FLAT ALMOST NORDEN METRICS WITH NONINTEGRABLE ALMOST COMPLEX STRUCTURES IN DIMENSION FOUR

A. BONOME

Departamento de Xeometría e Topoloxía, Facultade de Matematicas Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain e-mail: bonome@zmat.usc.es

R. CASTRO

Departamento de Xeometría e Topoloxía, Facultade de Matematicas Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain e-mail: regina@zmat.usc.es

L. M. HERVELLA

Departamento de Xeometría e Topoloxía, Facultade de Matematicas Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain e-mail: hervella@zmat.usc.es

Y. MATSUSHITA

School of Engineering, University of Shiga Prefecture Hikone 522-8533, Japan e-mail: yasuo@mech.usp.ac.jp

2000 Mathematics Subject Classification: Primary 53C50; Secondary 53D05, 32Q20.

Key words and phrases: Norden metric, opposite Norden structure, neutral metric, flat Norden metric.

Supported by project BFM2003-02949 (Spain).

Received May 27, 2005; Revised June 22, 2005

© 2005 Pushpa Publishing House

Abstract

We shall exhibit examples of almost Norden structures in dimension four, which consist of a flat metric and of a nonintegrable almost complex structure.

1. Introduction and Preliminaries

The purpose of the present paper is to exhibit examples of flat almost Norden 4-manifolds whose almost complex structures are not integrable. Examples of flat almost Hermitian manifolds with nonintegrable almost complex structures in dimensions four and six are reported by Tricerri and Vanhecke [10, 11]. Our examples of flat Norden metrics are constructed on a Walker 4-manifold, according to the way of construction of Norden metrics on a neutral 4-manifold with two kinds of almost complex structures [1]. Since four-dimensional Norden metric is necessarily of neutral signature (+ + - -), we must recall the following basic fact for the neutral geometry.

Fact 1 ([4], [5], [6], [7], [9]). The existence conditions of the following three geometric objects on an oriented 4-manifold M are equivalent to each other:

- (i) a metric of signature (++--) with $G = SO_0(2, 2)$,
- (ii) a pair (J, J') of two kinds of an almost complex structure J and an opposite almost complex structure J' which commute with each other,
 - (iii) a field of oriented tangent 2-planes.

It is known [5] that we can always choose g and (J, J') so that g is invariant by both structures J and J', and moreover that J and J' commute with each other:

$$J^2 = J'^2 = -1, \quad JJ' = J'J, \tag{1}$$

$$g(JX, JY) = g(X, Y), \quad g(JX, JY) = g(X, Y) \quad \forall X, Y \in \mathfrak{X}(M),$$
 (2)

where $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M, see also [8].

It is convenient to express a neutral metric g and the pair (J, J') in terms of an orthonormal frame $\{e_1, e_2, e_3, e_4\}$ of vectors, and its dual

frame $\{e^1, e^2, e^3, e^4\}$ of 1-forms, with $e^i(e_j) = \delta_{ij}$. In fact, the metric g can be written as

$$g = e^{1} \otimes e^{1} + e^{2} \otimes e^{2} - e^{3} \otimes e^{3} - e^{4} \otimes e^{4}.$$
 (3)

The almost complex structure J and an opposite almost complex structure J' can be written as

$$J = e_2 \otimes e^1 - e_1 \otimes e^2 + e_4 \otimes e^3 - e_3 \otimes e^4, \tag{4}$$

$$J' = e_2 \otimes e^1 - e_1 \otimes e^2 - e_4 \otimes e^3 + e_3 \otimes e^4.$$
 (5)

In the present paper, by a Norden metric on a neutral 4-manifold we mean a neutral metric g^{N+} which is J-skew invariant, i.e., $g^{N+}(JX, JY) = -g^{N+}(X, Y)$. Similarly, by an opposite Norden metric on a neutral 4-manifold we mean a neutral metric g^{N-} which is J'-skew invariant, i.e., $g^{N-}(JX, J'Y) = -g^{N-}(X, Y)$. If a neutral metric is skew invariant by both J and J', then the metric is called *double Norden*, and is denoted by $g^{N\pm}$. The generic forms of these three kinds of Norden metrics are obtained in the authors' previous paper [1, Theorem 4 and Corollary 5]. In [1], typical examples of these Norden metrics are also presented.

