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Abstract 

In this paper, we consider the elongated triangular tiling of the plane 

(( )23 4,3  Archimedean )tiling  and compute the probability that a 

random circle or a random segment intersects a side of the lattice. 

1. Introduction 

An Archimedean tessellation (semi-regular or uniform tessellation) is a 
tessellation of the plane made from more than one type of regular polygon so 
that the same polygons surround each vertex; we can list the types of 
polygons as they come together at the vertex [10]. The elongated triangular 
tiling is a tiling such that three triangles and two squares come together in 

any vertex so it can be called a ( )23 4,3  Archimedean tiling (see Figure 

1(a)). Many authors studied Buffon type problems for different lattices of 
figures or tilings and different test bodies: see for example [1-9, 13-15]. 
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(a) Elongated triangular tiling            (b) The fundamental cell 0T  

Figure 1. The tiling .R  

We will study Buffon type problems for the elongated triangular tiling 
and two special test bodies: a circle of constant radius and a line segment of 
length l. 

Let 2E  be the Euclidean plane and let R  be the elongated triangular 

tiling of 2E  given in Figure 1(a). We denote by 0T  the fundamental tile (or 

cell) of R  (see Figure 1(b)) and by nT  one of congruent copies of 0T  such 

that: 

(1) ∪ N∈ =n n ET ,2  

(2) ( ) ( ) N∈∀∅= jiTT ji ,,IntInt ∩  and ,ji ≠  

(3) ( ) ,,0 N∈∀γ= nTT nn  where nγ  are the elements of a discrete 

subgroup of the group of motions in 2E  that leaves invariant the tiling .R  

The body 0T  can be expressed as the union of a square of side a and two 

equilateral triangles of the same side a. 

Let us denote by K a convex body (which means here a compact convex 
set) which we shall call test body. A general problem of Buffon type can be 
stated as follows: “Which is the probability R,Kp  that the random convex 
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body K, or more precisely, a random congruent copy of K, meets some of the 
boundary points of at least one of the domains ?”.nT  

We will study also the problem of the independence of the two events 
“The body K meets some of the boundary points of the triangles of the tile 

”R  and “The body K meets some of the boundary points of the squares of 
the tiling ”.R  

If we denote by M  the set of all test bodies K whose centroid is in the 
interior of 0T  and by N  the set of all test bodies K that are completely 

contained in the triangle ABC or in the triangle DEF or in the square ACDF, 
we have 

( )
( )

,1, M
N

R μ
μ

−=Kp  (1) 

where μ  is the Lebesgue measure in the plane .2E  

2. The Test Body is a Circle 

Let us suppose that the test body K is a circle of diameter D. Easy 
geometrical considerations will lead us to distinguish between the cases <D  

aDaa
<≤

3
,

3
 and .aD ≥  It is obvious that if ,aD ≥  then the circle 

always meets the boundary of one of the bodies ,nT  so we have to study the 

other two cases. 

Proposition 1. The probability that the circle K of diameter D intersects 
the tiling R  is given by 

[ ( ) ]
( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
+

−+

<
+

+−

=
.

3
,

32
243

,
3

,
32

33210

2

22

2
,

aDaif
a

DaDa

aDif
a

DaD

pK R  (2) 

Proof. We compute the measures ( )Mμ  and ( )Nμ  with help of the 

elementary kinematic measure φ∧∧= ddydxdK  of 2E  (see [11, 12]), 
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where x and y are the coordinates of the center of K (or the components of a 
translation), and φ  is the angle of rotation. We have 

( ) ( )
( )∫ ∫∫

π

∈ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+π=⋅π=φ=μ

0 ,
2

0
0

.2
31area

Tyx
aTdxdydM  

Let 1N  be the set of circles of diameter D that are contained in the 

triangle ABC and 2N  be the set of circles of diameter D that are contained 

in the square ACDF. From (1) we obtain 

( ) ( ) .

