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Abstract 

Metrical distortions are introduced as generalizations of 
diffeomorphisms as point set transformations within Riemannian 
geometry. Especially, synthetical coordinates as an explicit Euclidean 
coordinate system, are derived from the natural affine space over                   
the manifold. As an immediate consequence, Riemann-Lebesgue 
integration is generalized and a natural integration theory for a special 
type of partial differential equations is established. As a substantial 
result, the naming “rubber sheet geometry” for topology is justified. 

I. Introduction 

This paper intends to state a detailed analysis of metrical distortions and 
synthetical coordinates and derives a natural integration theory for geometric 
PDEs 

( ) ( )( )xfxDf =  
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as immediate consequence (Theorem 14). Furthermore, the Riemann-
Lebesgue integration theory, in the sense of a generalization of the 
transformation theorem is extended (Theorem 9). The integration of 
differential forms becomes, thereby, a separate meaning. By metrical 
distortions, the differential topology of a manifold can be understood 
intuitively as the geometry of invariants which are stable which respect to 
“rubber sheet transformations” (Remark 10(III)). 

Parametric manifolds, introduced by Riemann, were unified under one 
definition, especially, by the work of Whitney [4], who showed that the type 
of submanifolds of the Euclidean space and the type of abstract manifolds, 
without any exterior space, built the same class in a differential topological 
sense, i.e., without respecting a Riemannian metric. The geodesic system of 
the Riemannian manifold provides a natural analysis of the shortest 
connection by ODE methods. 

The affine space over the manifold M, isomorph to the double tangential 
space ,MTTp  with an arbitrary point ,Mp ∈  provides a natural Euclidean 

coordinate system in a curved Riemannian manifold. The only thing that has 
to be considered for a rigorous treatment is that the space exists consistently, 
and that points in the Euclidean space and in the manifold can be identified 
one to one by the geodesic system. The thereby obtained mapping is, as a 
homeomorphism part of the pseudo group structure of differentiable chart 
transformations and defines a metrical distortion, a construction which seems 
to be the most natural thing in the world, since, physically one can metrically 
distort a rubber sheet and can take stock of the associated point set 
transformation. 

Then this surprisingly simple construction leads to many deep 
consequences. Let alone that the integration of geometric PDEs is possible, 
the natural and powerful applications of metrical distortions are their 
application to Itô diffusions [7, 8] 
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where the  is defined in Proposition 6(I) and O is a Euclidean orthonormal 
mapping such that 

( ) ( ) TTOO =  

is the reciprocal of the metrical tensor. The intrinsic spin torsion degree of 
freedom, established by O, has a natural geometric orthonormal principal 
bundle structure and allows a natural spin orbit coupling theory [8]. 

II. Metrical Distortions 

For simplicity, let 

( ( ) ) ( )gnij
ij

n g ..,,, RR =  (1) 

denote a geodesically complete n-dimensional Riemannian manifold, 

homeomorphic to nR  (see [1]). Every point p in the Riemannian manifold 

( ( ) ),, ij
ij

n gR  gives rise to the affine Riemannian normal coordinate system 

by the choice of a basis ( ) ,...,,1
n

pn Tbb R∈  which can be assumed to be 

positively oriented without restriction, i.e., 

( ) ,:exp nn
pi

i
p Tbv RR →  (2) 

endpoint=  ( )1c  of the (unique) arc length proportional geodesic c, from 

p with tangential vector i
ibv  in p (see [1]). 

1exp−p  is the transformation in the normal coordinate system with origin 

p, which is given abstract by n
pT R  and concretely, i.e., in a chart, by the 

choice of the basis via 

( ) ....,,1 nTn
i

i vvbv R∈→  (3) 

If the basis nn nnbb ...,,...,, 11 =  is orthonormal, then the coordinate 

system is called Riemannian orthonormal coordinate system or orthonormal 
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coordinate system. Affine normal coordinates and orthonormal normal 
coordinates are connected by a global linear mapping. 

The solution of the problem in (2) is obtained by a treatment of the 
geodesic ODE 

( ) ( )( ) ( ) ( ) ,...,,1,0 nktctctctc
ij

k
ij

k
==Γ+

••••
 (4) 

with the geodesic [ ] nc R→∞,0:  and the Christoffel symbols Γ and 

.: cdt
dc =

•
 

Proposition 1. In affine normal coordinates, the tangential space n
pT R  

and the manifold as coordinate system are naturally identified by the choice 
of the basis in (3). Moreover, the differential 

n
p

n
pp

n
pp TTTTTD RRR →=00 :exp  (5) 

is a natural identification. We can choose ( ) ( ) npp bDbD 1
01

1
0 exp...,,exp −−  

as a basis of .n
ppTT R  

,exp 1−
p  as a coordinate change, induces the trivial metric in ,0

nT R  

where nR  is the coordinate space via (3), where an orthonormal basis was 
chosen. 