There are two simple forms of Norden metrics [1, (21), (22)]:

$$g^{N+} = e^1 \otimes e^4 + e^4 \otimes e^1 + e^2 \otimes e^3 + e^3 \otimes e^2, \tag{6}$$

or

$$g^{N+} = e^1 \otimes e^3 + e^3 \otimes e^1 - e^2 \otimes e^4 - e^4 \otimes e^2. \tag{7}$$

Similarly, there are two simple forms of opposite Norden metrics [1, (23), (24)]:

$$g^{N-} = e^1 \otimes e^4 + e^4 \otimes e^1 - e^2 \otimes e^3 - e^3 \otimes e^2, \tag{8}$$

or

$$g^{N-} = e^1 \otimes e^3 + e^3 \otimes e^1 + e^2 \otimes e^4 + e^4 \otimes e^2.$$
 (9)

We shall exhibit in the present paper a flat opposite Norden metric g^{N-} of type (8), with a nonintegrable opposite almost complex structure (5), on a Walker 4-manifold as a neutral 4-manifold.

2. A Walker 4-manifold as a Neutral 4-manifold

A Walker 4-manifold is a triple (M, g, D) consisting of a 4-manifold M, together with an indefinite metric g and a nonsingular field of 2-dimensional planes D (or distribution) such that D is parallel and null with respect to g. From Walker's theorem [12, Theorem 1 and Section 6, Case 1], there is a system of coordinates (x^1, x^2, x^3, x^4) with respect to which g takes the canonical form

$$g = [g_{ij}] = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & a(x^1, x^2, x^3, x^4) & c(x^1, x^2, x^3, x^4) \\ 0 & 1 & c(x^1, x^2, x^3, x^4) & b(x^1, x^2, x^3, x^4) \end{bmatrix}, (10)$$

where a, b and c are functions of the coordinates (x^1, x^2, x^3, x^4) . The metric (10) is the most generic form of Walker metrics. We see that g is of signature (++--) (or neutral). The parallel null 2-plane D is spanned locally by $\{\partial_1, \partial_2\}$, where ∂_i are the abbreviated forms of $\frac{\partial}{\partial x^i}$, (i=1,...,4). The components R_{ijkl} of the pseudo-Riemann curvature tensor are given in [7, Appendix A] (note that p_i mean $\partial p/\partial x^i$). From the components R_{ijkl} , it should be recognized that the metric (10) is, of course, not flat.

One of local orthonormal frames for (10), which we will apply in the present analysis, is

$$e_{1} = \frac{1}{2}(1-a)\partial_{1} + \partial_{3}, \qquad e_{2} = -c\partial_{1} + \frac{1}{2}(1-b)\partial_{2} + \partial_{4},$$

$$e_{3} = -\frac{1}{2}(1+a)\partial_{1} + \partial_{3}, \quad e_{4} = -c\partial_{1} - \frac{1}{2}(1+b)\partial_{2} + \partial_{4}, \tag{11}$$

with respect to which the Walker metric g can be diagonalized as in (3). Its dual basis of 1-forms is given by

$$e^{1} = dx^{1} + \frac{1}{2}(1+a)dx^{3} + cdx^{4}, \qquad e^{2} = dx^{2} + \frac{1}{2}(1+b)dx^{4},$$

$$e^{3} = -dx^{1} + \frac{1}{2}(1-a)dx^{3} - cdx^{4}, \qquad e^{4} = -dx^{2} + \frac{1}{2}(1-b)dx^{4}. \tag{12}$$

In terms of such an orthonormal frame $\{e_i\}$ and its dual basis $\{e^i\}$, we can easily construct Norden metrics (6), (7) and opposite Norden metrics (8), (9) on a Walker 4-manifold.

In the present paper, we shall turn our attention to a restricted form, as treated in a recent paper [6], rather than the generic metric (10). This restricted Walker metric is the metric (10) with c = 0, i.e.,

$$g = [g_{ij}] = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & a(x^1, x^2, x^3, x^4) & 0 \\ 0 & 1 & 0 & b(x^1, x^2, x^3, x^4) \end{bmatrix}.$$
(13)