2
31

21
2

21
,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+π

μ+μ
−=

a
pK

NN
R  (3) 

 

(a) The case 
3

aD <           (b) The case a aDa
<≤

3
 

Figure 2. The case .circle=K  

From Figure 2(a) it is easy to see that ( )1Nμ  is π  times the area of the 

triangle A’B’C’ whose sides are parallel to the sides of the triangle ABC at 
distance 2D  from them (A’ is the center of a disk interior to the triangle 

ABC and tangent to the sides AB and AC and so on). Since the side of the 

triangle is ,3Da −  we have: 
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( ) ( ) .3
4

3 2
1 Da −

π
=μ N  

In the same way we obtain that 

( ) ( ) .2
2 Da −π=μ N  

Then we have for the case 
3

aD <  

[ ( ) ]
( )

.
32

33210
2,

a
DaDpK

+

+−
=R  

Let aDa
<≤

3
 (see Figure 2(b)). If the center of the circle K is in the 

triangle ABC, then the circle always intersects one of the sides of the triangle 
so that 

( ) .
4

3 2
1 aπ

=μ N  

If the center of the circle is in the square ACDF, then the circle does not 
intersect the side of the square if its center is in the square A”C”D”F”; since 
the side of this square is ,Da −  we have 

( ) ( ) ,2
2 Da −π=μ N  

and so in this case 

( )
.

32
243

2

22
,

a
DaDapK

+

−+
=R  

Let us consider now the problem of the independence of the two events 
=1I  “The body K meets some of the boundary points of the triangles of the 

tile ”R  and =2I  “The body K meets some of the boundary points of the 

squares of the tile ”.R  
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In the same way as above we compute the measure of the circles K 
whose center is in 0T  and intersect or a triangle or a square of R  (or both). 

Proposition 2. The events 1I  and 2I  are dependent for any [ ].,0 aD ∈  

 

 (a)                                                  (b) 

Figure 3 

Proof. We have to consider three cases: 

(i) Let .3aD <  The circle K intersects the boundary of a triangle of 

the tiling if its center is in the gray region in Figure 3(a) whose area is 

( ( ) ) 222
2

334
2
13

4
32 DaDaDDaa −=⎥

⎦

⎤
⎢
⎣

⎡
+−−                           

so that 

( )
( )

.
32

338
2

2
1

+

−
=

a
DaDIp  

The circle K intersects the boundary of a square of the tiling if its center is in 
the gray region in Figure 3(b) whose area is 
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( ) 2
2

22 3
342

23
2

2 DaDD
DDa

Daa −=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⎟
⎠
⎞

⎜
⎝
⎛ −

+−−  

so that 

( ) ( )
( )

.
32

32
22

+

−
=

a
DaDIp  

In the same way we obtain: 

( )
( )

.
32

4
21 +

=
a

DIIp ∩  

In order to evaluate the independence of the two events 1I  and 2I  we have 

to study the equation: 

( ) ( ) ( ),2121 IpIpIIp =∩  

i.e., 

( ) ( ) ( ).3383232 3 DaDaDa −−=+  (4) 

Let taD ⋅=  be, with :310 << t  the equation (4) is satisfied if in such 

interval there exists a zero of the function 

( ) ( ) .4322483933 23 −−++−= ttttf  

Since for 310 << t  the derivative ( )tf ′  is positive, we have ( ) <tf  

( ) 0
3

173331 <−=f  the equation (4) does not have solution and the 

events 1I  and 2I  are dependent. 

(ii) Let now .233 aDa <≤  In this case if the circle K has the 

center in the triangle, then it always intersects the triangle, moreover it 
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intersects the triangle if its center is in the square at distance less than 2D  

from the upper or lower side, so: 

( )
( )

.
32

23
1 +

+
=

a
DaIp  

The probability that the circle intersects the square and the circle intersects 
both the triangle and the square is the same as in case (i) and so 

( ) ( )
( )32
32

22
+

−
=

a
DaDIp  

and 

( )
( )

.
32

4
21 +

=
a

DIIp ∩  

As above we study the equation: 

( ) ( ) ( ),2121 IpIpIIp =∩  

i.e., 

( ) ( ) ( )322323 2 +=+− aaDDa  

who has the solutions aD =  and aD
2

32 −
=  that are both outside the 

interval [ ]23,3 aa  and so also in this case the events are dependent. 