The differential 

( ) ( ) ( )eucl
TT

n
pp

eucl
T

n
pp n

pp
n

p
TTTD

RR
RR ..,,..,,:exp 1

0 →−  

is a natural identification. 

Proof. Follows by the triviality of the metric in normal coordinates [1]. 

Let .n
pTv R∈  If 

[ ] n
pTTtvt R0∈→  
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denotes the equivalence class, then 

[ ]( ) [ ( )] n
ppp TvtvttvtD R∈=→=→ expexp0  

by definition of the differential such that pD exp0  is the canonical 

identification.  

With the choice of an origin ,np R∈  the double tangential space 
n

pTT R  

gives rise to an affine space 

( )( ),,,, +ΠM  (6) 

with the set of points ,~
ichomeomorph

nM R−  the vector space of translations 

( )+Π,  and the sharply transitive group operation 

( ) ( )pwvpwv =+  (7) 

of the translations Π∈wv,  on the points of the space p. The difference 

Π∈pq  between the two points p and q is the unique translation such that 

.qppq =  The parallel translation of Π∈v  along pq  is ( )ppqv  as 

point. 

n
pTT R  is an affine space simply because it is a vector space. 

After the choice of an origin in an affine space, the space restricts to a 

vector space. The choice of an origin q restricts n
pTT R  to the tangential 

space .n
pqTT R  

Definition 2. The orthonormal origin ( ),...,,, 1 nnnp  with n
ppi TTn R∈  

by Proposition 1, gives rise to a frame ( ) qTTnnnq n
pqin ∀∈ ,,...,,, 1 R  by 

Euclidean parallel translation in (6). This frame is called synthetical frame 
induced by the origin ( )....,,, 1 nnnp  
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The synthetical frame can be assumed to be positively oriented without 
restriction.  

Lemma 3. (I) Let ( ) ,exp qwp =  .n
pTw R∈  If it is not singular, then 

differential of the mapping 

( ) n
pp

p
q Tvwvv R∈+→Θ ,exp:  (8) 

is a canonical linear affine transformation from the affine space ,n
pTT R  

with the choice of the origin q, in the tangential space ,n
qT R  i.e., 

( ) ,:exp n
q

n
pq

n
pppqpw

p
qw TTTTTvidDD RRR →→=Θ  (9) 

where n
pq

n
ppq TTTTid RR →0:  denotes the Euclidean parallel translation 

in .n
pTT R  

 (II) The concept of the synthetical frame is locally consistent. The 
synthetical frame does not depend on the choice of the origin. If we choose 
( ( ) )niinp ...,,1, =  and ( ( ) )niinq ...,,1, =′  as origins for the construction of a 

synthetical frame for q in the vicinity of p, then the associated affine spaces 
n

pTT R  and n
qTT R  are connected by a global affine mapping, i.e., the 

Euclidean parallel translation and the affine linear mapping in (9) 
inclusively the identification in Proposition 1. 

(III) Let an orthonormal synthetical frame, induced by the origin 
( ( ) ),, ...,,1 niinp =  be given at the outset. In the vicinity of p, the linear 

mapping 

n
q

n
pqpw TTTD RR →:exp  (10) 

is a linear coordinate change ( ) ( )...,,~..,, g
T

n
q

eucl
TT

n
pq n

q
n

pq
TTT

RR
RR −  
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The synthetical frame ,...,,1
n

pqn TTnn R∈  as orthonormal coordinate 

basis of the space which is obtained by the choice of the origin q in the affine 

space ,n
pTT R  induces orthonormal coordinates in the manifold ,q∀  locally. 

Proof. (I) Is clear, pqid  appears by the chain rule. 

(II) Follows by (I) and the global character of the Euclidean parallel 
translation, respectively, Proposition 1, i.e., 

( ) ( ) :expexp 1
0 vidDD pqpwq

−  

.n
qq

n
q

n
pq

n
pp TTTTTTT RRRR →→→  

Because of Proposition 1, pexp  is always a local diffeomorphism. 

