JP Journal of Algebra, Number Theory and Applications

© 2013 Pushpa Publishing House, Allahabad, India
Published Online: January 2014
Available online at http://pphmj.com/journals/jpanta.htm
Volume 31, Number 1, 2013, Pages 1-4

GENERIC COMBINATORIAL IDENTITIES

E. F. Cornelius, Jr.
University of Detroit Mercy
22955 Englehardt Street
Saint Clair Shores
Michigan 48080-2161, U. S. A.

Abstract

Some well-known combinatorial identities appear to be special cases of more general identities in integral domains.

Let D be an integral domain (i.e., a commutative ring with 1 but without zero divisors) embedded in its quotient field, so that division makes sense. If $d_{1}, d_{2}, \ldots, d_{n}$ are nonzero elements of $D, n \geq 1$, and $d_{0}=0$, then the following relations hold:

$$
\begin{equation*}
\sum_{i=1}^{n}(-1)^{i} \frac{\left(d_{n}-d_{0}\right) \cdots\left(d_{n}-d_{i-1}\right)}{d_{1} \cdots d_{i}}=-1 . \tag{A}
\end{equation*}
$$

This is a generalization of the familiar combinatorial identity

$$
\begin{equation*}
\sum_{i=1}^{n}(-1)^{i}\binom{n}{i}=-1 \tag{B}
\end{equation*}
$$

to which (A) reduces when $d_{i}=i, i=1,2, \ldots, n$. The generalization was proved in [1], in the context of matrix inversion in integral domains.
Received: May 16, 2013; Accepted: September 21, 2013
2010 Mathematics Subject Classification: 05A17, 05A19, 05E99, 13G05.
Keywords and phrases: integral domains, algebraic combinatorics, combinatorial identities, integer partitions, generating functions.

If d_{n} in (A) is replaced by $-d_{n}$, then

$$
\sum_{i=1}^{n} \frac{\left(d_{n}+d_{0}\right) \cdots\left(d_{n}+d_{i-1}\right)}{d_{1} \cdots d_{i}}=2 \frac{\left(d_{n}+d_{0}\right) \cdots\left(d_{n}+d_{n-2}\right)\left(d_{n}+d_{n-1}\right)}{d_{1} \cdots d_{n-1} d_{n}}-1 \text { (C) }
$$

which is a generalization of the identity

$$
\begin{equation*}
\sum_{i=1}^{n}\binom{n+i-1}{i}=\binom{2 n}{n}-1 \tag{D}
\end{equation*}
$$

to which (C) reduces when $d_{i}=i, i=1,2, \ldots, n$. This is so because

$$
2 \frac{n(n+1) \cdots(2 n-1)}{n!}=2 \frac{(n-1)!n(n+1) \cdots(2 n-1)}{(n-1)!n!}=2 \frac{(2 n-1)!}{(n-1)!n!}
$$

and

$$
\binom{2 n}{n}=\frac{(2 n)!}{n!n!}=\frac{2 n(2 n-1)!}{n!n!}=2 \frac{(2 n-1)!}{(n-1)!n!} .
$$

See [2, p. 54]. More generally, when $d_{i}=i d, d \in D, d \neq 0, i=1,2, \ldots, n$, the same result is obtained.

When $d_{i}=d, \quad d \in D, \quad d \neq 0, \quad i=1,2, \ldots, n$, then (C) becomes a geometric series,

$$
\sum_{i=1}^{n} \frac{d(2 d)^{i-1}}{(d)^{i}}=\sum_{i=1}^{n} 2^{i-1}=2^{n}-1=2 \frac{d(2 d)^{n-1}}{d^{n}}-1=\frac{2^{n} d^{n}}{d^{n}}-1
$$

Of particular interest is the case when the d_{i} form a geometric progression. When $d_{i}=r^{i}, r \in D, r \neq 0, i=1,2, \ldots, n$, then the terms in (C) become

$$
\begin{aligned}
\frac{r^{n}\left(r^{n}+r\right) \cdots\left(r^{n}+r^{i-1}\right)}{r \cdots r^{i}} & =r^{n} r\left(r^{n-1}+1\right) \cdots r^{i-1}\left(r^{n-i+1}+1\right) / r^{\frac{i(i+1)}{2}} \\
& =r^{n-i}\left(r^{n-1}+1\right) \cdots\left(r^{n-i+1}+1\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
S_{n} & =\sum_{i=1}^{n} r^{n-i}\left(r^{n-1}+1\right) \cdots\left(r^{n-i+1}+1\right)=2\left(r^{n-1}+1\right) \cdots(r+1)-1 \\
& =2 \prod_{i=1}^{n-1}\left(r^{i}+1\right)-1 .
\end{aligned}
$$

