be written by
o0
Sk = Dk + Y 7" (ca" k)",
k=0

A linear system V is called to be quasi-coisometric if V satisfies (3.2).
The extension space f)(S ) associated with H(S) can be constructed.

Let F e H(S) and 4°F = G and B*F = H. Since the linear system
(3.1) is co-isometric, the identities

[(44")F + (BB*)F]=F and (CA™)F + (DB*)F =0

hold. Hence, we have

AF = Fy — SH.
Set
Fy=F, F,=A"F, |, Hy=B"F,, H, = B'F,_; for n > 1.
Then
Fy = Fy" = S(Hoy" ™ + -+ H,_y) € H(S)
and

| 7, ”%—((S) = <A*Fn—la A*Fn—1>H(S)
= (I = BB")F 1, Fyt)yys)

2 2
= By Bogs) 1 et I,

n—1
2 2
=1 F sy — D1 Hi i, - (3:3)
k=0
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Let the extension space D(S) associated with H(S) be the set of pairs

(F, H), where F € H(S) and H = Z?:o Hv* such that

Py = S(Hey" ™ + -+ H,_)) € H(S)
and the sequence

n—1

| B = S(HGT" ™+ Hop) sy + 20 Hi [,
k=0

is finite for every non-negative integer n. Then D 1(S) becomes a Hilbert

space with the inner product

IF. 1)l s)
1 2 < 2
= fim | || F¥" = S(Ho7"™ + -+ Hy) 35y + D1 Hilig, |- 34)
n—>0 k=0
From (3.2) and (3.3), we have
I(F, H) ”i)(s) =l F ”H(S)' (3.5)

The space D(S) is a reproducing kernel space.

Theorem 3.3. For each k € K,
(K$k. ($™ = S™(e) (I - 7¢) 'Kk¥) € D(S)
and

(F"(e), K)g, = ((F, H), (K§k, (8" = ™ () (I - ) 'K7)) s

Proof. Let k € K, and F e U,(7T). First represent Mg(KSky") as a

series for each non-negative integer n. Since

© k
MgF = SF = 73 s 1)
k=0 j=0
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and
o0 o0
K" = 7y = 3 7@ o),
k=0 k=0

k+n

<SF, Kik7n>H2 _ Z< gcj_’_)n ij, (c*[k]k)(”)>K
k=0

Jj=0

o k+n

S DN

k=0 j=0

Hence,

where

S S @, o<k<n

Zios;(k)(c J+k_"]k)(”), n<k

a; =

For0<k<n-1,
o0
—k —k o #[j
Vg = 38?0
Jj=0

o]

= > s (V)R
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For non-negative integer £,

7k+nak+n _ Zsj(k+n)(c*[j+k]k)(n)
=0

= yk Z Sj(k)c*[j+k]k7n.
j=0
Then (I — SMg)(KSky") € H(S) and

(7 - SMS)(K ky")
n—1 0
= K ky" - 5{27]{31{ + 27k+nak+nJ
k=0 k=0
n—1{ o
= Ksky" - Z{Z +nk(0*[]]k)(nk)J7k-

For each k with 0 < k < n—1, the series Z?:O s’;+n_k(c*[j]k)(n—k) is a
coefficient of " ¥~! in the series (S* — $*V(¢))(Z — y¢) 'k7,

e k
(8" =S™(E)( - 7e) 'Ky = D sioy* Y (e Yk

k=0 =0

0 k
- ZSZHZ(c*[/]k)(kﬂ—l)yk—/
k=0 j=0

0

Z sﬂl;Jerrl(C*[j]k )(kH) Yk

0l j=0

M s

B
Il

Hence

(K§k, (8" =™ ())(I - 7e) 'ky) € D(S).
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The reproducing kernel property in the space f)(S) holds since K§ is the

reproducing kernel function of the space H(S). O
The extension space f?(S) associated with H(S) is the state space of a

multiscale system.

Theorem 3.4. The extension space D(S) associated with H(S) is the

state space of a multiscale system which is defined by
. (4 B (D(s D(S

V= NE () - () , (3.6)
cC D K, K,

A(F, H)) = (F - F™0))y, Hy - S"F/(0)),

where

Bk = ((S = 8™(0)ky, (I - S"SY(0)k),
C((F, H)) = F(0), and
Dk = 5"(0)k.

The linear system satisfies the identity

W*((F’ H)J _ {(m (H - H" (0)) + HV(O))}

k k
Proof. Let k € K,. First claim that
(1= S5"(0))k, (S* ~ 5¥(0)")k7) € D(S),
where §* = ZZOZO sZyk. In order to that represent M g(ky") as a series.
n

(SF ")y, = 2 (i sk
k=0
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_ <F, iyks;@,gk<n>>
Ha

k=0

= <F, > s kR > .
Ha

k=0

Hence, we have
N Kk NO oy (F)on—k
* oo * —k)= * _
Mg(ky") = an—kk(" Wk = Zskk( Sy
k=0 k=0

and for each non-negative integer »,

n—1
(1= MgM3)(KF") = (1 - S (0) k7" - s[z szﬂk(kﬂ)y(n—k—l)}

k=0

is an element of H(S). Since (I — SS"(0)")k € H(S) and

[o0)

(5" = V() )k7 = D spkEym,
k=0

we have
(7 = SS™(0)")k, (8™ = $7(0)")k7) € D(S).
We can rewrite (I — M ¢Mg)(sgky") as the following way:

(I - MgMg)(soky")

= soky" - S[Z SZ(Sok)(k)V(n_k)]

k=0

=[S = SMO)kyy™! = S(T - sgso)ky" + [Z SZ(sok)(k)V"_k].
k=1
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Hence

(S = S™(0))ky, (I — S*SV(0))k) € D(S).

Assume that (F, H) e D(S) and write H = Zf:o h,y*. Then Fy-h,

e H(S) and
" = S(hgy" + -+ h,_7+h,)
= (F7 — Sho)7" = S(7" ' + -+ h,_7 +h,).
Hence, we have
(F7 = SH"(0), (H — H"(0))7) € D(S).
Since
((1 = SSM(0)") F(0), (8™ = SV(0)") FA(0)7) e D(S),
F —[I = SS™(0)]F"(0) = [(F = F(0))y]¥ + SS"(0)" F"(0) € H(S).
Since
H ~[S" = SY(0)"]F"(0)7 = (Hy = S"F"(0))7 + 5 (0) F"(0)7,
((F = F*(0))y, Hy = S"F"(0)) € D(S).
Define the linear system by
A((F, H)) = (F = F(0))y, Hy - S"F(0)),
Bk = ((S = S (0)ky, (1 - S"S¥(0))k),
C((F, H)) = F*(0), and

Dk = S (0)k.
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Then the adjoint of transformations are

A"((F, H)) = (Fy - SH" (0), (H — H"(0))7),
B*((F, H)) = H"(0),
C*k = ((I - SS™(0)")k, (S* = $V(0)*)ky), and

D'k = $™(0)k.

Hence, we have

[1]

[4]

[5]

I}I}*((F, H)] _ (Fyy, (H - HV(O))VV + HV(O)) '
k k
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