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Abstract

A parametric study to investigate the effect of radiation on a two
dimensional free convective MHD flow of a viscous incompressible
and electrically conducting fluid through a channel bounded by a long
vertical wavy wall and a parallel flat wall with Soret and Dufour
effects is presented. A uniform magnetic field is assumed to be applied
normal to the flat wall. The equation governing fluid flow is solved
analytically subject to the relevant boundary conditions. It is assumed
that the solution consists of two parts, a mean part and a perturbed
part. The long wave approximation has been used to obtain the
solution of the perturbed part and to solve the mean part, the well
known approximation used by Ostrach [1] has been applied. The
perturbed part of the solution is the contribution from the waviness of
the wall. The expressions for zeroth and first order velocity,
temperature, concentration and skin friction and the rates of heat and
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mass transfer at the walls are obtained. Some of the results indicating
the influence of radiation, Soret and Dufour effects on the above fields
have been presented graphically.
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Nomenclature

Absorption coefficient

Acceleration due to gravity
Amplitude parameter

Cartesian coordinates

Coefficient of viscosity

Coefficient of volume expansion for heat transfer
Concentration susceptibility
Coefficient of mass diffusion
Constant heat addition/absorption
Distance between two walls

Density of the fluid in static condition
Dufour number

Electrical conductivity

Fluid pressure

Fluid density

Frequency parameter

Fluid temperature

Fluid temperature in static condition
Grashof number for heat transfer

Grashof number for mass transfer
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Heat source parameter

Kinematic viscosity

Mean fluid temperature

Magnetic parameter

Plank function

Pressure of the fluid in static condition
Prandtl number

Radiation parameter

Strength of the applied magnetic field
Species concentration

Specific heat at constant pressure
Species concentration at the wavy wall
Species concentration at the flat wall
Soret number

Schmidt number

Thermal conductivity

Temperature of the wavy wall
Temperature of the flat wall
Thermal-diffusion ratio

Velocity components

Volumetric coefficient of the expansion with species

concentration
Wall temperature ratio

Wall concentration ratio
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Introduction

The incompressible boundary layer flow over a wavy wall has got
importance because of its application in different areas such as cross-
hatching on ablative surface, transpiration cooling of re-entry vehicle and
rocket booster and film vaporization in combustion chambers. Lekoudis et al.
[2] made a linear analysis of compressible boundary layer flows over a wavy
wall. The Rayleigh problem for wavy wall had been studied by Shankar and
Sinha [3]. They arrived at a certain interesting conclusion that at low
Reynolds numbers, the waviness of the wall quickly ceases to be importance
as the liquid is dragged along by the wall, while at large Reynolds numbers,
the effect of viscosity is confined to a thin layer closed to the wall and known
potential solution emerges in time. The analysis of the effect of small
amplitude wall waviness upon the stability of the laminar boundary layer was
made by Lessen and Gangwani [4]. Vajravelu and Sastri [5] made an analysis
of the free convective heat transfer in a viscous incompressible fluid between
a long vertical wavy wall and a parallel flat wall. Further they extended their
work for vertical wavy channels. Rao and Sastri [6] studied the work of
Vajravelu and Sastri [7] for viscous heating effects when the fluid properties
are constants and variables. Again Rao [8] reinvestigated the problem of Rao
and Sastri [6] for the channels which are of different wave numbers. Das and
Ahmed [9] studied the free convection MHD flow and heat transfer in a
viscous incompressible fluid confined between a long vertical wavy wall and
a parallel flat wall. In the above mentioned works, the diffusion-thermo
(Dufour) and the thermal-diffusion (Soret) terms were not taken into account
in the energy and concentration equations, respectively. But when the heat
and mass transfer occurs simultaneously in a moving fluid, the relations
between the fluxes and driving potentials are of a more intricate nature. It is
found that a heat flux can be generated not only by temperature gradients but
by composition gradients as well. The heat flux that occurs due to
composition gradient is called the Dufour effect or diffusion-thermo effect.
On the other hand, the flux of mass caused due to temperature gradient is
known as the Soret effect or the thermal-diffusion effect. The experimental
investigation of the thermal-diffusion effect on mass transfer related