(III) The differential n
q

n
pqpw TTTD RR →:exp  of the exponential 

mapping is a linear transformation from n
pqTT R  to .n

qT R  We can choose 

ninD ipw ...,,1,exp =  as a basis of .n
qT R  This basis gives rise to an affine 

normal coordinate system in q with the differential n
pqpw TTD R:exp  

n
qT R→  of the exponential mapping as linear coordinate change from 

n
pqTT R  to .n

qT R  

It is easy to conclude that the coordinate change in the manifold from the 

orthonormal coordinate space n
pT R  to the orthonormal coordinate space 

n
qT R  via (8) has an orthonormal differential in coordinates with respect to 

the Riemannian metric such that 

( ) ( )vidDD pqpwq expexp 1
0

−  

is, as Jacobian, a Euclidean orthonormal mapping if we choose orthonormal 
coordinates via (3) and use the canonical identity in Proposition 1. 
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Because of the consistency (II), the, by coordinate change induced basis 

in n
qT R  is independent from the choice of p in the affine space .n

pTT R  If 

we choose ,n
qTT R  then the assertion that the induced basis is orthonormal is 

obvious by Proposition 1, i.e., it follows that the basis ,exp ipw nD  

ni ...,,1=  is orthonormal in the Riemannian structure of ( ( ) )., ij
ij

n
q gT R  

Because of the choice of orthonormal coordinates in p, we have 

eucl
TTjpqipq

eucl
TTjiij n

pq
n

pp
nidnidnn

RR
,, ==δ  

,exp,exp g
Tjpwipw n

q
nDnD

R
=  

since the by pqpw idD exp  induced metric from ( ( ) )kl
kl

n
ppTT δ,R  to 

( ( ) )ij
ij

n
q gT ,R  is 

(( ) ) (( ) )ljpqpwkl
k
ipqpw idDidD 11 expexp −− δ  

(( ) ( ) ) ,expexp 11,
ijijpw

T
pw gDD == −−  

where, e.g., (( ) )ljpqpw idD 1exp −  denotes the Jacobian of the mapping 

( ) n
pp Tvwvv R∈+→ ,exp  

referring npwpw nDnD exp...,,exp 1  and an arbitrary coordinate frame 

....,,1 n∂∂  pqid  is, as before, the Euclidean parallel translation. 

The synthetical frame, induced by the origin ( ( ) ),, ...,,1 niinp =  induces 

orthonormal coordinates in every point q.  

One has to ensure that the differential in (9) is not singular what is 
possible in conjugated points respectively in the cut locus [1]. However, 
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because of Proposition 1, pexp  is always locally not singular such that 

Lemma 3 provides local coordinates. 

Corollary 4. (I) (Affine space over the manifold). Let ( ( ) )ij
ij

n g,R  be a 

geodesically complete manifold. There is a unique affine space 

( ( ) ) n
p

n TT RR −+Π ~,,,  (11) 

called the affine space over the manifold. 

With the choice of an orthonormal origin ( )nnnp ...,,, 1  in (11), the 

resulting space is called synthetical Euclidean space ,n
synthR  derived from 

the Riemannian manifold ( ( ) )., ij
ij

n gR  

Locally for q in the vicinity of p, the synthetical frame ∈nnn ...,,1  

,n
pqTT R  as coordinate basis of the space which is obtained by the choice of 

the origin q in the affine space ,n
pTT R  induces orthonormal coordinates in 

the manifold, where n
qT R  and the manifold are identified via normal 

coordinates. The freedom of the choice of the origin ( ( ) )niinp ...,,1, =  

expresses a global affine symmetry of ( ( ) ).,,, +ΠnR  

(II) (Explicit point set association). The local explicit point set 
association with origin p in (11) 

( ( ) ) ( ( ) )ij
ij

nn
g g,,,,: RR →+ΠΦ  

is differentiable because it is linearizable by Proposition 1. If normal 
coordinates are chosen along any straight line, then the point set mapping is 
id along the line. The point set association is computed by the lift in 
synthetical coordinates of the Euler scheme associated to a geodesic, 
respectively, its inverse operation. gΦ  is called a metrical distortion in 
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coordinates. The exterior differential is obtained by curve transportation and 

obeys ( ) ,exp i
i
jpig DnD ∂=Φ  with a coordinate frame .i∂   

We could have derived a complete Euclidean space from the Riemannian 

manifold ( ( ) )ij
ij

n g,R  by showing Hilbert’s foundation of Euclidean 

geometry axiomatic system [2]. However, the affine space property is indeed 
the essence of the idea of synthetical coordinates. It is all one needs to work 
out the full program. 

