
 

Far East Journal of Mathematical Sciences (FJMS)
© 2013 Pushpa Publishing House, Allahabad, India 
Published Online: January 2014 
Available online at http://pphmj.com/journals/fjms.htm
Volume 82, Number 1, 2013, Pages 23-32  

Received: August 26, 2013;  Accepted: November 1, 2013  
2010 Mathematics Subject Classification: 06A07. 
Keywords and phrases: partially ordered sets, linear discrepancy, graph bandwidth. 
This work was supported by Basic Science Research Program through the National Research 
Foundation of Korea (NRF:2010-0024414) funded by the Ministry of Education, Science and 
Technology (MEST). 
∗Corresponding author 

LINEAR DISCREPANCY OF THE COMPLETE  
k-ARY TREE-POSET 

Minseok Cheong and Sang-Mok Kim∗ 

GyeongGi Science High School for the Gifted 
Gyeonggi-do, Korea 
e-mail: toset@hanmail.net 

Department of Mathematics 
Kwangwoon University 
Seoul 139-701, Korea 
e-mail: smkim@kw.ac.kr 

Abstract 

In this paper, we determine, constructively, the linear discrepancy of 
,, hkT  the complete k-ary tree-poset of height h. By a construction of a 

natural labeling on the tree-poset, we give an upper bound of its linear 
discrepancy, and then we prove that this upper bound is tight. Finally, 

we establish ( ) ( ) .11
1

, hkkTld h
hk −−

−
=  

1. Introduction 

Throughout this paper, we use the notations [ ]n  and [ ]nm,  to denote 
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{ }n...,,1  and { },...,,1, nmm +  respectively, for positive integers m, n with 

.nm ≤  A partially ordered set (simply called a poset) P is denoted by 
( ),, PX ≤  where X is a finite ground set, and P≤  is the order relation of P. 

For a given poset ( ),, PXP ≤=  the notation Px ∈  simply denotes .Xx ∈  

For x and Py ∈  if ,yx P≤  i.e., ( ) ,, Pyx ≤∈  then x and y are said to be 

comparable. If ,, Pyx ∈  are not comparable, then it is denoted by .yx P||  

For ,Px ∈  the upset of x, denoted by [ ],xU  and the deleted upset of x, 

denoted by ( ),xU  are defined as the set of all elements Py ∈  with ,yx P≤  

and [ ] { },xxU −  respectively. Similar definitions of the downset and the 

deleted downset of an element Px ∈  are as follows: [ ] =xD  

{ },: xyPy P≤∈  and ( ) [ ] { },xxDxD −=  respectively. 

A finite poset of cardinality N∈n  is called an n-poset. The n-poset 
( )nn ≤= ,X  is called a chain of order n if either yx n≤  or xy n≤  for any 

., Xyx ∈  The height of an n-poset P is the maximal cardinality of any chain 

in P. For a poset ( ),, PXP ≤=  if a chain ( ) ( ( ) )PLXPL ≤= ,  has all 

relations of P, i.e., ( ),PLP ≤⊆≤  then ( )PL  is called a linear extension of P. 

For a given n-poset ( ),, PXP ≤=  an order preserving bijection [ ]nPf →:  

is called a natural labeling on P, or simply called a labeling on P. The linear 
discrepancy of a poset ( )PXP ≤= ,  is defined as 

( ) ( ) ( ) ,maxmin yfxfPld
Pyxf P

−=
∈||∈F

 

where F  is the set of all labelings of P. If we define the tightness of a 
labeling f on P as ( ) ( ) ( ) ,max yfxfPT Pyxf P −= ∈||  then we can simply 

write ( )Pld  as ( ).min PTff F∈  For a given labeling f on P, if ( ) ( ),PldPTf =  

then we call such f an optimal labeling. For a given optimal labeling f and 
Pyx ∈,  with ,yx P||  if ( ) ( ) ( ) ,yfxfPld −=  then such pair of x and y is 

called an optimal pair of f. 
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The problem of determining the linear discrepancy of a poset was known 
as an NP-complete problem (see Fishburn et al. [3] in 2001), in general. 
Since then, the linear discrepancies of well-known posets have been 
separately determined without any general algorithm. In 2001, Tanenbaum     
et al. [8] determined not only the linear discrepancies of some simple 
structured posets such as the sum of chains, a standard example ,nS  a 