Radiation Effect on an MHD Free Convective Flow ... 173

problems was first done by Charles Soret in 1879. Hence this thermal-
diffusion is known as the Soret effect in honour of Charles Soret. In general,
the Soret and Dufour effects are of a smaller order of magnitude than the
effects described in Fourier’s or Fick’s law and are often neglected in heat
and mass transfer processes. Though these effects are quite small, but the
devices can be arranged to produce very steep temperature and concentration
gradients so that the separation of components in mixtures is affected. Eckert
and Drake [10] have emphasized that the Soret effect assumes significance in
cases concerning isotope separation and in mixtures between gases with very
light molecular weight (H,, He) and for medium molecular weight

(N,, air), the Dufour effect is found to be of considerable magnitude such

that it cannot be ignored. Following Eckert and Drake’s work [10], several
other investigators have carried out model studies on the Soret and Dufour
effects in different heat and mass transfer problems. Some of them are
Dursunkaya and Worek [11], Kafoussias and Williams [12], Sattar and Alam
[13], Alam et al. [14] and Raju et al. [15]. Recently, Ahmed et al. [16] have
investigated the Soret and Dufour effects in free convection MHD flow of a
viscous incompressible fluid through a channel bounded by a long vertical
wavy wall and parallel flat wall.

Radiation is a process of heat transfer through electromagnetic waves.
Radiative convective flows are encountered in countless industrial and
environment processes, e.g., heating and cooling chambers, fossil fuel
combustion energy processes, evaporation from large open water reservoirs,
astrophysical flows, and solar power technology and space vehicle re-entry.
Radiative heat and mass transfer plays an important role in manufacturing
industries for the design of reliable equipment. Nuclear power plants, gas
turbines and various propulsion devices for aircraft, missiles, satellites and
space vehicles are examples of such engineering applications. If the
temperature of the surrounding fluid is rather high, then radiation effects play
an important role in space related technology. The effect of radiation on
various convective flows under different conditions has been studied by
many researchers including Hossain and Takhar [17], Ahmed and Sarmah
[18], Rajesh and VVarma [19] and Kesavaiah et al. [20]. As the present authors
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are ware, no attempt has been made till now, to study the effect of thermal
radiation on an MHD free convective mass transfer flow through a channel
bounded by a long wavy wall and a parallel flat wall with Soret and Dufour
effects. Such an attempt has been made in the present paper owing to
application of such types of problems in different engineering fields. This
work is a generalization of the work studied by Ahmed et al. [16] to consider
the radiation effect in addition to Soret and Dufour effects.

Basic Equations

We consider the two dimensional steady laminar free convective MHD
flow along the vertical channel. The x-axis is taken parallel to the flat wall
and y-axis is perpendicular to it. The wavy and the flat walls are represented

by ¥ =%coskx and ¥ =d, respectively, T,, and T; being their constant

temperatures.

>
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=

wave
length | 2% £
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0 >
—t—1
F=£Fcoskx F=d
7Z=0 z=0
¥=0 v=0
T-T F=T
C=C, C=C

Flow configuration
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Our investigation is restricted to the following assumptions:

(i)

(i)
(iii)

(iv)

v)

All the fluid properties except the density in the buoyancy force
are constants.

The viscous and magnetic dissipation of energy are negligible.

The volumetric heat source/sink term in the energy equation is a
constant.

The magnetic Reynolds number is small enough to neglect the
induced magnetic field.

The wavelength of the wavy wall, which is proportional to 1/k, is

large.

Under the foregoing assumptions, the equations which govern the two
dimensional steady laminar free convective MHD flow and heat transfer in a
viscous incompressible fluid occupying the channel are:

The momentum equations:

_ou  _ou]_ op |o%m  dfm| . =
p|:U§+VW:|— §+M|:87—2+y:| pg oB u, (1)
A N L e
p|:U§+Va—y:|— W+M|:¥+F:| (2)
The continuity equation:
oo ov
ﬁ + a—y =0. (3)
The energy equation:
_oT  _aT
pCp|:U F +V a—y:|

2+ 2+ 2=~ 2~ =
_ 0T 2°T | pDuKr|2C  o%C | ,_ o @
Cs | ax® oy
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The species continuity equation:

_oC _oC 82C  82C | DyKr|o%T 87T
= 5y DM{ + }+ + (5)

