Far East Journal of Mathematical Sciences (FJMS)
© 2013 Pushpa Publishing House, Allahabad, India
Published Online: January 2014
Available online at http://pphmj.com/journals/fjms.htm Volume 82, Number 2, 2013, Pages 249-256

MATCHING NUMBER AND EDGE COVERING NUMBER ON TENSOR PRODUCT OF WHEELS

Chanasak Baitiang and Thanin Sitthiwirattham
Department of Mathematics
Faculty of Applied Science
King Mongkut's University of Technology North Bangkok
Bangkok 10800, Thailand

Abstract

Let $\alpha^{\prime}(G)$ and $\beta^{\prime}(G)$ be the matching number and edge covering number, respectively. The tensor product $G_{1} \otimes G_{2}$ of graphs G_{1} and G_{2} has vertex set $V\left(G_{1} \otimes G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E\left(G_{1} \otimes G_{2}\right)=\left\{\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) \mid u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$. In this paper, we determined generalization of matching and edge covering number on tensor product of wheel and any simple graph.

1. Introduction

In this paper, graphs must be simple graphs which can be trivial graph. Let G_{1} and G_{2} be graphs. The tensor product of graphs G_{1} and G_{2}, denoted by $G_{1} \otimes G_{2}$, is the graph that $V\left(G_{1} \otimes G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} \otimes G_{2}\right)$ $=\left\{\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) \mid u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$.

Next, we give the definitions about some graph parameters. A subset of the edge set E of G is said to be matching or an independent edge set of G, if no two distinct edges in M have a common vertex. A matching M is Received: October 26, 2013; Accepted: November 28, 2013

2010 Mathematics Subject Classification: 05C69, 05C70, 05C76.
Keywords and phrases: tensor product, matching number, edge covering number.
maximum matching in G if there is no matching M^{\prime} of G with $\left|M^{\prime}\right|>|M|$. The cardinality of maximum matching of G is called the matching number of G, denoted by $\alpha^{\prime}(G)$.

An edge of graph G is said to cover the two vertices incident with it, and an edge cover of a graph G is a set of edges covering all the vertices of G. The minimum cardinality of an edge cover of a graph G is called the edge covering number of G, denoted by $\beta^{\prime}(G)$.

By definitions of matching number, edge covering number, clearly that $\alpha^{\prime}\left(W_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and $\beta^{\prime}\left(W_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

In [2], there are some properties about tensor product of graph. We recall here.

Proposition 1. Let $H=G_{1} \otimes G_{2}=(V(H), E(H))$. Then
(i) $n(V(H))=n\left(V\left(G_{1}\right)\right) n\left(V\left(G_{2}\right)\right)$,
(ii) $n(E(H))=2 n\left(E\left(G_{1}\right)\right) n\left(E\left(G_{2}\right)\right)$,
(iii) for every $(u, v) \in V(H), d_{H}((u, v))=d_{G_{1}}(u) d_{G_{2}}(v)$.

Note that for any graph G, we have $G_{1} \otimes G_{2} \cong G_{2} \otimes G_{1}$.
Theorem 2. Let G_{1} and G_{2} be connected graphs. Then the graph $H=$ $G_{1} \otimes G_{2}$ is connected if and only if G_{1} or G_{2} contains an odd cycle.

Theorem 3. Let G_{1} and G_{2} be connected graphs with no odd cycle. Then $G_{1} \otimes G_{2}$ has exactly two connected components.

Next, we get that general form of graph of tensor Product of W_{n} and a simple graph.

Proposition 4. Let G be a connected graph of order m. Then the graph of $W_{n} \otimes G$ is

$$
\bigcup_{j=2}^{n} H_{1 j} \cup \bigcup_{i=2}^{n-1} H_{i(i+1)} \cup H_{2 n}
$$

where $V\left(H_{i j}\right)=S_{i} \cup S_{j}, \quad S_{i}=\{(i, 1),(i, 2), \ldots,(i, m)\} \quad$ and $\quad E\left(H_{i j}\right)=$ $\{(i, u)(j, v) / u v \in E(G)\}$. Moreover, if G has no odd cycle then each $H_{i j}$ has exactly two connected components isomorphic to G.

Example.

Figure 1. The graph of $W_{5} \otimes G$.

2. Matching Number of the Graph of $W_{n} \otimes G$

We begin this section by giving the definition and theorem for alternating path and augmenting path, Lemma 7 that shows character of matching for each $H_{i j}$.

Definition 5. Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M. An M-alternating odd path whose endpoints are unsaturated by M is an M-augmenting path.

Theorem 6. A matching M in a graph G is a maximum matching in G if and only if G has no M-augmenting path.

