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Abstract 

A parametric study to investigate the effect of radiation on a two 
dimensional free convective MHD flow of a viscous incompressible 
and electrically conducting fluid through a channel bounded by a long 
vertical wavy wall and a parallel flat wall with Soret and Dufour 
effects is presented. A uniform magnetic field is assumed to be applied 
normal to the flat wall. The equation governing fluid flow is solved 
analytically subject to the relevant boundary conditions. It is assumed 
that the solution consists of two parts, a mean part and a perturbed 
part. The long wave approximation has been used to obtain the 
solution of the perturbed part and to solve the mean part, the well 
known approximation used by Ostrach [1] has been applied. The 
perturbed part of the solution is the contribution from the waviness of 
the wall. The expressions for zeroth and first order velocity, 
temperature, concentration and skin friction and the rates of heat and 
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mass transfer at the walls are obtained. Some of the results indicating 
the influence of radiation, Soret and Dufour effects on the above fields 
have been presented graphically. 

Nomenclature 

 λK  Absorption coefficient 

 g  Acceleration due to gravity 

 ε  Amplitude parameter 

 yx,  Cartesian coordinates 

 μ  Coefficient of viscosity 

 β  Coefficient of volume expansion for heat transfer 

 sC  Concentration susceptibility 

 MD  Coefficient of mass diffusion 

 Q  Constant heat addition/absorption 

 d  Distance between two walls 

 sρ  Density of the fluid in static condition 

 uD  Dufour number 

 σ  Electrical conductivity 

 p  Fluid pressure 

 ρ  Fluid density 

 λ  Frequency parameter 

 T  Fluid temperature 

 sT  Fluid temperature in static condition 

 rG  Grashof number for heat transfer 

 mG  Grashof number for mass transfer 
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 α  Heat source parameter 

 υ  Kinematic viscosity 

 mT  Mean fluid temperature 

 M  Magnetic parameter 

 λbe  Plank function 

 sp  Pressure of the fluid in static condition 

 rP  Prandtl number 

 N  Radiation parameter 

 B  Strength of the applied magnetic field 

 C  Species concentration 

 pC  Specific heat at constant pressure 

 wC  Species concentration at the wavy wall 

 1C  Species concentration at the flat wall 

 rS  Soret number 

 cS  Schmidt number 

 k  Thermal conductivity 

 wT  Temperature of the wavy wall 

 1T  Temperature of the flat wall 

 TK  Thermal-diffusion ratio 

 vu ,  Velocity components 

 β  Volumetric coefficient of the expansion with species 
concentration 

 m  Wall temperature ratio 

 n  Wall concentration ratio 



N. Ahmed and D. J. Bhattacharyya 172 

Introduction 

The incompressible boundary layer flow over a wavy wall has got 
importance because of its application in different areas such as cross-
hatching on ablative surface, transpiration cooling of re-entry vehicle and 
rocket booster and film vaporization in combustion chambers. Lekoudis et al. 
[2] made a linear analysis of compressible boundary layer flows over a wavy 
wall. The Rayleigh problem for wavy wall had been studied by Shankar and 
Sinha [3]. They arrived at a certain interesting conclusion that at low 
Reynolds numbers, the waviness of the wall quickly ceases to be importance 
as the liquid is dragged along by the wall, while at large Reynolds numbers, 
the effect of viscosity is confined to a thin layer closed to the wall and known 
potential solution emerges in time. The analysis of the effect of small 
amplitude wall waviness upon the stability of the laminar boundary layer was 
made by Lessen and Gangwani [4]. Vajravelu and Sastri [5] made an analysis 
of the free convective heat transfer in a viscous incompressible fluid between 
a long vertical wavy wall and a parallel flat wall. Further they extended their 
work for vertical wavy channels. Rao and Sastri [6] studied the work of 
Vajravelu and Sastri [7] for viscous heating effects when the fluid properties 
are constants and variables. Again Rao [8] reinvestigated the problem of Rao 
and Sastri [6] for the channels which are of different wave numbers. Das and 
Ahmed [9] studied the free convection MHD flow and heat transfer in a 
viscous incompressible fluid confined between a long vertical wavy wall and 
a parallel flat wall. In the above mentioned works, the diffusion-thermo 
(Dufour) and the thermal-diffusion (Soret) terms were not taken into account 
in the energy and concentration equations, respectively. But when the heat 
and mass transfer occurs simultaneously in a moving fluid, the relations 
between the fluxes and driving potentials are of a more intricate nature. It is 
found that a heat flux can be generated not only by temperature gradients but 
by composition gradients as well. The heat flux that occurs due to 
composition gradient is called the Dufour effect or diffusion-thermo effect. 
On the other hand, the flux of mass caused due to temperature gradient is 
known as the Soret effect or the thermal-diffusion effect. The experimental 
investigation of the thermal-diffusion effect on mass transfer related 
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problems was first done by Charles Soret in 1879. Hence this thermal-
diffusion is known as the Soret effect in honour of Charles Soret. In general, 
the Soret and Dufour effects are of a smaller order of magnitude than the 
effects described in Fourier’s or Fick’s law and are often neglected in heat 
and mass transfer processes. Though these effects are quite small, but the 
devices can be arranged to produce very steep temperature and concentration 
gradients so that the separation of components in mixtures is affected. Eckert 
and Drake [10] have emphasized that the Soret effect assumes significance in 
cases concerning isotope separation and in mixtures between gases with very 
light molecular weight ( )He,H2  and for medium molecular weight 