Boolean lattice ,nB  etc., but also that of a Boolean lattice of order n. In 

2005, Hong et al. [4] gave the linear discrepancy of the Cartesian product of 
two chains of size m and n. In 2008, Kim and Cheong [6] gave the linear 
discrepancy of the Cartesian product of three chains of size 2t. Recently, the 
same authors gave the complete answer for the Cartesian product of three 
chains of the same size in [2], and some asymptotic results on the general 
product of chains of the same size in [1]. 

A tree-poset is the poset whose covering graph (or Hesse diagram) forms 
a rooted tree as a graph, which is a connected graph having no cycles. In 
terms of poset theory (see [9]), it can also be defined as a connected poset T 
such that either [ ]xU  is always a chain for each ,Tx ∈  called a down-tree, 

or [ ]xD  is always a chain for each ,Tx ∈  called an up-tree. It is obvious 

that the only tree poset which is a down-tree as well as an up-tree is a chain. 
In graph theory, the bandwidth can be thought of an analogous parameter to 
the linear discrepancy in poset theory. While the bandwidth of the complete 
tree has been determined (see Smithline [7] in 1995), the linear discrepancy 
of the complete tree-poset has not been seen in the previous studies, yet. 

In this paper we deal with the linear discrepancies of complete tree-
posets. We first give a construction of a natural labeling of a complete k-ary 
tree-poset of height h whose tightness is the cardinality of the tree-poset 
minus its height so that we have an upper bound of the linear discrepancy of 
a complete k-ary tree poset of height h. Next, we prove that this upper bound 
is also a lower bound, so that we finally obtain the linear discrepancies of the 
complete tree-posets. 
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2. Construction of a Labeling of the Complete k-ary Tree-poset 

In this section, we construct a labeling of a complete tree-poset from 
which we can obtain an upper bound of the linear discrepancy of a complete 
tree-poset. We begin with some terminologies and definitions for tree-posets. 
For the sake of avoiding redundancy, we restrict our definition of a tree-poset 
to that of a down-tree, i.e., we define a tree-poset T as a connected poset with 
the property that [ ]xU  is always a chain for each .Tx ∈  As in graph theory, 

for positive integers k and h, we use the notation for the k-ary complete tree-
poset of height h tree to be denoted by ., hkT  Let { [ ]xUTxT hki :,∈=  

}1+−= ih  for ....,,1 hi =  Then { }iT  partitions the elements of hkT ,  into h 

subsets of the ground set of hkT ,  in which any two distinct elements in the 

same subset iT  are incomparable ( ).1 hi ≤≤  The element of hT  is called 

the root of ,, hkT  and each element in 1T  is called a leaf of ., hkT  From the 

definition of down-tree, we directly obtain the following lemma on counting. 

Lemma 2.1. Let k and h be positive integers with .2≥k  For a given 
complete k-ary down-tree ,, hkT  we have the followings: 

  (i) ( ).11
1

1, −
−

=++= h
hhk kkTTT  

 (ii) qh
q kT −=  for ....,,1 hq =  

(iii) ( ) qhxU −+= 1  if qTx ∈  for ....,,1 hq =  

(iv) ( ) ( )11
1 −
−

= qkkxD  if qTx ∈  for ....,,1 hq =  

Let ., α=hkT  Then we now give a construction of a natural labeling 

α→hkTf ,:  which becomes a bijective order preserving map, as follows. 