The nonzero components R_{ijkl} of the curvature tensor of the metric (13) are given by

$$R_{1313} = -\frac{1}{2}a_{11}, \quad R_{1323} = -\frac{1}{2}a_{12}, \quad R_{1334} = \frac{1}{2}a_{14} - \frac{1}{4}a_{2}b_{1},$$

$$R_{1414} = -\frac{1}{2}b_{11}, \quad R_{1424} = -\frac{1}{2}b_{12}, \quad R_{1434} = -\frac{1}{2}b_{13} + \frac{1}{4}a_{1}b_{1},$$

$$R_{2323} = -\frac{1}{2}a_{22}, \quad R_{2334} = \frac{1}{2}a_{24} - \frac{1}{4}a_{2}b_{2},$$

$$R_{2424} = -\frac{1}{2}b_{22}, \quad R_{2434} = -\frac{1}{2}b_{23} + \frac{1}{4}a_{2}b_{1},$$

$$R_{3434} = -\frac{1}{2}a_{44} - \frac{1}{2}b_{33} + \frac{1}{4}aa_{1}b_{1} - \frac{1}{4}a_{1}b_{3}$$

$$+\frac{1}{4}ba_{2}b_{2} + \frac{1}{4}a_{2}b_{4} + \frac{1}{4}a_{3}b_{1} - \frac{1}{4}a_{4}b_{2}.$$
(14)

3. Opposite Norden Metrics

We study an opposite Norden metric g^{N-} of type (8) as a candidate for a flat Norden metric.

Proposition 2. If c = 0, then an opposite Norden metric g^{N-} of type (8) takes the form

$$g^{N-} = e^{1} \otimes e^{4} + e^{4} \otimes e^{1} - e^{2} \otimes e^{3} - e^{3} \otimes e^{2}$$
$$= 2dx^{1} \otimes dx^{4} - 2dx^{2} \otimes dx^{3} + (a - b)dx^{3} \otimes dx^{4}, \tag{15}$$

where $a = a(x^1, x^2, x^3, x^4)$ and $b = b(x^1, x^2, x^3, x^4)$.

Thus, g^{N-} depends only on the difference a-b. If we put

$$a(x^{1}, x^{2}, x^{3}, x^{4}) - b(x^{1}, x^{2}, x^{3}, x^{4}) = 2f(x^{1}, x^{2}, x^{3}, x^{4}),$$
(16)

then the nonzero components R_{ijkl}^{N-} of the Riemann curvature tensor are given by

$$R_{1314}^{N-} = -\frac{1}{2} f_{11}, \quad R_{1324}^{N-} = -\frac{1}{2} f_{12},$$

$$R_{1334}^{N-} = -\frac{1}{2} f_{13} + \frac{1}{4} f_{1}^{2}, \quad R_{1423}^{N-} = -\frac{1}{2} f_{12},$$

$$R_{1434}^{N-} = \frac{1}{2} f_{14} + \frac{1}{4} f_{1} f_{2}, \quad R_{2324}^{N-} = -\frac{1}{2} f_{22},$$

$$R_{2334}^{N-} = -\frac{1}{2} f_{23} + \frac{1}{4} f_{1} f_{2}, \quad R_{2434}^{N-} = \frac{1}{2} f_{24} + \frac{1}{4} f_{2}^{2},$$

$$R_{3434}^{N-} = f_{34} + \frac{1}{2} f_{1} f_{2}. \tag{17}$$

We see that there are many partial derivatives of f with respect to x^1 and x^2 . Since we are seeking a flat metric, we now suppose that

$$a(x^{1}, x^{2}, x^{3}, x^{4}) - b(x^{1}, x^{2}, x^{3}, x^{4}) = 2f(x^{3}, x^{4}).$$
 (18)

Then, the only nonzero component of the curvature tensor, is

$$R_{3434}^{N-} = f_{34}, (19)$$

which implies that if $f = f(x^3, x^4)$, then g^{N-} is still not flat.

Proposition 3. If $f = \phi(x^3) + \psi(x^4)$, that is,

$$a(x^{1}, x^{2}, x^{3}, x^{4}) - b(x^{1}, x^{2}, x^{3}, x^{4}) = 2\phi(x^{3}) + 2\psi(x^{4}), \tag{20}$$

then the opposite Norden metric

$$g^{N-} = 2dx^{1} \otimes dx^{4} - 2dx^{2} \otimes dx^{3} + 2(\phi(x^{3}) + \psi(x^{4}))dx^{3} \otimes dx^{4}$$
 (21)

is flat.

as follows:

4. Integrability of Opposite Almost Complex Structure J'

The flat opposite Norden metric g^{N-} in (21) is skew invariant by the following opposite almost complex structure

$$J' = e_2 \otimes e^1 - e_1 \otimes e^2 - e_4 \otimes e^3 + e_3 \otimes e^4$$

$$= (-b\partial_2 + 2\partial_4) \otimes dx^1 + (a\partial_1 - 2\partial_3) \otimes dx^2$$

$$+ \left\{ -\frac{1}{2}(ab-1)\partial_2 + a\partial_4 \right\} \otimes dx^3 + \left\{ \frac{1}{2}(ab-1)\partial_1 - b\partial_3 \right\} \otimes dx^4. \quad (22)$$

We now analyze if such an opposite almost complex structure J^{\prime} is integrable or not.