( ),air,N2  the Dufour effect is found to be of considerable magnitude such 

that it cannot be ignored. Following Eckert and Drake’s work [10], several 
other investigators have carried out model studies on the Soret and Dufour 
effects in different heat and mass transfer problems. Some of them are 
Dursunkaya and Worek [11], Kafoussias and Williams [12], Sattar and Alam 
[13], Alam et al. [14] and Raju et al. [15]. Recently, Ahmed et al. [16] have 
investigated the Soret and Dufour effects in free convection MHD flow of a 
viscous incompressible fluid through a channel bounded by a long vertical 
wavy wall and parallel flat wall. 

Radiation is a process of heat transfer through electromagnetic waves. 
Radiative convective flows are encountered in countless industrial and 
environment processes, e.g., heating and cooling chambers, fossil fuel 
combustion energy processes, evaporation from large open water reservoirs, 
astrophysical flows, and solar power technology and space vehicle re-entry. 
Radiative heat and mass transfer plays an important role in manufacturing 
industries for the design of reliable equipment. Nuclear power plants, gas 
turbines and various propulsion devices for aircraft, missiles, satellites and 
space vehicles are examples of such engineering applications. If the 
temperature of the surrounding fluid is rather high, then radiation effects play 
an important role in space related technology. The effect of radiation on 
various convective flows under different conditions has been studied by 
many researchers including Hossain and Takhar [17], Ahmed and Sarmah 
[18], Rajesh and Varma [19] and Kesavaiah et al. [20]. As the present authors 
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are ware, no attempt has been made till now, to study the effect of thermal 
radiation on an MHD free convective mass transfer flow through a channel 
bounded by a long wavy wall and a parallel flat wall with Soret and Dufour 
effects. Such an attempt has been made in the present paper owing to 
application of such types of problems in different engineering fields. This 
work is a generalization of the work studied by Ahmed et al. [16] to consider 
the radiation effect in addition to Soret and Dufour effects. 

Basic Equations 

We consider the two dimensional steady laminar free convective MHD 
flow along the vertical channel. The x-axis is taken parallel to the flat wall 
and y-axis is perpendicular to it. The wavy and the flat walls are represented 
by xky cosε=  and ,dy =  respectively, wT  and 1T  being their constant 

temperatures. 

 
Flow configuration 
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Our investigation is restricted to the following assumptions: 

 (i) All the fluid properties except the density in the buoyancy force 
are constants. 

 (ii) The viscous and magnetic dissipation of energy are negligible. 

 (iii) The volumetric heat source/sink term in the energy equation is a 
constant. 

 (iv) The magnetic Reynolds number is small enough to neglect the 
induced magnetic field. 

 (v) The wavelength of the wavy wall, which is proportional to ,1 k  is 

large. 