Every coordinate chart in the manifold gives rise to a coordinate frame 

....,,1 n∂∂  The normal coordinate frame ( )n
pn TT R∈∂∂ ...,,1  may not be 

confused with the synthetical coordinate frame ....,,1
n

pn TTnn R∈  Both 

frames are connected by the endomorphism ,exp pwD  which gives rise to a 

Jacobian matrix ( )ijpwD exp  after the choice of bases. The parentheses in 

( )n
pTT R  emphasize that the coordinate system nn

pT RR −~  has to be 

considered. A differentiation of a smooth curve in a coordinate system 

always leads in the tangential space. The metric is defined on .nTR  The 

double tangential space n
pTT R  is free to choose coordinates on the manifold 

via the exponential mapping such that the isometry in Lemma 3(III) is 
nothing but a coordinate change isometry. 

It is crucial for the understanding that n
p

n
synth TT RR 0~−  has to be 

separated in Cartesian coordinates from the n
p

n T RR −~  that is described by 

the normal coordinate system. The differential topological structure is 
different by construction. It differs by a metrical distortion. If one travels 

along the grid in n
synthR  one travels along straight lines, whereas the grid in 

Riemannian normal coordinates is, in general, not composed by geodesics. 

All one has to know for a rigorous treatment is, that n
synthR  exists explicitly 
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and fulfills any demands of a Euclidean space. Moreover, one can identify 
points in the synthetical and in the curved coordinate system. 

It is not surprising that synthetical coordinates of a manifold 

( ( ) )ij
ij

n g,R  exist, because it is very clear that one can take stock of the 

coordinate change if one introduces a metrical distortion in a Euclidean 
space. These kind of metrical distortions naturally operate on manifolds. 

Definition 5. Let ( )2121 ..,,M  denote geodesically complete n-

dimensional Riemannian manifolds, homeomorphic to nR  (for simplicity). 

Let 21 ggΦ  denote the (local) point set association .21Mn
synth →R  Then 

1
12
−ΦΦ gg  is called metrical distortion.  

A metrical distortion of a Euclidean space n
synthR  therefore induces a 

metrical tensor ( )ijijg  in the tangential space of the image space. 

Proposition 6. (I) Let n
pn TTnn R∈...,,1  denote the synthetical 

coordinate frame in n
synthR  and n∂∂ ...,,1  denote any coordinate frame. Let, 

furthermore,  denote the Jacobian of the exponential mapping referring to 
the frames such that 

( ) j
j
iipw nD ∂=exp  

with the sum convention. Then 

∑ =
k

ijj
k

i
k g  or ( ) ijijT g=  (12) 

in coordinates, with the reciprocal of the metrical tensor, i.e., 

.i
jkj

ik gg δ=  

(II) The Levy-Civita connection [1] 

( ) kj
ik

j
i

jg
i

ξΓ+ξ∂=ξ∇∂  (13) 
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with an arbitrary vector field ξ is invariant with respect to the metrical 
distortions. 

(III) In normal coordinates with origin p (and then in every coordinate 

system), j
j
i ∂  in any point q, is equal to the Riemannian parallel translation 

of ,n
pj T R∈∂  from p to q along the unique arc length geodesic connecting 

p and q. 

The Euclidean parallel translation in n
synthR  commutes with the 

Riemannian parallel translation along geodesics in the manifold. 

Proof. (I) Is clear with Lemma 3(III), respectively, observation of the 
induced metrical tensor as in Lemma 3(III). 

(II) Take an arbitrary point p. If we choose an arbitrary coordinate 
system, then we have to show that 

( ( )) kj
ik

j
i

j
k

kn
npw nD i ξΓ+ξ∂=ξ∂ ,exp  

in p, where ( ).exp ,
k

kn
pw nD ξ=ξ  However, this is obvious, if we choose 

normal coordinates in p, since the Γ-symbols vanish and pwD exp  is trivial. 

(III) Is obvious with (II) and Lemma 3(III) by the equation of the parallel 
translation (linear ODE) 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ( )) 0=ξΓ+ξ=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ∇=ξ∇

••

••
ikj

ik

jj
g

jg

c
tctctctctc

c
 (14) 

of the vector field ξ along the predetermined geodesic c.  

Remark 7 (Computational differential geometry). With Proposition        
6(III), the most easy way to compute  is to state the solution of the parallel 
translation problem in Proposition 6(III) (linear ODE, geodesic ODE). 

If a coordinate system ( ( ) )ij
ij

n g,R  with the metrical tensor is given at 

the outset, then it can be assumed without restriction by the orthogonalization 
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scheme of linear algebra that ( )ijijg  is trivial in the origin 0, i.e., n∂∂ ...,,1  

is orthonormal in 0. Then the unit speed geodesics have to be determined by 
solving equation (4), which is a second order ODE boundary problem. 
Finally,  is obtained in any point q by solving the linear parallel translation 

ODE (14) of the basis ( ) n
n T R01 0...,, ∈∂∂  along the geodesic connecting 0         

and q.  