If we write $J\partial_i = \sum_{j=1}^4 J_i^{\prime j} \partial_j$, then the components $J_i^{\prime j}$ of J' are given

$$J_1'^2 = -b, \quad J_1'^4 = 2, \quad J_2'^1 = a, \quad J_2'^3 = -2,$$

$$J_3'^2 = -\frac{1}{2}(ab - 1), \quad J_3'^4 = a, \quad J_4'^1 = \frac{1}{2}(ab - 1), \quad J_4'^3 = -b. \tag{23}$$

The components $\,N^i_{jk}\,$ of the Nijenhuis tensor or torsion of $\,J'\,$ are defined by

$$N_{jk}^{i}[J'] = 2\sum_{h=1}^{4} \left(J_{j}^{\prime h} \frac{\partial J_{k}^{\prime i}}{\partial x^{h}} - J_{k}^{\prime h} \frac{\partial J_{j}^{\prime i}}{\partial x^{h}} - J_{h}^{\prime i} \frac{\partial J_{k}^{\prime h}}{\partial x^{j}} + J_{h}^{\prime i} \frac{\partial J_{j}^{\prime h}}{\partial x^{k}} \right). \tag{24}$$

It is well known [2, p. 124] that J' is integrable if and only if all the components $N^i_{jk}[J']$ vanish.

Proposition 4. If a and b satisfy

$$a(x^{1}, x^{2}, x^{3}, x^{4}) - b(x^{1}, x^{2}, x^{3}, x^{4}) = 2\phi(x^{3}) + 2\psi(x^{4}), \tag{25}$$

then J' is in general not integrable.

Proof. From a straightforward calculation, we have the components of the Nijenhuis tensor explicitly as follows:

$$\begin{split} N_{12}^1 &= -4\{(a-\phi-\psi)a_2-a_4\} \\ N_{13}^1 &= N_{24}^1 = (a^2+1)a_1 - 2a(a_3-2\phi_3) \\ N_{14}^1 &= -2(a-2\phi-2\psi)\{(a-\phi-\psi)a_2-a_4\} \\ N_{23}^1 &= 2a\{(a-\phi-\psi)a_2-a_4\} \\ N_{34}^1 &= -(a^2-2a\phi-2a\psi-1)\{(a-\phi-\psi)a_2-a_4\} \\ N_{12}^2 &= 4(a-\phi-\psi)a_1-4a_3+8\phi_3 \\ N_{13}^2 &= N_{24}^2 = (a^2-4a\phi-4a\psi+4\phi^2+8\phi\psi+4\psi^2+1)a_2 \\ &-(a-2\phi-2\psi)a_4 \\ N_{14}^2 &= 2(a-2\phi-2\psi)\{(a-\phi-\psi)a_1-a_3+2\phi_3\} \\ N_{23}^2 &= -2a\{(a-\phi-\psi)a_1-a_3+2\phi_3\} \end{split}$$

$$N_{34}^2 = (a^2 - 2a\phi - 2a\psi - 1)\{(a - \phi - \psi)a_1 - a_3 + 2\phi_3\}$$

$$N_{12}^3 = 4a_2$$

$$N_{13}^3 = N_{24}^3 = -2aa_1 + 4a_3 - 8\phi_3$$

$$N_{14}^3 = 2(a - 2\phi - 2\psi)a_2$$

$$N_{23}^3 = -2aa_2$$

$$N_{34}^4 = (a^2 - 2a\phi - 2a\psi - 1)a_2$$

$$N_{12}^4 = -4a_1$$

$$N_{13}^4 = N_{24}^4 = -2(a - 2\phi - 2\psi)a_2 + 4a_4$$

$$N_{14}^4 = -2(a - 2\phi - 2\psi)a_1$$

$$N_{23}^4 = 2aa_1$$

$$N_{34}^4 = -(a^2 - 2a\phi - 2a\psi - 1)a_1.$$

Since these components cannot vanish in general, we see that J' is not integrable.

In fact,
$$N_{ik}^{i}[J'] = 0$$
 if and only if $a_1 = a_2 = a_4 = 0$, $a_3 = 2\phi_3$.