U—+V— = .
X2 oy2 Tm | 6x?  oy2
The radiation heat flux T, as emphasized by Cogley et al. [21] for an
optically thin fluid is given by

oqy = =
By - AT = Ts), (6)

where | = jgo(Kx)W(ag%j dA.
w

In static condition, (1) takes the form

__9Ps _
Now, (1)-(7) yield
Ua—U+\7a—U ——i(_—_ )+ ag(ps —p) + 82—U+82—lT — oB?U. (8)
The equation of state is
pzps[l_B(-IT_fs)_E(c_:_c_:s)]- C))
Equations (8) and (9) together give
_ou  _ou 0~ — = =\ == =
TS+ 758 | =~ (5 = Ps) + palB(T ~T5)+ BE - T, ]
2 A2
T AR (10)
ox< oy

y=tcoskx:U=v=0,T =T,;C =C,, (12)

. C =Cp. (12)
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We define the following non-dimensional quantities:

X Yy, _Ud  _vd _pd’
_d,y—d, _U,_U,p_poz’

Psd® 5 kd e, p =t
ps—pu2| - 1] _dlpr_ky
G _dggﬁ(-rw_fs) G dsgB(Cw_Cs)
r = 2 » Oy = 2 ,

v v

_G-GC L _h-T

Cyw-GCs’ Ty —Ts'
rZDMKT_(Tw _Ts) UZDMKT(G_W_C__:S)

vTy(Cy = Cs) UCscp(Tw -Ts)

242

SC_L,M_GBd ,

M pv
T:I__-ITE c:ﬂ o = _de_ N:4|d2_

Tw—Ts Cw —Cs k(Ty —Ts) puCyp

All physical variables and parameters are defined in the Nomenclature.
The governing equations in non-dimensional form are as under

U ou @ 2% | o4
U&-I‘VW——&(F)—ps)-i—ax—z-l‘y-l‘GrT-l‘GmC—MU,

N v op AN AN
U—+V—=—F2+—5+—

OX oy o oxl ay2 '

2 2 2 2
e L R (- S L
OX oy

82_C+a2_c +S ﬂ_Fﬂ :U£+V£
PP o2 o2 ax Vg
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(14)

(15)

(16)

(17
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with the boundary conditions:
u=0,v=0T =1 C=10n Yy =gC0OSAX, (18)

u=0,v=0,T=mC=nony=1 (19)
Method of Solutions

In order to solve equations (13) to (17), we assume u, v, p, T and C as
follows:

u(x, y) = up(y) + ety (X, y) + -+, (20.1)
VX, y) = evi(x, y) + -, (20.2)
P(X, y) = Po(X) + ep(X, Y) + -+, (20.3)
T(X y) =To(y) +&Ty(x, y) + -+, (20.4)
C(x, y) = Co(y) +&Cy(X, y) +---. (20.5)

By substituting the transformations (20.1) to (20.5) in (13) to (17), and

by equating the coefficients of 0, ¢ and neglecting the higher powers of ¢
and assuming %(po — ps) = 0 (Ostrach [1]), we derive the following set of

ordinary differential equations:

d2U0
Y Mug = -G, Ty — G, Co, (21)
y

2 2
d—T20+ PrDud—CZO:—aJrPrNTO, (22)
dy dy

2 2
d C2° +srscd—T20=o, (23)
dy dy

ouy dug  dpg 62u1 azul G.To + G.Ci — M 24
uoﬁ+v1d—y——g+ax—2+¥+ rT1 +GnCy — Muy, (24)



Radiation Effect on an MHD Free Convective Flow ... 179

v __op, 0% 0%

L A R (25)
o M _
x Ty 70 29)
o°T, %1y 0°c,  0°Cy ( oy dToj
—+—F+PDy| —+— |=PF|Uyg—=—=+Vv— |+ PNT, (27
5X2 ayz ru aXZ ayz ri Yo OX 1 dy r'vyi1 ( )
2 2 2 2
i&_Fﬁ +Srﬂ+ﬂ =U0&+V1d& (28)
Sc | ax? 5)/2 ox2 8y2 oX dy
subject to the boundary conditions:
UOZO, TOZJ., C0=1 at y=0,
Up =0, Tg=m, Co=n at y=1 (29)
Uy = —Re[uh(0)e™], v; =0, T, = —Re[T§(0)e'™],
C, = —Re[C}(0)e™] at y =0,
U]_:O, V1:0, T1=0, CJ_:O at y=1 (30)

