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Abstract 

Recently, maximum overlap discrete wavelet transform (MODWT) 
has gained very high attention in many fields and applications such as 
finance, engineering, signal processing, applied mathematics and 
statistics. In this paper, we present the advantages of MODWT in 
analyzing financial time series data and extend the working done by 
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[13]. Amman stock exchange (ASE) from Jordan was selected as a 
tool to show the ability of MODWT in detecting the fluctuations in the 
banking sector in ASE. Finally, the claim is that MODWT is better 
than wavelet transform (WT) in the analysis processes has approved in 
content of ASE. 

1. Introduction 

During the last three decades, the banking sector was very stable in 
Jordan, very few number of banks have exited from the market, since this 
sector has a very nice environment for growing, well capitalized, liquid and 
profitable and privately owned, open to external investors. Moreover, this 
sector has comprehensive banking services: retail, corporate, Islamic, and      
e-banking and loans, Payment System: Real Time Gross Settlements and 
Electronic Cheque Clearing System. Generally, this sector has regional 
banks: 137 branches outside Jordan. 

These reasons motivate the researchers to focus in analyzing the banking 
sector in Jordan and study their fluctuations since the analysis of stock 
market data specially the banking data is one of the key issues to obtain 
insight into the data; to identify patterns, trends or correlations; to detect the 
fluctuations in the data and to understand the past and current behaviors of 
the stock market. In addition, identifying the distribution of the analyzed data 
is very important and necessary for understanding the market dynamics as 
well as to determine when particular events occurred. 

Usually time series are not deterministic series. In fact, in many cases, 
the researchers considered the series to be stationary time series. One way to 
model any time series is to consider it as a deterministic function plus white 
noise. The white noise in any time series process can be minimized by some 
procedures which are called the de-noising. Then a better model can be 
obtained. Consequently, to obtain a good de-noising, there are some 
mathematical models that can be applied such as Fourier transform and WT. 

In this regard, WT has used as an effective method to analyze or 
decompose stock market data compared to fast Fourier transform (FFT), for 
more details, refer to [11, 12]. Whereas the following sections of this paper 
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will support this contention by proving the effectiveness and efficiency of 
MODWT in analyzing stock market data and study real world problems in 
the Jordan banking. 

This paper is organized as follows: The next section describes the 
mathematical literature review. Section 3 provides a description of data set. 
Section 4 describes the methodology. The experimental results are presented 
to demonstrate the effectiveness of WT in using banking data will be 
presented in Section 5. In Section 6, we summarize our contributions and 
mention the conclusion. 

2. Literature Review 

WT is a mathematical model that transforms the original signal 
(especially with time domain) into a different domain for analysis and 
processing [8]. This model is very suitable with the non-stationary data, i.e., 
mean and autocorrelation of the signal are not constant over time that is well 
known, most of the financial time series data are non-stationary that is why 
we applied WT. 

In mathematical literature, FFT decomposed the original signal into a 
linear combination as a sine and cosine function whereas by WT, the signal 
is decomposed as a sum of a more flexible function called wavelet that is 
localized in both time and frequency. The WT was used to adopt a wavelet 
prototype function (mother wavelet). Temporal analysis is constructed with a 
contracted, high-frequency version of prototype wavelet whereas frequency 
analysis is performed with a dilated, low frequency version of the prototype 
wavelet. Because the function can be represented in terms of a wavelet 
expansion (using coefficients in a linear combination of the wavelet 
functions), data decompositions can be constructed by just using the 
corresponding wavelet coefficients. There are several types of WT. 
Depending on the applications, regarding the continuous input signal, the 
time and scale parameters can be continuous, leading to the continuous WT 
(CWT). On the other hand, the discrete WT (DWT) can also be used for 
discrete time signals. 
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In the WTs case, consider that the time domain is the original domain. 
Although, WTs are the transformation processes from time domain to time 
scale domain, these processes are known as signal decomposition because a 
given signal is decomposed into several other signals with different levels of 
resolution. These processes allow recovering the original time domain signal 
without losing any information. WT has reverse process which is called the 
inverse WT or signal reconstruction [4, 7]. 

As a critical review about the model used in this paper, MODWT has 
some more advantage than DWT which motivates us to focus in its 
application and compare it with DWT, such as; MODWT is not orthonormal 
(in fact, MODWT is highly redundant), MODWT can be defined naturally 
for any sample sizes (i.e., N need not be a multiple of a power of two) and 
the analysis of variance (ANOVA) can be applied on MODWT wavelet 
coefficients. Therefore, in this paper, we will focus on the most famous types 
of DWTs which are HWT (Haar wavelet transform) and dWT (Daubechies 
wavelet transform), then compare them with MOWDT dynamic using an 
insurance time series data in content of ASE. After intensive research in the 
literature, many researchers in the area of finance have focused on the 
application of WT in their research since WT is a well known method for 
handling data with high degree of uncertainties. The application of WT in 
analyzing stock market data includes the following areas: forecasting, 
understanding the dynamics of the stock markets, volatility and 
decomposition of stock market data. Whereas for the past decade, no 
researcher has focused on the application of WT to solve financial issues, 
such as improving the forecasting accuracy in the content of ASE, then 
making a comparative study between the wavelet functions such as DWT and 
MODWT [3, 6, 7]. Moreover, after intensive research in the literature, the 
researchers notice that: 

First, according to the past decade, no researcher has paying attention on 
the application of MODWT to solve financial issues such as study the 
banking data in ASE, then comparing HWT, dWT with MODWT. 