Next, we give Lemma 7 which shows the character of matching for each $H_{i j}$.

Lemma 7. Let $W_{n} \otimes G=\bigcup_{j=2}^{n} H_{1 j} \cup \bigcup_{i=2}^{n-1} H_{i(i+1)} \cup H_{2 n}$. For each $H_{i j}$, then $\alpha^{\prime}\left(H_{i j}\right)=2 \alpha^{\prime}(G)$.

Proof. Suppose G has no odd cycle, by Proposition 4 we get $H_{i j}=2 G$. So $\alpha^{\prime}\left(H_{i j}\right)=2 \alpha^{\prime}(G)$. If G has odd cycle, for each $H_{i j}$, vertex $\left(u_{i}, v\right) \in S_{i}$ and $\left(u_{j}, v\right) \in S_{j}$ have $d_{H_{i}}\left(\left(u_{i}, v\right)\right)=d_{H_{i}}\left(\left(u_{j}, v\right)\right)=d_{G}(v)$. Let $E^{*}=\left\{e_{i} / e_{i}\right.$ is any one edge in each odd cycle C_{i} in $\left.G, i=1,2, \ldots, l ;\left|E^{*}\right| \leq l\right\}$ and let M be the maximum matching of G.

Now consider the tensor product $\bigcup_{j=2}^{n} H_{1 j}^{*} \cup \bigcup_{i=2}^{n-1} H_{i(i+1)}^{*} \cup H_{2 n}^{*}=W_{n} \otimes$ $\left(G-E^{*}\right)$. We get $H_{i j}^{*}=2\left(G-E^{*}\right)$, then

$$
\alpha^{\prime}\left(H_{i j}^{*}\right)=2 \alpha^{\prime}\left(G-E^{*}\right)= \begin{cases}2\left[\alpha^{\prime}(G)-|\bar{E}|\right], & \text { if } \bar{E}=\{\bar{e} / \bar{e} \in M\}, \\ 2 \alpha^{\prime}(G), & \text { otherwise. }\end{cases}
$$

Adding edges in E^{*} with $W_{n} \otimes\left(G-E^{*}\right)$, we get $\alpha^{\prime}\left(H_{i}\right)=\alpha^{\prime}\left(\overline{H_{i}}\right)+|\bar{E}|$. Hence $\alpha^{\prime}\left(H_{i j}\right)=2 \alpha^{\prime}(G)$.

Next, we establish Theorem 8 for a matching number of $W_{n} \otimes G$.
Theorem 8. Let G be connected graph of order m. Then

$$
\alpha^{\prime}\left(W_{n} \otimes G\right)= \begin{cases}n \alpha^{\prime}(G), & \text { if } n \text { is even }, \\ n \alpha^{\prime}(G)+\left|\bar{M}_{2}\right|, & \text { if } n \text { is odd },\end{cases}
$$

where a matching $\bar{M}_{2}=\left\{u v / u\right.$ is not matched in maximum matching M_{2} in G and $\left.v \in N_{G}(u)\right\}$.

Proof. Let $V\left(W_{n}\right)=\left\{u_{i}, i=1,2, \ldots, n\right\}, V(G)=\left\{v_{j}, j=1,2, \ldots, m\right\}$, $S_{i}=\left\{\left(u_{i}, v_{j}\right) \in V\left(W_{n} \otimes G\right) / j=1,2, \ldots, m\right\}, i=1,2, \ldots, n$.

From $\alpha^{\prime}\left(W_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and let $\alpha^{\prime}(G)=k$. Assume that the maximum matching of W_{n} and G be

$$
M_{1}= \begin{cases}\left\{u_{1} u_{n}, u_{2} u_{3}, \ldots, u_{n-2} u_{n-1}\right\}, & \text { if } n \text { is even, } \\ \left\{u_{2} u_{n} 3, u_{4} u_{5}, \ldots, u_{n-1} u_{n}\right\}, & \text { if } n \text { is odd }\end{cases}
$$

and $M_{2}=\left\{v_{j} v_{j+1} / j=1,3, \ldots, 2 k-1\right\}$, respectively.
By Lemma 7, we have $\alpha^{\prime}\left(H_{i j}\right)=2 \alpha^{\prime}(G)$. Since $W_{n} \otimes G$ is

$$
\bigcup_{j=2}^{n} H_{1 j} \cup \bigcup_{i=2}^{n-1} H_{i(i+1)} \cup H_{2 n}
$$

We get the matching of $W_{n} \otimes G$ to be

$$
M= \begin{cases}\left\{M_{1 n} \cup M_{23} \cup \ldots \cup M_{(n-2)(n-1)}\right\}, & \text { if } n \text { is even, } \\ \left\{M_{23} \cup M_{45} \cup \ldots \cup M_{(n-1)(n)} \cup \bar{M}_{2}\right\}, & \text { if } n \text { is odd, }\end{cases}
$$

where $M_{i j} \subset E\left(H_{i j}\right), M_{i j}=\left\{\left(u_{i}, v_{a}\right)\left(u_{j}, v_{b}\right) / v_{a} v_{b} \in M_{2}\right\}$ and $\bar{M}_{2}=\{u v / u$ is not matched in maximum matching in G and $\left.v \in N_{G}(u)\right\}$.