Construction 2.2. Let ( )Thk XT ≤= ,,  be a complete k-ary down-tree of 

height h, and v be a leaf of ,, hkT  i.e., .1Tv ∈  From (iii) in Lemma 2.1, we 
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note that [ ]vU  is a chain of height h which is a maximal chain in ., hkT  Now 

we define some subsets of X for our construction of a natural labeling, as 
follows: 

• Index the elements of [ ]vU  as hxx ...,,1  such that ,1 vx =  and 

ii Tx ∈  so that 1+≤ iTi xx  for .1...,,1 −= hi  Note that the leaf 

1xv =  is the minimum of [ ],vU  and the root hx  is the maximum of 

[ ].vU  

• Pick an element z in [ ].1 vUTh −−  Let 1+= hxz  and =1A  

[ ] { }∪ .1+hxvU  Note that we can always choose such an element z 

since the root hx  has ( )2≥k  children. Clearly, 1A  is the set of these 

1+h  indexed elements ix  for .1...,,1 += hi  

• Define [ ] ∪ 1
1

−
=−= i

j jii AxDA  for ....,,2 hi =  Note that 

⎪⎩

⎪
⎨
⎧

=−
−=−

=+
=

−

−

hik
hik

ih
A

h

i
i

if,2
,1...,,2if,1

,1if,1

1

1  

from Lemma 2.1. 

Let ( )11
1 −
−

=α hkk  be the cardinality of ., hkT  With the set of indexed 

elements iA ’s ( ),...,,1 hi =  we now define a labeling map [ ]α→hkTf ,:  

on the elements of ,, hkT  as follows: 

(1) For ,1Axx i ∈=  define ( )xf  as 

( ) ( ) ,1,1 11 +−α== + hxfxf h  

( ) ihxf i +−α=  if ....,,2 hi =  

(2) For ,...,,2 hi =  we assign an element x in iA  to ( )xf  as to satisfy 

the following conditions: 
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• ( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡
−α+−

−
−

−=⎥
⎦

⎤
⎢
⎣

⎡
+−

−
−+−

−
−

∈ −

−

,if,41

,1...,,2if,21,41
1

1

hihhk
kk

hiik
kkik

kk

xf h

ii

 

• ( ) ( )yfxf <  if ,yx T≤  

• ( ) ( )yfxf <  if ,si TAx ∩∈  and ti TAy ∩∈  with .ts <  

For x and ,Py ∈  an incomparable pair ( )yx,  is critical if and only if 

( ) ( )yDxD ⊆  and ( ) ( ).xUyU ⊆  The following lemma, introduced by 

Keller and Young [5], is useful for determining the linear discrepancy of a 
poset. 

Lemma 2.3 [5]. For a poset P, and its labeling f, let x and x′  be 

elements in P. If ( )xx ′,  is a tight pair, i.e., ( ) ( ) ( ),PTxfxf f=−′  then 

( )xx ′,  is a critical pair in P. 

Proposition 2.4. For a given complete tree-poset ,, hkT  the bijective map 

hkhk TTf ,,: →  given by Construction 2.2 is a natural labeling whose 

tightness is ( ) ( ) .11
1

, hkkhTT h
hkf −−

−
=−α=  

Proof. It is obvious that the constructed map f is a bijection, since the 
sets ( )hiAi ...,,1=  form a partition of ,, hkT  and the closed intervals in part 

(2) in the construction have the same cardinalities as the iA ’s. Furthermore, f 

preserves the order relation of ., hkT  For, in Construction 2.2, f is defined as 

to keep the order relation of hkT ,  within each ( ),...,,2 hiAi =  respectively, 

and any two elements belonging to two distinct sets are incomparable. 
Furthermore, 1A  consists of one lowest labeled element 1x  and 1−h  highest 

labeled elements from the top ., hkT   
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We show that ( ) ,,, hTTT hkhkf −=  that is, for all incomparable pairs 

x and y in ,, hkT  

( ) ( ) ( ) ( ) ( ).11
1

11 xfxfhkkxfyf h
h −=−−

−
≤− +  (1) 

From Lemma 2.3, it is sufficient to evaluate the differences of labels of 
critical pairs for determining the linear discrepancy. Let ( )yx,  be a critical 

pair in ., hkT  Then x is a leaf of ., hkT  For a leaf x, there is 1−∈ hTy  such that 