Second, most of the applications of the WT were as; for the last 10 years, 
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a number of comparative studies using different methodologies have been 
carried out using various WT functions alone as well as in combination with 
other WT models. More specifically, in the method used to select the values 
for the variables, CWT has no constraint on the selection of the possible 
values; while in DWT, the selection of possible values is restricted. One of 
the most important families of the DWT is OWT. The rationale for choosing 
the DWT in this study is explained as follows [7]: 

First, researchers experienced difficulty describing stock market data 
accurately using a combination of sine and cosine terms (e.g., FFT). 
Consequently, researchers introduced WT which successfully solved the 
problem. In order to corroborate this claim and prove it experimentally in the 
stock market area, this study will conduct a comparison between the FFT and 
OWT. 

Second, OWT in general, are extremely fast algorithms and widely used 
for analyzing stock market data [10, 6, 7]. Orthogonality property provides 
independency for the detail coefficients and therefore allows the addition of 
one or more of the detail coefficients of different levels to the approximation 
coefficient of the first level in different combinations for purposes of various 
analyses. Most importantly, OWT has a “compact support” property. The 
significance of having a compact support property is that when signals are 
fitted, they provide localized results rather than global results [10, 6, 7], the 
mathematical models can be introduced briefly as follows: 

Definition [2, 5]. Discrete WT can be defined by the following function: 

( ) ( ),22 2, ktt j
j

kj −ψ=ψ  

{ },...,2,1,0;, =∈ zZkj  

where ψ is a real valued function having compactly supported, and 

( ) .0∫
∞

∞−
=ψ dtt  Generally, the WT was evaluated by using dilation 

equations, given as: 
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( ) ( )∑ −φ=φ
k

k ktlt ,22  

( ) ( )∑ −φ=ψ
k

k ktht .22  

Father and mother wavelets were defined by the last two equations, where 
( )kt −φ 2  represents the father wavelet, and ( )tψ  represents the mother 

wavelet. For more details about the mathematical definitions of HWT, DWT 
and MOWDT, father wavelet and mother wavelet refer to [3, 6, 7, 11-14]. 

3. Data Description 

In order to illustrate the effectiveness of MODWT, the ASE banking data 
sets are selected for discussion. In order to apply DWT, we consider a daily 
return data for the time period from April 1993 (the days when stock 
exchanges were open) until December 2009 with a total of 4096 
observations. The total number of observations for mathematical convenience 

is suggested to be divisible by ,2 j  for more details, refer to [5, 9]. Whereas 
in order to apply MODWT, the data can be used with unlimited observations 
without any conditions. 

4. Methodology 

The WT and MODWT convert the row data series into two sets; 
approximation series (CA1 (n)) and detail series (DA1 (n)). These two series 
present a better behavior, i.e., more stable in variance and no outliers than the 
original price series, then they can be predicted more accurately. The reason 
for the better behavior of these two series is the filtering effect of the WT. In 
this paper, the approximation series has been used since this series behaves 
as the main component of the transform, while the detail series provides 
“small” adjustments. The procedure explained in this paper is as follows: 

First, decompose through the WT and MODWT the available historical 
banking data. Second, comparing the figures which are produced from 
MODWT and DWT in order to decide the best model. 
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5. Experimental Results 

In this section, the analysis of the data using HWT and dWT was 
discussed in [13]. Therefore, the results using HWT will briefly be presented 
in this section and then compare with MODWT results. 

The application of the WT was decomposed as in [13] to the historical 
data, then the results were as follows: the historical data decomposed into a 
variety of resolution levels that expose their essential structure and it 
generates detail coefficients at each one of the three decomposition levels. 
According to WT mechanism, the three levels of decomposition can be 
carried out by the WT using the following equation: ,1233 dddaS +++=  

where S refers to the original signal which is represented in the top part of 
Figure 1. Then the next part consists of one approximation level ( )3a  which 

shows the plot of the approximation coefficients for the transformed data 
using WT. The following parts of ,1d  2d  and 3d  represent the detail levels, 

whereby 1d  is the plot of the first level of the detail coefficients, 2d  is the 

plot of the second level of the detail coefficients and 3d  is the plot of the 

third level of the detail coefficients. Any of these three levels 
( )321 and, ddd  can be adopted for explaining the data. 

Starting with 1d  which is the first detail level (see Figure 1), the 

transformed data is filtered from 1d  until 3d  through the detail levels. As can 

be seen the data becomes smoother in ,2d  since the amount of data will be 

reduced automatically in the hope of obtaining a suitable level for detecting 
the stock market behavior. In this regard, we notice that at level ,3d  most of 

the fluctuations and high frequencies appear after the observation number 
3000, which is from 2004 onwards. 

Whereas the fluctuations can be shown in a better way using MODWT as 
presented in Figure 2, this figure almost gives similar to dWT but in more 
details for the fluctuation specially after the observation number 2500 which 
means the year 2000, while these DWTs concentrate for the observations 



S. Al Wadi, Faisal Ababneh, Hazem Alwadi and Mohd Tahir Ismail 8 

after number 3000 which means the year number 2003. Moreover, Figure 2 
gives the target smoothly than Figure 1. 

 
Figure 1. Decomposition levels using dWT. 

 
Figure 2. MODWT distribution. 
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6. Conclusion 

This study implemented MODWT and DWT on ASE banking data. The 
success application of this study is in removal the outliers and irregular data. 
Therefore, in this empirical study, the sample data set was experimentally 
tested in terms of decomposition levels. The purpose of doing so was to find 
out, MODWT is a suitable model and show a better understanding for the 
data set comparing with the DWT. Moreover, this study can be extended to 
implement for forecasting in order to improve the forecasting accuracy. 
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