Although the initial assumption was $r \neq 0$, if $r=x$, a complex number satisfying $|x|<1$, then the sequence of functions $S_{n}=S_{n}(x)$ converges to some $S(x)$. Recall that if $q(j)$ represents the number of partitions of the integer j into distinct parts, $j \in \mathbb{N}$, then the generating function for the $q(j)$ is given by $\sum_{j=0}^{\infty} q(j) x^{j}=\prod_{k=1}^{\infty}\left(1+x^{k}\right)$ ([3]). Both the infinite product and the infinite series converge for $|x|<1$, to some $Q(x)=\sum_{j=0}^{\infty} q(j) x^{j}$. Thus,

$$
S(x)=2 Q(x)-1 .
$$

Although $S_{n}=\sum_{i=1}^{n} \frac{\left(d_{n}-d_{0}\right) \cdots\left(d_{n}-d_{i-1}\right)}{d_{1} \cdots d_{i}}$ does reduce to $\sum_{i=1}^{n} 2^{n}-1$
when $d_{i}=i, i=1,2, \ldots, n$, in general, S_{n} does not appear to have a particularly compact expression. To compute S_{n}, note that

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{\left(d_{n}-d_{0}\right) \cdots\left(d_{n}-d_{i-1}\right)}{d_{1} \cdots d_{i}} \\
= & \frac{d_{n}-d_{0}}{d_{1}}+\frac{\left(d_{n}-d_{0}\right)\left(d_{n}-d_{1}\right)}{d_{1} d_{2}} \\
& +\cdots+\frac{\left(d_{n}-d_{0}\right) \cdots\left(d_{n}-d_{n-2}\right)}{d_{1} \cdots d_{n-1}}+\frac{\left(d_{n}-d_{0}\right) \cdots\left(d_{n}-d_{n-1}\right)}{d_{1} \cdots d_{n}} \\
= & \frac{d_{n}}{d_{1} \cdots d_{n-1} d_{n}}\left(\left[d_{2} \cdots d_{n}\right]+\left[d_{3} \cdots d_{n}\left(d_{n}-d_{1}\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\cdots+\left[d_{i} \cdots d_{n}\left(d_{n}-d_{1}\right) \cdots\left(d_{n}-d_{i-2}\right)\right] \\
& \left.+\cdots+\left[d_{n}\left(d_{n}-d_{1}\right) \cdots\left(d_{n}-d_{n-2}\right)\right]+\left[\left(d_{n}-d_{1}\right) \cdots\left(d_{n}-d_{n-1}\right)\right]\right) .
\end{aligned}
$$

With the conventions that $d_{0}=d_{n}-1$ (so that $d_{n}-d_{0}=1$) and $d_{n+1}=1$, then $S_{n}=\frac{1}{d_{1} \cdots d_{n-1}} \sum_{j=2}^{n+1} d_{j} \cdots d_{n}\left(d_{n}-d_{1}\right) \cdots\left(d_{n}-d_{j-2}\right)$; i.e., when $j=2$, the product $d_{j} \cdots d_{n}\left(d_{n}-d_{1}\right) \cdots\left(d_{n}-d_{j-2}\right)=d_{2} \cdots d_{n}$, and when $j=n+1$, that product equals $\left(d_{n}-d_{1}\right) \cdots\left(d_{n}-d_{n-1}\right)$. S_{n} also can be expressed as $\frac{1}{d_{1} \cdots d_{n-1}} \sum_{j=2}^{n+1} \prod_{j \leq k \leq n, 1 \leq l \leq j-2} d_{k}\left(d_{n}-d_{l}\right)$.

The principal hurdle in attempting analogize these generic formulas to classical combinatorics is the lack of symmetry analogous to $\binom{n}{i}=\binom{n}{n-i}$. In general, it is not reasonable to expect that

$$
\frac{\left(d_{n}-d_{0}\right) \cdots\left(d_{n}-d_{i-1}\right)}{d_{1} \cdots d_{i}}=\frac{\left(d_{n}-d_{0}\right) \cdots\left(d_{n}-d_{n-i-1}\right)}{d_{1} \cdots d_{n-i}}, \quad i=1, \ldots, n-1 .
$$

References

[1] E. F. Cornelius, Jr. and P. Schultz, Root bases of polynomials over integral domains, in Models, Modules and Abelian Groups, de Gruyter, 2008, pp. 238-248.
[2] D. Knuth, Fundamental Algorithms, Vol. 1, The Art of Computer Programming, Addison-Wesley, 2nd ed., 1973.
[3] http://en.wikipedia.org/wiki/Partition_(number_theory).