The solutions of equations (21), (22) and (23) subject to the boundary
conditions (29) are:

up(y) = Azoemy + Aage_my + Ase™ + Age™Y + Agy + Az, (31)

To(y) = A + Age’™Y + Ay, (32)
Coly) = Age™ + Age™ + Avy + Ay, (33)
where

— PI’N — _
A Tss D, Y
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o=t () )
8 eAZ_eAﬂ. PrN eAZ_eAl PrN '

a a
M=lopn e AN

Ao =n+ScSr(Ae™ + Ae’),

Ao =1+ ScSr(Ag + Ag), A7 = Ag — Ay,

Ag = —=S;S A4, Ag = =SS, Ag,

Ay = (G Ay + GpAg), Ap = —(GrAg + G Ag),
A3 = ~GmA7, Ay = —(GrAs + GpAu),

A15=2A1—1:A16=2A1—2,
A2~ M A2~ M

A7 = —Pa/M, Ag = —A3/M,

1

Mg =~
em —e_m

[(As + A + A17)em ~ Ase™ — Ajge’™ — Az — Al
Ayg = —Ag — A5 — Ag — A7

Now owing to get the solution of the first order equations, we introduce
the stream function y; defined by

v,
8y y V1= x (34)

On elimination of p, equations (24), (25), (27) and (28) yield

U =

UO(WL xyy W1, s000) = Up W, x

= W1, wox T 291, xxyy + W1, yyyy — OrTry = GmCry = My vy, (39)
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Toxx + Toyy + PrDu(Cyxx + Cryy) = Pr(UgTy x + W1, T¢) + P-NTL,  (36)
S—lc(CL wx + Cyy) + Se(T xx + Ta, yy) = UoCr x + W, xCo- (37)
Considering the transformations ¥y = e™y(y), T, =e™0(y), C; =
ei“(])(y), equations (35), (36) and (37) reduce to
wV = y(idug + 202 + M) + w(inug + ix3ug + 1%) = G0 + Gd,  (38)
0" — 0% + P.N + Pugii) + P.D,(-2% + ¢") = PrikyT{, (39)
0" — d(A2 + ScUgit) + SeSy (=220 + 0") = IAS.yC)h (40)
subject to the relevant boundary conditions:
v'(y) =up(0), w(y) =0, 6(y) =-Tg(0), &(y)=—-Co(0)aty =0, (41)

v(y)=0, w(y)=0, 6(y)=0, ¢o(y)=0aty=1 (42)

We assume the series expansion for y, 6 and ¢ as follows:

v = wo(y) + Awa(y) + A2wa(y) + -, (43)
0 = Bg(y) + A0y (y) + 320(y) + -+, (44)
0 = do(y) + Ade(y) + A2ho(y) + . (45)

Substituting (43), (44) and (45) in equations (38), (39), (40), (41) and (42)
and by equating the coefficients of 20, Al and 22, and neglecting the terms

of order greater than or equal to 0(79), the following ordinary differential
equations are obtained:

vo — Myj = G0 + Gndo, (46)
w1 — iUy — My +iugwo = GO1 + Gy, (47)

Wl — My — iugy] + iugyy — 2y = G0 + G, (48)
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o0 — P.NOg + P.Dydp = 0,
0l — PritgBp — PrNO; + P.Dydf = PriygTg,
0Y — 0y — PNO, — PUgif; — P.Dydg + P.Dydh = PriyT§,
Ob + S.S,0% =0,
01 + ScSr0] = iScUgdg +iS:Cowg,

0% — &g + S¢Sy (6 — Og) = iScUgdy + iScCowy

subject to the boundary conditions:

(49)
(50)
(51)
(52)
(53)

(54)

vo(Y) = Ug(0), wo(y) =0, 8g(y) =-Tg(0), ¢o(y)=-Co(0) at'y =0,

vo(Y) =0, wo(y) =0, 8o(y) =0, ¢o(y)=0aty=1,
vi(y) =0, wi(y) =0, 61(y)=0, ¢(y)=0aty=0,
vi(y) =0, wi(y)=0, 6y(y)=0, ¢(y)=0aty=1
v2(y) =0, wa(y)=0, 02(y)=0, ¢p(y)=0aty=0,

va(y) =0, ya(y)=0, 0(y)=0, ¢p(y)=0aty=1

(55)

(56)

(57)

The solutions of equations (46) to (54) subject to the boundary conditions
(55), (56) and (57) are obtained but not presented here for the sake of brevity.