( ) ( )yfxf <  and ( ) ( )xfyf −  is maximal for a given x from Construction 

2.2. Hence, we only check two cases: (i) ,hAx ∈  and (ii) .hAx ∉  

Suppose that .hAx ∈  Then ( ) ,41

1
+−

−
−≥

−
hk

kkxf
h

 and ( ) ≤yf  

.11
1 −

−
−

k
k h

 Hence, we have 

( ) ( ) ( ) hhk
kkxfyf

h
−α<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

−
−−−α≤−

−
411

1
 

since .51

1
+−

−
−<

−
hk

kkh
h

 

Now, suppose that .hAx ∉  Then ( ) ,1≥xf  and ( ) .1+−α≤ hyf  

Hence, we have 

( ) ( ) .11 hhxfyf −α=−+−α≤−  

In fact, ( ) ( ) .11 hxfxf h −α=−+  Therefore, we conclude that the tightness 

of f is ( ) ( ),11 xfxf h −+  which is ( ) .11
1 hkk

h −−
−

 � 

Example 2.5. From Construction 2.2, we give an order-preserving 
bijection (a natural labeling) on .4,3T  In this example, ,3=k  ,4=h  and 

.404,3 =T  The sets ,iA  for ,4,3,2,1=i  and the values for the labels of 
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the elements can be obtained from the definitions. Furthermore, the labels 
satisfy the following values, so that a possible assignment to the elements of 

4,3T  is illustrated in Figure 1. 

( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]36,12,11,4,3,2,40,37 4321 ==== AfAfAfAf  

where ( ) ,11 =xf  ( ) ,382 =xf  ( ) ,393 =xf  ( ) ,404 =xf  and ( ) .375 =xf  

From Proposition 2.4, we have ( ) .364,3 =TT f  

 

Figure 1. The labeling f of 4,3T  obtained from Construction 2.2. 

3. ( )hkTld ,  from the Tight Upper Bound 

In this section, we give an upper bound of the linear discrepancy of 
,, hkT  from Construction 2.2, and prove that the upper bound is also its lower 

bound, that means the upper bound is tight. 

From Proposition 2.4, we have an upper bound of the linear discrepancy 
of hkT ,  as follows. 

Proposition 3.1. For a k-ary complete tree-poset hkT ,  of height h, we 

have 

( ) ( ) .1
1

1
,, hThk

k
Tld hk

h
hk −=−−

−
≤  
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The following proposition shows that the upper bound in Proposition 3.1 
is also a lower bound, i.e., the constructive lower bound is tight. 

Proposition 3.2. For a given complete tree-poset ,, hkT  we have 

( ) ( ) .11
1

,, hThkkTld hk
h

hk −=−−
−

≥  

Proof. Let ., α=hkT  Assume that ( ) ,1, −−α≤ hTld hk  and let f be 

an optimal labeling. Then there is an element 1x  in 1T  such that ( ) .11 =xf  

Let y be an element in hkT ,  such that .1 yx T||  Then ( ) hyf −α≤  since 

( ) .1, −−α≤ hTld hk  Hence, every element hkTz ,∈  such that ( ) >zf  

h−α  is comparable to ,1x  i.e., ( ).1xUz ∈  Note that the set consisting of 

incomparable elements to 1x  is [ ].1, xUT hk −  Hence, for [ ],1, xUTy hk −∈  

we have ( ) ,2 hyf −α≤≤  i.e., [ ] .11, −−α≤− hxUT hk  Since ( )1xU  

,h=  we have 

[ ] [ ]11,, xUxUTT hkhk +−=  

hh +−−α≤ 1  

.1 , hkT=α<−α=  

This is a contradiction. Therefore, we conclude ( ) ., hTld hk −α≥   � 

From Propositions 3.1 and 3.2, we finally determine the linear 
discrepancy of the complete k-ary tree poset hkT ,  of height h as follows: 

Theorem 3.3. ( ) ( ) .1
1

1
,, hThk

k
Tld hk

h
hk −=−−

−
=  

Example 3.4. We note that the tightness of the natural labeling f on 4,3T  

in Example 2.5 is 36. From Theorem 3.3, we finally have ( ) hTld −α=4,3  

36440 =−=  which coincides with the tightness of f constructed by 
Construction 2.2. 
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