The coordinate change in Lemma 3(III) is the radial isometry in                    
normal coordinates in the Gauß lemma [1] from differential geometry. A 
contravariant coordinate change is trivially an isometry, since it is id on the 

manifold. One may not confuse n
pqTT R  with .n

qT R  

Corollary 8 (Generalized Gauß lemma). If ( ( ) )ij
ij

n g,R  denotes a 

Riemannian manifold, then locally 

( ( ) ) ( ( )
( ) )tq

ij
n

tqij
n

ptqptw gTTTD ,,:exp RR →δ  

is an isometry between the synthetical space ( )ij
n

pqTT δ,R  and the tangential 

space n
qT R  equipped with the metric ,q

ijg  where ( ) ( )tqtwp =exp  is the arc 

length proportional geodesic with tangential vector w in p. 

Especially, 

( ) ( ( )) ( ) ( ).expexp 1
0 tqdt

dwwDidD ptpqptw =−  (15) 

Proof. Lemma 3(III). Follows by the orthonormality of the differential            
of a mapping from an orthonormal coordinate tangential space in an 
orthonormal coordinate tangential space as in (9) with the canonical 
identification 

( ( )) n
pp

n
pp TTTwD RR −− ~:exp 1

0  

from Proposition 1. 
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(15) follows because the metrical distortion is a differentiable mapping 
and geodesics are transferred to geodesics.  

Theorem 9 (Transformation formula for metrical distortions). Metrical 
distortions, as point set transformations, are contravariant coordinate 

change isometries. For any open Euclidean ball ,n
synthO R⊂  the 

transformation formula 

( )∫ ∫Φ=
O O

geucl

g
dvoldvol  (16) 

holds with the metrical distortion 

( ( ) ) ( ( ) ).,,: ij
ij

nij
ij

n
synthg gRR →δΦ  

Proof. The homeomorphic point set transformation 1−Φg  transforms 

every Lebesgue zero set to a zero set. The image measure 

( ) ( ( ) )λΦ −
ijg gdet1

#  

with the Lebesgue measure λ, which obeys (16), is thus, absolutely 

continuous and has thereby a Lebesgue density fλ in n
synthR  (see [3]). We 

have to show that this density is constant 1. 

It suffices to prove that this is true in any point q. By the ordinary 
transformation formula, the image measure is independent from the choice of 

coordinates. Choose normal coordinates with origin n
synthq R∈= 0  (without 

restriction for the simplicity of the construction of ϕ). Let ( ) ( )n
synthCx R0

0∈ϕ  

(continuous compact support), ( )∫ =ϕ 1dxx  and ( ) =ϕε :x  ⎟
⎠
⎞⎜

⎝
⎛
ε

ϕ
ε

x
n
1  such 

that ( )∫ =ϕε 1dxx  and ,
0

0
→ε

ε δ→ϕ  with the delta distribution in q. With the 

image measure theorem, it follows that necessarily ( ) ,1=qf  because 

( ) ( ) ( ) ( ) ( ( )) ( )∫ ∫ =Φϕ=ϕ= −
ε

→ε
ε

→ε
,1limlim 1

00
ydvolyxdvolxfxqf g

g
eucl  
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where Proposition 1 and that the volume form answers with +1 on any 
positively oriented orthonormal basis was used.  

Remark 10. (I) A metrical distortion gΦ  associated to  is said to be 

induced by a coordinate change, i.e., by a diffeomorphism nn RR →Φ :  if 

,TTDD =ΦΦ  (17) 

i.e., if the metric is induced by a diffeomorphism. 

The comparison (17) of DΦ and  has to be treated with care, since 

( ) ( )
n

x
n

x TTxD RR Φ→Φ :  

and  is an endomorphism of the tangential space n
xT R  of any point 

.nx R∈  

(II) (Affine space over compact manifolds). Let 

( ( ) ) ( )gnij
ij

n MgM ..,,, =  (18) 

denote a compact n-dimensional Riemannian manifold (see [1]) or more 
generally any Riemannian manifold. 

The cut locus denoted as ( )pcutlocus  referring to any point p is the set 

of all points where geodesics with start in p are not unique connections. 
( )pcutlocus  is a Lebesgue zero set (see [1]). 

The affine space over the manifold (6) is the group operation of the 

translations on the compact set of points nM  that is only locally sharply 

transitive if nM  is compact. 

The differential of pexp  is eventually singular in the cut locus, which is 

indicated by the interplay of the Jacobi-field formalism and the possibility                       
of closed geodesics [1]. However, the complete construction is locally 
consistent and provides Euclidean synthetical coordinates locally. 
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The affine space over the manifold is an affine covering 

( ( ) ).,,,: ⋅+Π→π nn
pp MMTT  (19) 

For any point ,nMq ∈  we can choose an origin p in (6) such that in an 

environment of q the covering conditions (see [6]) are fulfilled. 