Skin Friction

The viscous drag per unit area at any point in the fluid in terms of skin

friction T, is given by
_ ou oV
TXy =N E + & .
The non-dimensional skin friction t,y at any point is specified by

425 _ :
Ty = ;y = uh(y) + ee™ui(y) + iene™vi(y).
pL
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At the wavy wall y = gcos\x, the coefficient of skin friction is given by
0 IAX, A,/
Tw = [Txy)y=c cosax = 70 + eRe[e""ug (0) + ™ ui (0)],

where 1 = u(0).

At the flat wall y =1, the coefficient of skin friction is determined by
_ _ 0 iAX,
11 = [txylyg = 1 +eRe[e™ui(1)],

where 13 = uj(1).
Heat Transfer Coefficient

The non-dimensional heat transfer coefficient in terms of Nusselt number
Nu is given by
6T 2 aTl ! |7\,X !
— =T, +e— =T, +¢ee”"0 .
oy ~ o) +er=To(y) (¥)

At the wavy wall y = gcosAx, itis as under

Nu =

Nu =[@}
v oy Y=g COS AX

= T4( cos Ax) + g0/ (& cos Ax)
= T4(0) + & cos AXTE(0) + ee™*[0'(0) + & cos Ax0"(0)]
= T4(0) + & cos AXTE(0) + e™0'(0) (neglecting &%)

= Nud + eRe[e™*Tg(0) + e™0'(0)], where Nud = T4(0).
At the flat wall y =1, the Nusselt number is represented by

— @ —_T! iAX oy
Nul_[ay}y_l TY(1) + ee™ o)

= Nu{ + eRe[e™@'(1)], where Nul = T4(1).
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Mass Transfer Coefficient
The non-dimensional mass transfer coefficient in terms of Sherwood
number Sh is given by

oC i
Sh = S = Ch(y) + 552 = Ch(y) + se™4(y)

At the wavy wall y = gcosAx, the Sherwood number is as follows:

Shy = [%} = Ch( cos Ax) + ee™¢'(e cos Ax)
Y=g COS AX

= C4(0) + £ cos AxCH(0) + ee™¢/(0) (neglecting £?)

= ShY + eRe[e™*C§(0) + e™¢/(0)], where ShY = C5(0).
At the flat wall y =1, the Sherwood number is defined by

Sty = %Lﬂ = Co() + ee™¢'(1) = Sy + eRefe™¢' (D),

where ShY = Cj(1).
Results and Discussion

In order to get physical insight into the problem, we have carried out
numerical calculations for non-dimensional velocity field, temperature field,
species concentration field and skin frictions at the walls by assigning some
specific values to the parameters entering into the problem and the effects of
these values on the above fields are demonstrated graphically. In our
investigation, the values of the parameter A (frequency parameter) and ¢
(amplitude parameter) are kept fixed at .001 and .01, respectively, and the
values of the other parameters are chosen arbitrarily.
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0.1 1 1 1 1 1 1 1 1 1

Figure 1. Velocity versus y under N for P, =.71, D, =.2, M = .5, S; = .6,
S;=La=1G, =2,G=2,m=5n=1 ix =mn/2, A =.001, ¢ =.01.

0.9

Figure 2. Velocity versus y under M for P, =.71, D, =.2, Sc =.6, S; =1,
a=1G =2,G,=2m=5n=1 N =1 ix =n/2, A =.001, ¢=.01
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0.1 1 1 1 1 1 1 1 1 1

Figure 3. Velocity versus y under S; for P, =.71, D, =.2, M =.5, §; =1,
a=1G =2G,=2,m=5n=1 N =1 Ax =mx/2, A =.00], ¢ = .01.