(iii) Finally we consider the case .23 aDa <≤  In this case if the 

center of the circle K is in the triangle, then the circle always intersects both a 
triangle and a square. Moreover it intersects the triangle if its center is in the 
square at distance less than 2D  from the upper or lower side; since in this 

case the circle intersects also the square, we have 

( ) ( )
( )32

23
211 +

+
==

a
DaIIpIp ∩  

and the events are obviously dependent, since ( ) .12 <Ip  
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3. The Test Body is a Line Segment 

Let us consider now the case K is a line segment of length l. Also in this 

case easy geometrical considerations give us four cases: ≤<
2

3,
2

3 aal  

,al <  2ala <≤  and .2al ≥  In the last case the segment always 

intersects the boundary of one of the bodies ,nT  so we have to study the 

other cases. We have 

Proposition 3. The probability that the line segment K of length l 
intersects the tiling R  is given by 

[ ( ) ]
( )

( )

( )

( )
( )⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

<≤
π+

+π+

+−−

<≤
π+

++

π−−−−

<
+π

π+−

=

.2
32

arccos83

284

2
3

323
2

3arccos3236

3215342760

2
3

323
321560

2

22

2222

2

22

2222

2

,

aDaif
a

laaa

lalaa

aDaif
a

l
ala

llalaal

alif
a

lal

pK R  (5) 

Proof. (i) Let us consider the case .2
3al <  We compute first the 

measure ( )1Nμ  of the set 1N  of all line segments of length l contained in 

the triangle DEF. For a fixed angle ⎢⎣
⎡

⎢⎣
⎡ π

∈φ 3,0  we denote by (see Figure 

4(a)) 
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(a) 2
3al <              (b) ala

<≤
3

           (c) 2ala <≤  

Figure 4. The case =K  line segment. 

- F’ the midpoint (in DEF) of the line segment of length l with one 
endpoint in F that makes an angle φ  with FD. 

- D’ the midpoint of the line segment of length l with endpoints on DF 
and DE that makes an angle φ  with FD. 

- E’ the midpoint of the line segment of length l with endpoints on EF 
and DE that makes an angle φ  with the direction of FD. 

We compute 

( )
2

3
2sin

3
2

4
3’’’area ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ φ−π−=

laFED  

and, by symmetry, we obtain 

( ) ( )∫ ∫
π π

φ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ φ−π−=φ=μ

3

0

3

0

2
1 3

2sin
3

2
4
3’’’area3 dladFEDN  

( ) .12
3293633 22 lala π++−π

=  (6) 
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In the same way, if ,2,0 ⎢⎣
⎡

⎢⎣
⎡ π

∈ψ  then we obtain for the set 2N  of the line 

segments contained in the square ACDF 

( ) ( ) ( )ψ−ψ−= cossin’’’’area lalaFDCA  

and so, by symmetry, we have 

( ) ( ) ( ) ( )∫ ∫
π π

ψψ−ψ−=ψ=μ
2

0

2

02 sincos’’’’area2 dlaladFDCAN  

22 4 lala +−π=  

and so 

( ) .
32

510
2
31 22 lala ⎟

⎠
⎞

⎜
⎝
⎛ π

++−π⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=μ N  

Hence we have if 2
3al <  

[ ( ) ]
( )

.
323

321560
2,

a
lalpK

+π

π+−
=R  (7) 

(ii) Let now .2
3 ala

<≤  With reference to Figure 4(b) it is easy to            

see that the line segment can be contained in the triangle EFD only if the 
angle [ [3,0 π∈φ  between the line segment and the side FD satisfies 

l
a

2
3arccos

6
0 −

π
<φ≤   or .32

3arccos6
π

<φ<+
π

l
a  

So the measure of the line segments completely contained in the triangle 
EFD is, by symmetry, 

( ) ∫
−

π

φ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ φ−π−=μ l

a

dla2
3arccos6

0

2
1 3

2sin
3

2
4
36N  

( ) ( )

( )
.12

2
3arccos2336

3293343439
22

2222

l
ala

lalala

+−

π++π+−−

=  
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The measure of the line segment completely contained in the square ACDF is 
the same as in the case above: 

( ) .4 22
2 lala +−π=μ N  

Hence we have if ala
<≤2

3  

( )

( )
.

