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Abstract 

Some well-known combinatorial identities appear to be special cases 
of more general identities in integral domains. 

Let D be an integral domain (i.e., a commutative ring with 1 but without 
zero divisors) embedded in its quotient field, so that division makes sense. If 

nddd ...,,, 21  are nonzero elements of D, ,1≥n  and ,00 =d  then the 

following relations hold: 
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This is a generalization of the familiar combinatorial identity 

 ( )∑
=

−=⎟
⎠
⎞

⎜
⎝
⎛−

n

i

i
i
n

1
11  (B) 

to which (A) reduces when ,idi =  ....,,2,1 ni =  The generalization was 

proved in [1], in the context of matrix inversion in integral domains. 
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If nd  in (A) is replaced by ,nd−  then 
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which is a generalization of the identity 
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to which (C) reduces when ,idi =  ....,,2,1 ni =  This is so because 
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See [2, p. 54]. More generally, when ,iddi =  ,Dd ∈  ,0≠d  ,...,,2,1 ni =  

the same result is obtained. 

When ,ddi =  ,Dd ∈  ,0≠d  ,...,,2,1 ni =  then (C) becomes a 

geometric series, 
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Of particular interest is the case when the id  form a geometric 

progression. When ,ii rd =  ,Dr ∈  ,0≠r  ,...,,2,1 ni =  then the terms in 

(C) become 
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so that 
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Although the initial assumption was ,0≠r  if ,xr =  a complex number 

satisfying ,1<x  then the sequence of functions ( )xSS nn =  converges to 

some ( ).xS  Recall that if ( )jq  represents the number of partitions of the 

integer j into distinct parts, ,N∈j  then the generating function for the ( )jq  

is given by ( ) ( )∑ ∏∞
=

∞
= +=0 1 1j k

kj xxjq  ([3]). Both the infinite product 

and the infinite series converge for ,1<x  to some ( ) ( )∑∞
== 0 .j

jxjqxQ  

Thus, 
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when ,idi =  ,...,,2,1 ni =  in general, nS  does not appear to have a 

particularly compact expression. To compute ,nS  note that 
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( ) ( )[ ]21 −−−++ innni dddddd  

( ) ( )[ ] ( ) ( )[ ]).1121 −− −−+−−++ nnnnnnn ddddddddd  

With the conventions that 10 −= ndd  (so that )10 =− ddn  and 

,11 =+nd  then ( ) ( );1 1
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when ,2=j  the product ( ) ( ) ,221 njnnnj dddddddd =−− −  and 

when ,1+= nj  that product equals ( ) ( ).11 −−− nnn dddd  nS  also can be 

expressed as ( ).1 1
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The principal hurdle in attempting analogize these generic formulas to 

classical combinatorics is the lack of symmetry analogous to .⎟
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In general, it is not reasonable to expect that 
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