Hence

$$
\alpha^{\prime}\left(W_{n} \otimes G\right) \geq \begin{cases}n \alpha^{\prime}(G), & \text { if } n \text { is even }, \\ n \alpha^{\prime}(G)+\left|\bar{M}_{2}\right|, & \text { if } n \text { is odd. }\end{cases}
$$

Figure 2. The matching M where n is odd.
Suppose that $\alpha^{\prime}\left(W_{n} \otimes G\right)>n \alpha^{\prime}(G)$, where n is even, then there exists a matching M^{*} is an augmenting path. That is not true because each edges in $W_{n} \otimes G$ either is in M, or adjacent to an edge of M. In the case n is odd, we have the same.

Hence

$$
\alpha^{\prime}\left(W_{n} \otimes G\right)= \begin{cases}n \alpha^{\prime}(G), & \text { if } n \text { is even }, \\ n \alpha^{\prime}(G)+\left|\bar{M}_{2}\right|, & \text { if } n \text { is odd. }\end{cases}
$$

3. Edge Covering Number of the Graph of $W_{n} \otimes G$

We begin this section by giving Lemma 9 that shows a relation of matching number and edge covering number.

Lemma 9 [1]. Let G be a simple graph with order n. Then $\alpha^{\prime}(G)+$ $\beta^{\prime}(G)=n$.

Next, we establish Theorem 10 for a minimum edge covering number of $W_{n} \otimes G$.

Theorem 10. Let G be connected graph of order m. Then

$$
\beta^{\prime}\left(W_{n} \otimes G\right)= \begin{cases}n \beta^{\prime}(G), & \text { if } n \text { is even }, \\ n \beta^{\prime}(G)-\left|\bar{M}_{2}\right|, & \text { if } n \text { is odd },\end{cases}
$$

where a matching $\bar{M}_{2}=\left\{u v / u\right.$ is not matched in maximum matching M_{2} in G and $\left.v \in N_{G}(u)\right\}$.

Proof. Let n be even, by Theorem 8 and Lemma 9, we can also show that

$$
\begin{aligned}
\alpha\left(W_{n} \otimes G\right)+\beta\left(W_{n} \otimes G\right) & =m n \\
n \alpha(G)+\beta\left(W_{n} \otimes G\right) & =m n \\
\beta\left(W_{n} \otimes G\right) & =m n-n \alpha(G) \\
& =n(m-\alpha(G)) \\
& =n \beta(G) .
\end{aligned}
$$

Let n be odd. Then we have

$$
\begin{aligned}
\alpha\left(W_{n} \otimes G\right)+\beta\left(W_{n} \otimes G\right) & =m n \\
n \alpha(G)+\left|\bar{M}_{2}\right|+\beta\left(W_{n} \otimes G\right) & =m n \\
\beta\left(W_{n} \otimes G\right) & =m n-n \alpha(G)-\left|\bar{M}_{2}\right| \\
& =n(m-\alpha(G))-\left|\bar{M}_{2}\right| \\
& =n \beta(G)-\left|\bar{M}_{2}\right| .
\end{aligned}
$$

Acknowledgement

This research (5742102) is supported by Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Thailand.

References

[1] B. W. Douglus, Introduction to Graph Theory, Prentice-Hall, 2001.
[2] P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 8 (1962), 47-52.
[3] Z. A. Bottreou and Y. Metivier, Some remarks on the Kronecker product of graph, Inform. Process. Lett. 8 (1998), 279-286.
[4] T. Sitthiwirattham, Matching number and edge covering number on Kronecker product of C_{n}, Internat. J. Pure Appl. Math. 72(3) (2011), 375-383.
[5] T. Sitthiwirattham, Matching, edge covering and edge dominating number of joined graph, Far East J. Math. Sci. (FJMS) 53(2) (2011), 217-224.
[6] T. Sitthiwirattham, Edge covering and matching number on Kronecker product of K_{n}, Appl. Math. Sci. 6(28) (2012), 1397-1402.