323
2

3arccos3236

3215342760

2

22

2222

,
a

l
ala

llalaal

pK
π+

++

π−−−−

=R  (8) 

(iii) Let now .2ala <≤  With reference to Figure 4(c) it is easy to see 
that if the centroid of the line segment is in the triangle EFD the line segment 
always meets one of the side of the triangle and can be contained in the 
square ACDF only if the angle [ [2,0 π∈φ  between the line segment and 

the side AC satisfies .arccos2arccos l
a

l
a

−
π

≤φ<  

So the measure of the line segments completely contained in the square 
ACDF is given by: 

( ) ( ) ( )
( )∫

−
π

φφ−φ−=μ l
a

la
dlala

arccos2
arccos2 sincos2N  

( ) ( ).arccos424 22222 laaalala −−π+−−=  

Hence we have if 2ala <≤  

( ( ))
( )

.
32

arccos83284
2

222222
,

a
laaalalaapK

π+

+π++−−
=R  (9) 

Let us consider now the problem of the independence of the two events 
=1I  “The body K meets some of the boundary points of the triangles of the 

tile ”R  and =2I  “The body K meets some of the boundary points of the 

squares of the tile ”.R  
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In the same way as above we compute the measure of the line segments 
K whose center is in 0T  and intersect or a triangle or a square of R  (or 

both). 

Proposition 4. The events 1I  and 2I  are independent only for ,atl ≠  

where 958473.0≈t  is the unique solution of equation (12) in the interval 

.2
3 ala <≤  

 

(a)                                                    (b) 

Figure 5 

Proof. Using the same notation of Proposition 3, let us note that if the 
centroid of the line segment is in a triangle, then the segment intersects the 
triangle if the centroid is not in the region 1N  and, analogously, it intersects 

a square if the centroid is in the square and not in the region .2N  Moreover 

it intersects a square if the centroid is in a triangle at a distance less than 

φsin2
l  from the side of a square and it intersects a triangle if its centroid is 
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in a square at a distance less than φsin2
l  from the upper or the lower side of 

a square. 

Finally we remember that ( ) ( ) ( ) ( )212121 IIpIpIpIIp ∪∩ −+=  and 

( )21 IIp ∪  is the probability we found in Proposition 3. 

Then we have to consider four cases: ;230 al <≤  ;23 ala <≤  

2;2 alala ≥<≤  

(i) Let .230 al <≤  In this case the measure of the line segments with 

centroid in a square that intersect a triangle is ∫
π

=φφ
0

2sin22 aldal  and this 

is also the measure of the line segments with centroid in a triangle that 
intersects a square. 

So we obtain: 

( ) ( ( ))
( )

,
323

32948
21
π+

π+−
=

a
lalIp  

( ) ( )
( ) π+

−
= 22

32
62

a
llaIp  

and 

( )
( )

.
32

8
21 π+

=
a

lIIp ∩  

In order to evaluate the independence of the events 1I  and 2I  we have to 

study the equation: 

( ) ( ) ( ),2121 IIpIpIp ∩=  

i.e., 

( ) ( ( ) ) ( ).3212329486 3 +π=π+−− alalal  (10) 
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Let taD ⋅=  be, with :310 << t  the equation (10) is satisfied if in 

such interval there exists a zero of the function 

( ) ( ) ( ( ) ) ( ).3212329486 +π−π+−−= ttttf  

Since in the interval [ ]23,0  the function ( )tf  is increasing, we obtain 

( ) ( ) 023 <≤ ftf  and so the events 1I  and 2I  are dependent. 