The synthetical frame n
pn MTTnn ∈...,,1  according to Definition 2 

exists globally. But, because of the eventual singularity of the exponential 
function in ( ),pcutlocus  Lemma 3 is only locally rigorous. If Proposition 

6(III) is considered, then holonomy effects take place (closed geodesics!). 

(III) (Rubber sheet geometry). The set of metrics g..,  on the tangential 

space nTM  of a fixed manifold nM  is convex. For any two metrics 0.., g  

and ,.., 1g  there is the convex combination ,.., tg  [ ]1,0∈t  connecting 

them in every tangential space n
pMT  with .nMp ∈  

By metrical distortion, one can obtain a metrical homotopy 

( ) ( )...,,..,,: 0 tgngn
t MM →Φ ⊂  

The point set mapping is called rubber sheet transformation alternatively 
to metrical distortion. 

All the properties and invariants which are stable with respect to metrical 
homotopies (and their continuous closure) are called the differential topology 
of the manifold. These invariant properties constitute the exterior geometry 
of the manifold. For instance, the possibility to reach through a torus (donut) 
is such an invariant property. Invariants of (contravariant) coordinate 
changes, like, e.g., the Riemannian curvature tensor or the Lie-derivative 
built the inner geometry. 

A rubber sheet transformation which is induced by a diffeomorphism 
(see (I)) is called bending without stretching.  



Metrical Distortions and Geometric Partial Differential Equations 77 

The construction of metrical homotopies justifies the naming “rubber 
sheet geometry” for topology with the exterior geometry as invariants. The 
complete formalism is independent from any embedding in an exterior space. 
An embedding fulfills a special PDE such that a graph mapping projection is 
possible. 

III. Integration of Geometric PDEs 

As in Definition 5, let ( )gnM ..,,  denote a geodesically complete 

n-dimensional Riemannian manifold, homeomorphic to nR  (for simplicity). 

Let gΦ  denote the point set association .nn
synth M→R  

Theorem 11 (Differential geometry, see [1]). The Levy-Civita connection 

is the unique metrical connection g∇  [1] 

uwuwuw g
v

g
vv ∇+∇=∂ ,,,  (20) 

which fulfills 

[ ] ,0, =−∇−∇ gg
w

g
v wvvw  (21) 

where [ ]gwv,  is the Lie-derivative [1] in curved coordinates. The equation 

of the geodesic (4) is 

.0=∇
•

•
cg

c
 (22) 

  

If  is torsion free, i.e., if it is the  of the geodesic system associated 

with T  ( O  with O orthonormal leads to the same metrical tensor 

according to Proposition 6(III)), then the metrical distortion ,fg =Φ  as 

point set mapping, is the solution of the first-order PDE 
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( ) ( )( )xfxDf =  (23) 

with .n
synthx R∈  

It is an easy exercise to realize that the complete construction of metrical 

distortions also works with metrical affine connections ∇ [1, 5], what leads to 

metrical ∇-distortions. 

The ∇-parallel translation ODE (14) with metrical ∇ fulfills the isometry 

property. Because of (20) ( )li
l
kjlj

l
kiijk ggg Γ+Γ=∂with  

 ( )( ) ( )( )
( )

( )( ) ( )( ) ( )( ) ( )( ) ,0,,,
20

=∇+∇= •• tcwtcvtcwtcvtcwtcvdt
d

cc
 (24) 

if v and w are parallel along c. 

∇-geodesics according to the ODE (22) are automatically arc length 

proportional because 

( ) ( ) ( ) ( ) ( ) ( ) .0,,, =∇+∇=
••••••

•• tctctctctctcdt
d

cc
 (25) 

It is an immediate consequence of (25), that ∇-geodesics are autoparallel. 

The parallel translation along geodesics of the tangential vector is the 
tangential vector. 

Lemma 12. (I) Let 1∇  and 2∇  denote affine connections. There is a 

unique tensor 

( ) ,21 k
ij

k
jj T

ii
=∂∇−∂∇ ∂∂  (26) 

the relative torsion tensor (also known as contorsion in the literature). 

(II) Let ∇  be a metrical connection. The ∇ -geodesic problem associated 

to ∇  via the ODE (22) is locally uniquely solvable. For any point p, there is 
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an open ball pBp ∈  such that for any pBq ∈  there is a unique arc length 

parametrized ∇-geodesic connecting them. 