Under the foregoing assumptions, the equations which govern the two 
dimensional steady laminar free convective MHD flow and heat transfer in a 
viscous incompressible fluid occupying the channel are: 

The momentum equations: 
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The continuity equation: 
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The species continuity equation: 
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The radiation heat flux rq  as emphasized by Cogley et al. [21] for an 

optically thin fluid is given by 
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In static condition, (1) takes the form 
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Now, (1)-(7) yield 
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The equation of state is 
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The boundary conditions are 

,;;0:cos ww CCTTvuxky ====ε=  (11) 

.;;0: 11 CCTTvudy =====  (12) 
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We define the following non-dimensional quantities: 
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All physical variables and parameters are defined in the Nomenclature. 

The governing equations in non-dimensional form are as under 
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with the boundary conditions: 

1,1,0,0 ==== CTvu  on ,cos xy λε=  (18) 

nCmTvu ==== ,,0,0  on .1=y  (19) 

Method of Solutions 

In order to solve equations (13) to (17), we assume u, v, p, T and C as 
follows: 
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( ) ( ) ( ) ,,, 10 +ε+= yxpxpyxp  (20.3) 
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( ) ( ) ( ) .,, 10 +ε+= yxCyCyxC  (20.5) 

By substituting the transformations (20.1) to (20.5) in (13) to (17), and 

by equating the coefficients of ,0ε  1ε  and neglecting the higher powers of ε 

and assuming ( ) 00 =−
∂
∂

sppx  (Ostrach [1]), we derive the following set of 

ordinary differential equations: 
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subject to the boundary conditions: 

1,1,0 000 === CTu   at  ,0=y  
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Now owing to get the solution of the first order equations, we introduce 
the stream function 1ψ  defined by 
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( ) ( ) ,10,1,10,1,1,1,1 NTPTTuPCCDPTT rxxryyxxuryyxx +′ψ+=+++  (36) 
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subject to the relevant boundary conditions: 
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( ) ( ) ( ) ( ) 0,0,0,0 =φ=θ=ψ=ψ′ yyyy  at .1=y  (42) 

We assume the series expansion for ψ, θ and φ as follows: 
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Substituting (43), (44) and (45) in equations (38), (39), (40), (41) and (42) 

and by equating the coefficients of ,0λ  1λ  and ,2λ  and neglecting the terms 

of order greater than or equal to ( ),3λO  the following ordinary differential 
equations are obtained: 
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The solutions of equations (46) to (54) subject to the boundary conditions 
(55), (56) and (57) are obtained but not presented here for the sake of brevity. 

Skin Friction 

The viscous drag per unit area at any point in the fluid in terms of skin 
friction xyτ  is given by 
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At the wavy wall ,cos xy λε=  the coefficient of skin friction is given by 
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λε=  

where ( ).00
0
0 u′=τ  

At the flat wall ,1=y  the coefficient of skin friction is determined by 

[ ] [ ( )],11
0
111 ueRe xi

yxy ′ε+τ=τ=τ λ
=  

where ( ).10
0
1 u′=τ  

Heat Transfer Coefficient 

The non-dimensional heat transfer coefficient in terms of Nusselt number 
Nu is given by 

( ) ( ) ( ).0
1

0 yeyTy
TyTy

TNu xi θ′ε+′=
∂
∂

ε+′=
∂
∂= λ  

At the wavy wall ,cos xy λε=  it is as under 

xy
w yNu

λε=⎥⎦
⎤

⎢⎣
⎡
∂
θ∂=

cos
 

( ) ( )xexT xi λεθ′ε+λε′= λ coscos0  

( ) ( ) [ ( ) ( )]0cos00cos0 00 θ′′λε+θ′ε+′′λε+′= λ xeTxT xi  

( ) ( ) ( ) ( )2
00 neglecting00cos0 εθ′ε+′′λε+′= λxieTxT  

[ ( ) ( )],000
0
0 θ′+′′ε+= λλ xixi eTeReNu  where ( ).00

0
0 TNu ′=  

At the flat wall ,1=y  the Nusselt number is represented by 

( ) ( )110
1

1 θ′ε+′=⎥⎦
⎤

⎢⎣
⎡
∂
θ∂= λ

=

xi

y
eTyNu  

[ ( )],10
1 θ′ε+= λxieReNu  where ( ).10

0
1 TNu ′=  
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Mass Transfer Coefficient 

The non-dimensional mass transfer coefficient in terms of Sherwood 
number Sh is given by 