(ii) Let now .23 ala <≤  In this case the only difference with the 

previous one is that now a line segment with center in a triangle intersect 

always a square if 
l

a
2

3sin ≥φ  and, if ,
2

3sin
l

a
<φ  then the area of the 

region in which the center have to be for the line segment intersects a square 
is, as before, φsinal  so: 

( )

( ) ( )

( )
( )

,
323

329

163493
2

3arccos2336

2

2

2222

1
+π

π+−

−−−+

=
a

l

lala
l

ala

Ip  

( )
( )32

2
3arccos32234212

2

2222

2
+π

+−−−
=

a
l

aalalaal
Ip  

and 

( )
( )

.
23

2
3arccos323428 22

21 +π

+−−
=

a
l
aaall

IIp ∩  

In order to evaluate the independence of the events 1I  and 2I  we have to 

solve the equation 

( ) ( ) ( ),2121 IIpIpIp ∩=  

i.e., 
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( )⎜
⎝
⎛ +−+−− 22 439163 lala  

( ) ( ) ⎟⎟
⎠

⎞
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++π+− l

alal 2
3arccos2336329 222  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−−× l

aalaalal 2
3arccos3436 2222  

( ) .2
3arccos3434323 223

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−π+= l

aalala  (11) 

By setting as above ,atl ⋅=  we obtain 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−+π++− tttt 2

3arccos2336432732948 222  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−++−× tttt 2

3arccos3436 22  

( ) .2
3arccos3434323 2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−π+= ttt  (12) 

With a computer simulation (for example using a mathematical software 
like Maxima or Mathematica) it is possible to see that the above equation has 

a unique solution in the interval ala <≤2
3  given by .958473.0 al ≈  

(iii) Let now .2ala <≤  In this case a line segment with the centroid 

in a square intersects always a triangle if l
a

≥φsin  and, if ,sin l
a

<φ  then 

the area of the region in which the center has to be for the line segment to 
intersect a square is, as before, φsinal  so: 

( ) ,
32

arccos4344 22

1 π+π

+π+−−
=

aa
l
aaaall

Ip  
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( )
( ) π+

⎟⎟
⎠

⎞
++

⎜⎜
⎝

⎛
−−−−++

= 2

22

222222

2
32

2
3arccos3arccos4

344222

a

l
aal

aa

alaalalala

Ip  

and 

( )21 IIp ∩  

.
32

2
3arccos32arccos434248 2222

π+π

++−−−−
=

aa
l
aal

aaalall
 

Also in this case in order to solve the equation ( ) ( ) ( )2121 IIpIpIp ∩−  

0=  we use a computer simulation and we find that in the interval under 
consideration we have ( ) ( ) ( )2121 IIpIpIp ∩>  and so the events 1I  and 

2I  are dependent in this case. 

(iv) Finally let us consider .2al ≥  As above we find: 

( )
π+π

+π+−−
=

aa
l
aaaall

Ip
32

arccos4344 22

1  

( )
,

32

arccos2222
1

22

π+

⎟
⎠
⎞

⎜
⎝
⎛ −π+−−

−=
a

l
aaalal

 

( )
π+π

+π+−−
=

aa
l
aaaall

Ip
32

2
3arccos3223424 22

2  

( ) π+

⎟
⎠
⎞

⎜
⎝
⎛ −π+−−

−=
a

l
aaalal

32

arccos2222
1

22

 

and 
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( )21 IIp ∩  

( ) π+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−−−

=
a

l
aal

aaalall

32
2
3arccos3arccos234242 2222

 

( )
.

32

arccos2222
21

22

π+

⎟
⎠
⎞

⎜
⎝
⎛ −π+−−

−=
a

l
aaalal

 

Since ( ) ( ) ,0211 2 >α−−α−  we obtain also in this case ( ) ( ) >21 IpIp  

( )21 IIp ∩  and the events 1I  and 2I  are dependent. 
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