Proof. (I) Γ-symbols of an affine connection are defined by 

( ) .k
ij

k
ji Γ=∂∇∂  

The transformation formula for Γ-symbols can be computed explicitly if we 
consider that the symbols as functions lead to a vectorial transformation 
behavior of the result of an affine connection, i.e., if 

ii qq ′→Φ :  

is a coordinate change 

( ) ( ) kj
ki

j
j

j
i

kj
ik

j
ij

j

i

i
j

j

j

i

i

q
q

q
q

q
q

q
q

q
q

i
′′

′′

′

′

′

′∂

′

′ ξΓ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ξ

∂
∂∂=ξΓ+ξ∂

∂
∂

∂
∂=ξ∇

∂
∂

∂
∂ !

 

such that 

,kj
ki

j
ij

j
j

j

j
i

kj
ikj

j

i

i
j

ij

j

i

i

q
q

q
q

q
q

q
q

q
q

q
q ′′

′′′

′′

′

′

′

′

′ ξΓ+ξ∂
∂
∂+ξ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂∂=ξΓ

∂
∂

∂
∂+ξ∂

∂
∂

∂
∂  

i.e., 

,,
2

ξ∀ξΓ+ξ
∂
∂

∂∂
∂=ξΓ

∂
∂

∂
∂ ′′

′′′

′′

′
kj

ki
j

i

i

ji

j
kj

ikj

j

i

i

q
q

qq
q

q
q

q
q  

or obviously, 

ξ∀ξΓ+ξ
∂
∂

∂
∂

∂∂
∂=ξ

∂
∂Γ

∂
∂

∂
∂ ′′

′′
′

′′

′
′

′

′

′ ,
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kj
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k
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i

i

ji

j
k

k

k
j

ikj

j

i

i

q
q

q
q

qq
q

q
q

q
q

q
q  

such that Γ-symbols transform as follows: 

.
2

j
kik

j

i

i

ji

j

k

k
j

ikj

j

i

i

q
q

q
q

qq
q

q
q

q
q

q
q ′

′′′′

′

′

′

′ Γ=
∂
∂

∂
∂

∂∂
∂−

∂
∂Γ

∂
∂

∂
∂  
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Any difference of two affine connections 1∇  and 2∇  

( ) k
ij

k
jj T

ii
=∂∇−∂∇ ∂∂

21  

is a unique tensor ,ji
k

k
ij ddTT ∂=  the relative torsion tensor because the 

second derivative terms in the transformation behavior are compensated in 
the difference and the rest has vectorial transformation behavior. This 
justifies the naming affine connections. 

(II) The initial value problem of the geodesic ODE is uniquely solvable. 
The normal coordinate mapping for the ∇-geodesic system exists for the 

direction nn
pT RR →  and is differentiable. The differential is id in p by 

construction. Therefore, the mapping is locally invertible what includes the 
assertion.  

The geodesic system (or also geodesic spray in the literature) associated 
to ∇ gives rise to local ∇-normal coordinates via the ODE (22) and Lemma 
12(II). By the special form of the ODE, geodesics are straight lines in normal 
coordinates. The Γ-symbols associated to ∇ vanish in the origin, which is an 
easy consequence of the straight lines with origin 0 as geodesics in normal 
coordinates. Moreover, by Taylor-series 

( ) ( )2xOxg ijij +δ=  (27) 

by the metrical property (20), since 

( )
( )

( ) ( ) ( ) ( ) .000000
020 =Γ

=Γ+Γ=∂ li
l
kjlj

l
kiijk ggg  

Especially, n
synth−R  is established completely analogous to the Levy-

Civita case and Proposition 6 holds in full generality with additional relative 
torsion. 

The following lemma establishes the correspondence between an 
arbitrary  and a unique associated metrical connection ∇. 



Metrical Distortions and Geometric Partial Differential Equations 81 

Lemma 13. Let 
2

: nn RR →  be nondegenerate. The Levy-Civita 

geodesic system associated to T  (see Proposition 6(I)) establishes a 

unique g  as the differential of the exponential mapping. 

Then, with respect to the metric g.., -orthonormal automorphism field 

( ) ( ) ( ) ( )n
x

g TsmsAutomorphixxO R∈= −1:  (28) 

determines a unique metrical connection ,∇  which is determined by its 

∇ -parallel translation system along ∇ -geodesics, whereby (28) is 
recovered relative to the Levy-Civita system. 

Proof. We have to show two directions of unique correspondence: 

“⇐” If a metrical connection is given at the outset, (28) respectively  

in any point x is obtained uniquely by its parallel translation system along 
geodesics relative to the Levy-Civita connection, because it is orthonormal 
by (24) and Proposition 6(III) also holds for general metrical connections. 