Figure 4. Velocity versus y under S, for B, =.71, D, =.2, M = .5, S, = .6,
a=1G =2,G,=2m=5n=1 N =1 ix=mx/2, L =.00], ¢ = .01,
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Figure 5. Velocity versus y under D, for P, =.71, M =.5, S, =.6, S; =1,
a=1G =2G,=2,m=5n=1 N=1 Ax =n/2, A =.00], ¢ = .01.

0.2 1 1 1 1 1 1 1 1 1

Figure 6. Velocity versus y under G, for B, =.71, D, =.2, M =.5, S, = .6,
S;=La=1,Gy,=2m=5n=1 N=1 ix=mn/2, A =.00] ¢ =.01.
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0.2 1 1 1 1 1 1 1 1 1

Figure 7. Velocity versus y under Gy, for P, =.71, D, =.2, M =.5, S = .6,
S;=La=1,G =2m=5n=1 N=1 Ax=m/2, A =.00 ¢ =.01.

0.1 1 1 1 1 1 1 1 1 1

Figure 8. Velocity versus y under o for P, =.71, D, =.2, M = .5, S; = .6,
S, =1G,=2,G,=2,m=5n=1 N =1 Ax =mn/2, A =.00L, ¢ = .01.



Radiation Effect on an MHD Free Convective Flow ... 189

Figures 1-8 represent the variations of the velocity field u versus y under
the effects of radiation parameter N, Hartmann number M, Schmidt number
S¢, Soret number S,, Dufour number D,, Thermal Grashof number G,,

Solutal Grashof number Gy, and heat generating source o. From these
figures, we observe that the velocity field increases as S¢, Sy, G;, Gy, and
o increase and decreases as N, M and D, increase. It indicates the fact that

the fluid motion is accelerated under the effect of thermal-diffusion,
buoyancy forces (thermal and solutal) and heat generating source, whereas it
is retarded due to the application of radiation, transverse magnetic field,
diffusion-thermo, and mass diffusion. These figures further show that the
velocity profiles exhibit a parabolic nature within the channel and the
maximum velocity is attained at the middle of the channel. As such thermal
radiation is an effective regulatory mechanism for controlling the flow
pattern.

5.5
5 -
asf .
4 _
sl .
3 - -
T 25} N -
2 - -
[—|
15} .
1 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
vy —>

Figure 9. Temperature versus y under N for P, =.71, D, =.2, M =.5, S; =.6,
Ss,=La=1G, =2 G,=2,m=5n=1 Ax =n/2, A =.00], ¢ =.01.



190 N. Ahmed and D. J. Bhattacharyya

5.5

a5l Sr=1.6.9. 11

Figure 10. Temperature versus y under S, for P, =.71, D, =.2, M =5, S. =
6,0=1G, =2G,=2 m=5n=1 N=1 Ax=mn/2, L =.001] ¢ =.01.

5.5

1 1 1 1 1 1 1 1 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y —

Figure 11. Temperature versus y under D, for P, =.71, M =5, S. =.6, S, =
L,a=1,Gr=2,Gm=2,m=5n=1 N =1 Ax=m/2, A =.001, ¢ =.01.
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Figure 12. Temperature versus y under o for P, =.71, D, =.2, M =.5, S, =
6,S,=1G,=2,G,=2,m=5n=1 N =1 Ax=n/2, A =.00], ¢=.01.

1.4

Figure 13. Concentration versus y under N for P, =.71, D, =.2, M =.5, S =
6,5, =1 a=1G,=2G,=2 m=5 n=1 Ax=m/2, A =.001, ¢=.01.
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Figure 14. Concentration versus y under S for P, =.71, D, =2, M =5, S, =
L, a=1G, =2 G,=2 m=5n=1 N =1 Ax=mn/2, A=.001, ¢=.01.
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Figure 15. Concentration versus y under S, for P, =.71, D, =.2, M =5, S. =
6,0=1G, =2,G,=2m=5n=1 N=1 Ax=mn/2, L =.001, ¢=.01.
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Figure 16. Concentration versus y under D, for P, =.71, M =5, S. =.6, S, =
La=1G =2,G,=2m=5n=1 N =1 Ax =7/2, A =.001, ¢ = .01.

Figure 17. Concentration versus y under o for P, =.71, D, =.2, M =5, S. =
6,5, =1G,=2,G,=2,m=5n=1 N=1 Ax=n/2, A =.001, ¢=.01.