( ) ( ) ( ).0
1

0 yeyCy
CyCy

CSh xi φε+′=
∂
∂

ε+′=
∂
∂= λ  

At the wavy wall ,cos xy λε=  the Sherwood number is as follows: 

( ) ( )xexCy
CSh xi

xy
w λεφ′ε+λε′=⎥⎦

⎤
⎢⎣
⎡
∂
∂= λ

λε=
coscos0

cos
 

( ) ( ) ( ) ( )2
00 neglecting00cos0 εφ′ε+′′λε+′= λxieCxC  

[ ( ) ( )],000
0
0 φ′+′′ε+= λλ xixi eCeReSh  where ( ).00

0
0 CSh ′=  

At the flat wall ,1=y  the Sherwood number is defined by 

( ) ( ) [ ( )],111 0
10

1
1 φ′ε+=φ′ε+′=⎥⎦

⎤
⎢⎣
⎡
∂
∂= λλ

=

xixi

y
eReSheCy

CSh  

where ( ).10
0
1 CSh ′=  

Results and Discussion 

In order to get physical insight into the problem, we have carried out 
numerical calculations for non-dimensional velocity field, temperature field, 
species concentration field and skin frictions at the walls by assigning some 
specific values to the parameters entering into the problem and the effects of 
these values on the above fields are demonstrated graphically. In our 
investigation, the values of the parameter λ (frequency parameter) and ε 
(amplitude parameter) are kept fixed at .001 and .01, respectively, and the 
values of the other parameters are chosen arbitrarily. 
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Figure 1. Velocity versus y under N for ,71.=rP  ,2.=uD  ,5.=M  ,6.=cS  

,1=rS  ,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 2. Velocity versus y under M for ,71.=rP  ,2.=uD  ,6.=cS  ,1=rS  

,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 3. Velocity versus y under cS  for ,71.=rP  ,2.=uD  ,5.=M  ,1=rS  

,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 4. Velocity versus y under rS  for ,71.=rP  ,2.=uD  ,5.=M  ,6.=cS  

,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 5. Velocity versus y under uD  for ,71.=rP  ,5.=M  ,6.=cS  ,1=rS  

,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 6. Velocity versus y under rG  for ,71.=rP  ,2.=uD  ,5.=M  ,6.=cS  

,1=rS  ,1=α  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 7. Velocity versus y under mG  for ,71.=rP  ,2.=uD  ,5.=M  ,6.=cS  

,1=rS  ,1=α  ,2=rG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 8. Velocity versus y under α for ,71.=rP  ,2.=uD  ,5.=M  ,6.=cS  

,1=rS  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figures 1-8 represent the variations of the velocity field u versus y under 
the effects of radiation parameter N, Hartmann number M, Schmidt number 

,cS  Soret number ,rS  Dufour number ,uD  Thermal Grashof number ,rG  

Solutal Grashof number mG  and heat generating source α. From these 

figures, we observe that the velocity field increases as ,cS  ,rS  ,rG  mG  and 

α increase and decreases as N, M and uD  increase. It indicates the fact that 

the fluid motion is accelerated under the effect of thermal-diffusion, 
buoyancy forces (thermal and solutal) and heat generating source, whereas it 
is retarded due to the application of radiation, transverse magnetic field, 
diffusion-thermo, and mass diffusion. These figures further show that the 
velocity profiles exhibit a parabolic nature within the channel and the 
maximum velocity is attained at the middle of the channel. As such thermal 
radiation is an effective regulatory mechanism for controlling the flow 
pattern. 

 

 

 

Figure 9. Temperature versus y under N for ,71.=rP  ,2.=uD  ,5.=M  ,6.=cS  

,1=rS  ,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 10. Temperature versus y under rS  for ,71.=rP  ,2.=uD  ,5.=M  =cS  

,6.  ,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 11. Temperature versus y under uD  for ,71.=rP  ,5.=M  ,6.=cS  =rS  

,1  ,1=α  ,2=Gr  ,2=Gm  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 12. Temperature versus y under α for ,71.=rP  ,2.=uD  ,5.=M  =cS  

,6.  ,1=rS  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 13. Concentration versus y under N for ,71.=rP  ,2.=uD  ,5.=M  =cS  

,6.  ,1=rS  ,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 14. Concentration versus y under cS  for ,71.=rP  ,2.=uD  ,5.=M  =rS  