5. Flat Norden Metrics with Nonintegrable Almost Complex Structures

In this last section, we shall state our main results. We now summarize the preceding argument as the main theorem.

Theorem 5. Let (M, g) be a Walker 4-manifold, endowed with the metric as in (13), i.e.,

$$g = 2dx^{1} \otimes dx^{3} + 2dx^{2} \otimes dx^{4} + a(x^{1}, x^{2}, x^{3}, x^{4})dx^{3} \otimes dx^{3}$$
$$+ b(x^{1}, x^{2}, x^{3}, x^{4})dx^{4} \otimes dx^{4}.$$
(26)

Then, the opposite almost complex structure, given in (22),

$$J' = (-b\partial_2 + 2\partial_4) \otimes dx^1 + (a\partial_1 - 2\partial_3) \otimes dx^2$$
$$+ \left\{ -\frac{1}{2}(ab-1)\partial_2 + a\partial_4 \right\} \otimes dx^3 + \left\{ \frac{1}{2}(ab-1)\partial_1 - b\partial_3 \right\} \otimes dx^4 \quad (27)$$

is in general not integrable, and constitutes, together with g above, an opposite almost pseudo-Hermitian structure (g, J') satisfying the J'-invariance:

$$g(J'X, J'Y) = g(X, Y).$$
 (28)

If $a(x^1, x^2, x^3, x^4) - b(x^1, x^2, x^3, x^4) = 2\phi(x^3) + 2\psi(x^4)$ as in (25), then the Walker 4-manifold M admits a flat opposite Norden metric g^{N-} as in (21), i.e.,

$$g^{N-} = 2dx^{1} \otimes dx^{4} - 2dx^{2} \otimes dx^{3} + 2(\phi(x^{3}) + \psi(x^{4}))dx^{3} \otimes dx^{4}, \tag{29}$$

which is J'-skew invariant:

$$g^{N-}(J'X, J'Y) = -g^{N-}(X, Y). \tag{30}$$

We shall analyze in detail the family of Walker 4-manifolds, which are characterized in the main theorem.

Case I.
$$a = a(x^1, x^2, x^3, x^4)$$
 and $b = a(x^1, x^2, x^3, x^4) - 2\phi(x^3) - 2\psi(x^4)$.

The Walker 4-manifold described in this theorem admits a nonflat opposite almost pseudo-Hermitian structure (g, J'), but admits a flat opposite Norden structure (g^{N-}, J') , with a nonintegrable almost complex structure J'.

If we restrict our attention to the case

$$a = 0, b = -2\phi(x^3) - 2\psi(x^4),$$
 (31)

then there is still one nonzero component of the curvature as follows:

$$R_{3434} = \phi_{33}(x^3). \tag{32}$$

Therefore, a Walker 4-manifold M with a metric

$$g = 2dx^{1} \otimes dx^{3} + 2dx^{2} \otimes dx^{4} + 2(\phi(x^{3}) + \psi(x^{4}))dx^{4} \otimes dx^{4}$$
 (33)

has a nonzero curvature component $R_{3434} = \phi_{33}(x^3)$, and admits a *flat* opposite Norden metric (29). In this restricted case, the Nijenhuis tensor of J' has still nonzero components as follows:

$$N_{12}^{2} = -8N_{34}^{2} = -N_{13}^{3} = -N_{24}^{3} = 8\phi_{3}(x^{3}),$$

$$N_{14}^{2} = -8(\phi(x^{3}) + \psi(x^{4}))\phi_{3}(x^{3}).$$
(34)

Case II.
$$a = 0$$
 and $b = -2kx^3 - 2\psi(x^4)$ (k : constant).

This is the case that ϕ is linear in x^3 , and therefore $R_{3434}=0$. That is, g is a flat metric. However, the components of the Nijenhuis tensor in (34) are still not all zero:

$$N_{12}^2 = -8N_{34}^2 = -N_{13}^3 = -N_{24}^3 = 8k, \quad N_{14}^2 = -8(kx^3 + \psi(x^4))k.$$
 (35)

