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Abstract 

We present a nonlinear evolution equation with variable coefficients. 
With the help of Bell Polynomials, we obtain its Lax pair, Bäcklund 
transformation and infinite conserved laws. 

1. Introduction 

Recently, Gilson et al. [1], Lambert and Springael [2] and Bell [3] 
proposed an efficient method for constructing bilinear Bäcklund 
transformations of nonlinear integrable equations by using the Bell 
polynomials. Fan [4] and Fan and Hon [5] further generalized the method for 
generating bilinear Bäcklund transformations, Lax pairs, infinite conserved 
laws of variable-coefficient integrable equations. Based on the approaches, 
we want to consider the following nonlinear evolution equation with variable 
coefficients: 

( ) ( ) ( ) ( ) xxxxtxtt uthuthxuthuuthuuu 433214 +++++=  (1) 

so that its bilinear form, Bäcklund transformation, Lax pair and infinite 
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conserved laws are worked out, respectively. To proceed this, we first 
present some necessary acknowledges on Bell polynomials [1-3]. Set 

( )lxxff ...,,1=  to be a ∞C  multi-variable function, the following 

polynomials: 

( ) ( ) ( )fffY n
x

n
xxnxn lll expexp 11
111 ...,, ∂∂−= …  (2) 

are known as multi-dimensional Bell polynomials. Denote by [4] 
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111 ...,, ==∂∂= …  which represents all 

partial derivatives of f. When ( ),, txff =  we can get that 

( ) ( ) ....,, 2
22 xxxxx fffYffY +==  

The multi-dimensional binary Bell polynomials are defined by 
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When take ,ln,ln FGwGFv ==  we can get [1]: 
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Specially, set ,GF =  we have that 
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If again set ,lnψ=v  one infers that 

( ) ,...,,...,, 1111 ψψ= llll xnxnxnxn vY  (6) 

which is an efficient tool for producing Lax pairs of integrable equations. 
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2. Integrability of Equation (1) 

Set ,2xqu =  and integrate once, Eq. (1) becomes 

( ) ( ) ( ) ( )xxxxtxxt qxqthqthqqqqE −−−−−= 22
2
21,2,2 2

14  

( ) ( ) .02443 =−− xx qthqth  (7) 

If set ( ) ( ),6 31 thth =  then we get 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )qxPthqPthqPqPqE xxxttx 22432 −−−∂=  

( ) ( )( ) .04224 =−+− xx qthqth  (8) 

Set ( ) ,ln2ln2 22 xx GquGq ==⇔=  one yields that 

( ) [ ( ) ( ) ( ) ( ) xxxtxtx DthxDthDthDDDqE 2422
4

3
2 −−−−∂=  

( )( ) ] ,042 =⋅∂−+ GGth x  (9) 

which is the bilinear form of Eq. (1). 

Let qq ~,  be two different solutions of Eq. (9). Then the following two-

field condition: 
( ) ( ) 0~ =− qEqE  (10) 

can be thought as an ansatz for a bilinear Bäcklund transformation. Eq. (9) 
implies that 

( ) ( ) ( )xtxxt qqqqqq −−−−− ~4~~
,2,2  

( )[( ) ( ) ( ) ]xxx qqqqqqth 2243
~~3~ +−+−−  

( )[ ( ) ( ) ] ( ) ( ) .0~~~
2422 =−−−−−− xxx qqthqqqqxth  (11) 

Set ,2~,2~ wqqvqq =+=−  then Eq. (11) turns into 

( ) ( ) ( ) ( )xxxxtxxt wvvthvvvqEqE 2243,2,2 64~ +−−−=−  

( ) ( ) ( ) .02422 =−−− xxx vthvxvth  (12) 
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Eq. (12) can be cast into 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )]wvRwvthvvqEqE xxxttx ,,~
33 +ϒ∂−ϒ−ϒ∂∂=−  

,0=  (13) 

where 

( ) ( )thwvR 33, −=  Wronskian ( ) ( )[ ] ( ) ( ) xxxx vthxvthvwv 24222 ,, −−ϒϒ  

 ( )( ) .42 xvth −+  (14) 

Set 

( ) ( ) ,2,, 22 =λ=ϒ thwvx  (15) 

Eq. (14) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ].2, 423 vthvxthvthwvR xxxx ϒ+ϒ+ϒλ−∂=  (16) 

Thus, Eq. (13) presents that 

( ) ( ) [ ( ) ( )( ) ( ) ( )wvthvvqEqE xxttx ,~
33 ϒ−ϒ−ϒ∂∂=−  

 ( ) ( ) ( ) ( )( )] .023 43 =ϒ+ϒ+λ− vxvthth xx  (17) 

Therefore, we obtain the bilinear Bäcklund transformation of Eq. (1): 

( )
[ ( ) ( ) ( ) ( )( ) ]⎩
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Let .,ln qvwv +=ψ=  Then one infers 

( ) ( ) ,,, 222 ψψ+=ϒ=ϒ xxxxx qwvvv  

( ) ....,3, 323 ψψ+ψψ=ϒ xxxx qwv  (19) 

Substituting Eq. (19) into Eq. (18) yields the Lax pair of Eq. (1) 

( ) ,02 =ψλ−+ψ ux  (20) 

( ) ( ) ( ) ( )( ) .0233 43332 =ψ+ψ+λ−ψ+ψ−ψ−ψ xxxxxtt xththuth  (21) 
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Next, we search for the infinite conserved laws of Eq. (1). Set ,xv=η  

,η+= xx qw  we have 

.2
2

2 ε=λ=+η+η xx q  (22) 

Thus, we obtain 

( ) [ ( ) ( )3
223 33 η+ηη+η+η∂+η−η∂ xxxxxtt qth  

( ) ( )( ) ] .023 43 =η+η+λ+ xthth  (23) 

Set ( )∑
∞

=
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n

n
xxn qqqI  and substituting into (23), we have the 

infinite conserved densities 
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Inserting η into Eq. (23), we get 
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It is easy to get the corresponding fluxes that 
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