,1  ,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 15. Concentration versus y under rS  for ,71.=rP  ,2.=uD  ,5.=M  =cS  

,6.  ,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 16. Concentration versus y under uD  for ,71.=rP  ,5.=M  ,6.=cS  =rS  

,1  ,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 17. Concentration versus y under α for ,71.=rP  ,2.=uD  ,5.=M  =cS  

,6.  ,1=rS  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 18. Skin friction τ versus M under N for ,71.=rP  ,2.=uD  ,6.=cS  

,1=rS  ,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 19. Skin friction τ versus M under uD  for ,71.=rP  ,6.=cS  ,1=rS  

,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 20. Skin friction τ versus M under m for ,71.=rP  ,2.=uD  ,6.=cS  

,1=rS  ,1=α  ,2=rG  ,2=mG  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  

 

 

Figure 21. Skin friction τ versus M under cS  for ,71.=rP  ,2.=uD  ,1=rS  

,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 22. Skin friction τ versus M under rS  for ,71.=rP  ,2.=uD  ,6.=cS  

,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,1=N  ,2π=λx  ,001.=λ  .01.=ε  

Figures 9-12 exhibit the behaviour of the temperature field against y 
under the influence of the parameters N, ,rS  uD  and α. From the figures, it 

is clear that the fluid temperature increases as α increases and decreases as N, 

rS  and uD  increase. These figures show that the fluid temperature falls 

down due to the imposition of the radiation, thermal-diffusion and diffusion-
thermo, but it rises up due to increasing value of heat generating source as 
expected. 

The variation of species concentration C versus y under the influence of 
radiation parameter N, Schmidt number ,cS  Soret number ,rS  Dufour 

number ,uD  and heat generating source α is presented in Figures 13, 14, 15, 

16 and 17. These figures indicate that the concentration level of the fluid falls 
down due to the increasing values of α whereas the concentration level of the 
fluid raises up due to the increasing values of N, ,cS  rS  and .uD  In other 

words, the thickness of the concentration boundary layer decreases under the 
effects of mass diffusion and heat generating source whereas the thickness of 
the concentration layer increases under the effects of thermal radiation, 
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thermal-diffusion and diffusion-thermo. These observations are consistent 
with the physics of the problem. 

The nature of skin friction τ at both the wavy wall and the flat wall is 
demonstrated in Figures 18, 19, 20, 21 and 22. It is observed from Figures 20 
and 22 that the magnitudes of the viscous drag at both the walls rise up under 
the influence of increasing wall temperature ratio and Soret effect. But a 
reverse trend of behaviour of τ in case of radiation effect, Dufour effect and 
mass diffusion are marked in Figures 18, 19 and 21. 

Comparison of Results 

In order to highlight the accuracy of the numerical computation from the 
analytical solution in the present investigation, some of the results of the 
present work for some special case ( )50=N  have been compared with those 

of Ahmed et al. [16]. Comparing Figure 23 with Figure 24 (Figure 1 of 
Ahmed et al. [16]), we see that both figures uniquely indicate that the 
application of the transverse magnetic field causes the fluid flow to retard 
comprehensively. Hence there is a good agreement between the results 
obtained by Ahmed et al. [16] and the present authors. 

 
Figure 23. Velocity versus y under M for ,71.=rP  ,2.=uD  ,6.=cS  ,1=rS  

,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,50=N  ,2π=λx  ,001.=λ  .01.=ε  
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Figure 24. Velocity versus y under M for ,71.=rP  ,2.=uD  ,6.=cS  ,1=rS  

,1=α  ,2=rG  ,2=mG  ,5=m  ,1=n  ,2π=λx  ,001.=λ  .01.=ε  

Conclusions 

1. The fluid motion is retarded under the application of radiation, 
diffusion-thermo and the transverse magnetic field and accelerated 
due to thermal-diffusion effect. 

2. An increase in radiation parameter, Soret number and Dufour 
number, tends the fluid temperature to fall. 

3. The thickness of the concentration boundary layer increases under 
radiation, Soret and Dufour effects. 

4. The thermal-radiation or diffusion-thermo effect leads the magnitude 
of the viscous drag at the wavy wall as well as the flat wall to 
decrease. 

5. Finally, it is concluded that the radiation effect has a significant role 
in controlling the flow and transport characteristics. 
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