194 N. Ahmed and D. J. Bhattacharyya

3 T T
Wavy wall
ol Flat wall ----- |
v
1 - -
T
V]
At .
2L ]
3 e _—— =-=—
—— = =
e
== =
"4 _§ ﬁ ﬁ 1
_5 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 T 8 9 10

Figure 18. Skin friction t versus M under N for P,
Sy =1 0=1G =2G,=2 m=5n=1 Ax =n/2, A =.001, ¢
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Figure 19. Skin friction t versus M under D, for B, =.71, S =.6, S, =1,
a=1G =2,G,=2,m=5n=1 N =1 Ax =n/2, A =.001, ¢ =.01.
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Figure 20. Skin friction t versus M under m for P, =.71, D, =.2, S; = .6,
Sy =La=1G =2,G,=2n=1 N =1 Ax =n/2, A =.00], ¢ = .01.
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Figure 21. Skin friction t versus M under S. for P, =.71, D, =.2, S, =1,

a=1G =2,G,=2,m=5n=1, N =1 Ax=m/2, A =.001 ¢ =.01.
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Figure 22. Skin friction t versus M under S, for P, =.71, D, = .2, S; = .6,
a=1G=2,G,=2,m=5n=1, N =1 Ax=m/2, A =.00, ¢ = .01.

Figures 9-12 exhibit the behaviour of the temperature field against y
under the influence of the parameters N, S,, D, and a. From the figures, it

is clear that the fluid temperature increases as o increases and decreases as N,
Sy and D, increase. These figures show that the fluid temperature falls
down due to the imposition of the radiation, thermal-diffusion and diffusion-
thermo, but it rises up due to increasing value of heat generating source as
expected.

The variation of species concentration C versus y under the influence of
radiation parameter N, Schmidt number S, Soret number S,, Dufour
number Dy, and heat generating source a is presented in Figures 13, 14, 15,
16 and 17. These figures indicate that the concentration level of the fluid falls
down due to the increasing values of o whereas the concentration level of the
fluid raises up due to the increasing values of N, S;, S, and D;. In other
words, the thickness of the concentration boundary layer decreases under the

effects of mass diffusion and heat generating source whereas the thickness of
the concentration layer increases under the effects of thermal radiation,
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thermal-diffusion and diffusion-thermo. These observations are consistent
with the physics of the problem.

The nature of skin friction t at both the wavy wall and the flat wall is
demonstrated in Figures 18, 19, 20, 21 and 22. It is observed from Figures 20
and 22 that the magnitudes of the viscous drag at both the walls rise up under
the influence of increasing wall temperature ratio and Soret effect. But a
reverse trend of behaviour of t in case of radiation effect, Dufour effect and
mass diffusion are marked in Figures 18, 19 and 21.

Comparison of Results

In order to highlight the accuracy of the numerical computation from the
analytical solution in the present investigation, some of the results of the
present work for some special case (N = 50) have been compared with those

of Ahmed et al. [16]. Comparing Figure 23 with Figure 24 (Figure 1 of
Ahmed et al. [16]), we see that both figures uniquely indicate that the
application of the transverse magnetic field causes the fluid flow to retard
comprehensively. Hence there is a good agreement between the results
obtained by Ahmed et al. [16] and the present authors.
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Figure 23. Velocity versus y under M for P, =.71, D, = .2, S; = .6, S; =1,
a=1G =2,G,=2m=5n=1 N =50, Ax = n/2, L =.001, ¢ = .01.
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Figure 24. Velocity versus y under M for B, =.71, D, = .2, S; = .6, S; =1,
a=1 G =2 G,=2 m=5 n=1 Ax =n/2, L =.001, ¢ =.01.

Conclusions

1. The fluid motion is retarded under the application of radiation,
diffusion-thermo and the transverse magnetic field and accelerated
due to thermal-diffusion effect.

2. An increase in radiation parameter, Soret number and Dufour
number, tends the fluid temperature to fall.

3. The thickness of the concentration boundary layer increases under
radiation, Soret and Dufour effects.

4. The thermal-radiation or diffusion-thermo effect leads the magnitude
of the viscous drag at the wavy wall as well as the flat wall to
decrease.

5. Finally, it is concluded that the radiation effect has a significant role
in controlling the flow and transport characteristics.
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