Thus, in this Case II, we have a Walker 4-manifold M, which admits a flat metric

$$g = 2dx^{1} \otimes dx^{3} + 2dx^{2} \otimes dx^{4} + 2(kx^{3} + \psi(x^{4}))dx^{4} \otimes dx^{4}, \tag{36}$$

and also a *flat* opposite Norden metric

$$g^{N-} = 2dx^{1} \otimes dx^{4} - 2dx^{2} \otimes dx^{3} + 2(kx^{3} + \psi(x^{4}))dx^{3} \otimes dx^{4}, \tag{37}$$

with a nonintegrable opposite almost complex structure

$$J' = 2(kx^3 + \psi(x^4))(\partial_2 \otimes dx^1 - \partial_3 \otimes dx^4)$$
$$+ 2\partial_4 \otimes dx^1 - 2\partial_3 \otimes dx^2 + \frac{1}{2}\partial_2 \otimes dx^3 - \frac{1}{2}\partial_1 \otimes dx^4. \tag{38}$$

Case III.
$$a = 0$$
 and $b = -2\psi(x^4)$.

If b is further independent of $x^3(k=0)$, then all the components of Nijenhuis tensor in (35) vanish. Thus, in this case we have a Walker

4-manifold which admits two kinds of flat metrics

$$g = 2dx^{1} \otimes dx^{3} + 2dx^{2} \otimes dx^{4} + 2\psi(x^{4})dx^{4} \otimes dx^{4}, \tag{39}$$

$$g^{N-} = 2dx^{1} \otimes dx^{4} - 2dx^{2} \otimes dx^{3} + 2\psi(x^{4})dx^{3} \otimes dx^{4}, \tag{40}$$

with an integrable opposite almost complex structure

$$J' = 2\psi(x^4)(\partial_2 \otimes dx^1 - \partial_3 \otimes dx^4)$$

$$+ 2\partial_4 \otimes dx^1 - 2\partial_3 \otimes dx^2 + \frac{1}{2}\partial_2 \otimes dx^3 - \frac{1}{2}\partial_1 \otimes dx^4. \tag{41}$$

We have thus exhibit examples of flat opposite Norden metrics g^{N-} with nonintegrable almost complex structures J'. As a by-product, we also have a flat almost Hermitian metric g as in (36). It may be also interesting to see if a Walker 4-manifold admits a *flat Norden metric* g^{N+} with respect to an almost complex structure J. In relation to the present issue, a recent work of Manev and Sekigawa [3] asserts that a pseudo-hyper-Kähler 4n-manifold $(4n \ge 4)$ is a *flat neutral* pseudo-Riemannian manifold.

References

- [1] A. Bonome, R. Castro, L. M. Hervella and Y. Matsushita, Construction of Norden structures on neutral 4-manifolds, JP Jour. Geom. Topol. 5(2) (2005), 121-140.
- [2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry II, John Wiley, 1969.
- [3] M. Manev and K. Sekigawa, Some four-dimensional almost hypercomplex pseudo-Hermitian manifolds, Proceedings of Seventh International Workshop on Complex and Vector Fields, Plovdiv, Bulgaria, August 31-September 4, 2004, World Scientific Publishing, Singapore, 2005 (in press).
- [4] Y. Matsushita, Fields of 2-planes and two kinds of almost complex structures on compact 4-dimensional manifolds, Math. Z. 207 (1991), 281-291.
- [5] Y. Matsushita, Some remarks on fields of 2-planes on compact smooth 4-manifolds, Adv. Stud. Pure Math. 22 (1993), 153-167.
- [6] Y. Matsushita, Four-dimensional Walker metrics and symplectic structures, J. Geom. Phys. 52 (2004), 89-99.
- [7] Y. Matsushita, Walker 4-manifolds with proper almost complex structures, J. Geom. Phys. 55 (2005), 385-398.

FLAT ALMOST NORDEN METRICS WITH NONINTEGRABLE \dots 153

- [8] Y. Matsushita, On Euler characteristics and Hirzebruch indices of four-dimensional almost para-Hermitian manifolds, JP Jour. Geom. Topol. 5(2) (2005), 115-120.
- [9] Y. Matsushita and P. Law, Hitchin-Thorpe-type inequalities for pseudo-Riemannian 4-manifolds of metric signature (+ + -), Geom. Dedicata 87 (2001), 65-89.
- [10] F. Tricerri and L. Vanhecke, Flat almost Hermitian manifolds which are not Kähler manifolds, Tensor (N.S.) 31 (1977), 249-254.
- [11] F. Tricerri and L. Vanhecke, An example of a 6-dimensional flat almost Hermitian manifold, Colloq. Math. 40 (1978/79), 111-117.
- [12] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford (2) 1 (1950), 69-79.

MMM.Pohmil.com