“⇒” (a) By Lemma 12(I), any difference of two affine connections 1∇  

and 2∇  

( ) k
ij

k
jj T

ii
=∂∇−∂∇ ∂∂

21  

is a unique tensor ,ji
k

k
ij ddTT ∂=  the relative torsion tensor. 

(b) The connection form sϑ  of an affine connection ∇ referring to the 

frame nss ...,,1  is defined by 

( ) ( ) .: ki
k
j

s
j ssi ∂ϑ=∇∂  

The connection form is a matrix valued 1-form with affine 
transformation behavior and determines the connection uniquely. 
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Let nee ...,,1  denote an arbitrary orthonormal frame. The connection 

form referring to nee ...,,1  of a metrical connection is skew symmetric 

jkikji ee ,0 ∂=δ∂=  

jkjk eeee ii ∂∂ ∇+∇= ,,  

( ) ( ) ( ) ( ).i
k
j

e
i

j
k

e ∂ϑ+∂ϑ=  

On the other hand, any with respect to an orthonormal frame skew 
symmetric connection form is associated to a metrical connection 

wvwv ii ∂∂ ∇+∇ ,,  

j
j

j
j

ik
k

j
j

k
k

k
k

i ewewevewevev ii ∂∂ ∇+∂+∇+∂= ,,  

( ) ( ) j
j

li
l
k

ekj
i

k
jk

k
i

j
jk ewevwvvw ,∂ϑ+∂δ+∂δ=  

( ) ( ) li
l
j

ej
k

k ewev ∂ϑ+ ,  

( ) ( )i
l
k

e
jl

jk
j

j
k

k
i wvewev ∂ϑδ+∂= ,  

( ) ( ) ., wvwv ii
l
j

e
kl

jk ∂=∂ϑδ+  

(c) The unique torsion tensor associated to O  

( ) ki
j

j
ik ddTT ∂=  

is defined by the g.., -orthonormal automorphism field (28) 

( ) ( ) ( )( ) ( )( ) ( ( ) ),..,,0: 1
0

g
kktk nOtcOcOdt

dT A∈|= −
=  

where  
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( ) [ ] n
k Ttc R→,0:  

is a differentiable curve with 

( ) ( ( ) )g
kkt nOtcdt

d ..,,,0 A∂=| =  

denotes the Lie-algebra of skew symmetric matrices and n∂∂ ...,,1  expresses 

the coordinate frame. 

( ( ) )gnO ..,,A -skew symmetry means precisely skew symmetry with 

respect to an orthonormal frame. 

(d) If we define 

( ) ( ) ( ) ( ) ( ) ,: j
iki

j
k

g
i

j
k T+∂ϑ=∂ϑ  

where ( ) ( )i
j
k

g ∂ϑ  is the connection form of the Levy-Civita connection 

referring to ,...,,1 n∂∂  i.e., the Γ-symbols, ∇  is determined uniquely by 

O  because O  is uniquely determined by its linearization .T  

With Proposition 6, a metrical connection is determined by its parallel 
translation system (what is a well-known result in differential geometry [1], 
without metrical distortions). And 

( ) ( )( )
j

j

c
tc

c
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ∇=ξ∇ ••  

( )( ) ( ( ) ) ( )( ) ( )( ) ( ( )) 0=ξ+Γ+ξ=
•• ikj

ik
j

ik

j
tctctcTtc  

is the ∇ -parallel translation ODE of ξ along an arbitrary curve c such that 

O  is recovered relative to the Levy-Civita system along Levy-Civita 

geodesics and the proof is finished.  
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The tensor k
ijT  in Lemma 12(I) is an endomorphism valued one form         

in the index i. The endomorphism can be seen as element of the Lie-algebra 

of endomorphisms ( ) A∈j
k

k
ijT  (tangential space in id), .i∀  For any 

differentiable curve 

( ) ([ ] ),,01 nTCtc R→∈  

there is a unique endomorphism field ( )( )tcOc  along c such that 

( )( ) ( )( ) ( ( )( )) ( ),1
0 tctcTtcOtcOd

d
i

j
k

k
ij

j

k
cc

•
−

=ε =⎟
⎠
⎞⎜

⎝
⎛ ε+|
ε

 

( )( ) ,0 idcOc =  

what justifies the naming relative torsion tensor. It describes how the space is 
twisted by a metrical ∇-distortion relative to a Levy-Civita distortion. 

The usual variational functional 

( ) ( )∫
•••

=
T g dttccccTL
0

,2
1:,,  (29) 

immediately leads to the equation of the ∇-geodesic 

( ) ,0=Γ++
•••••• js

l
sj

g
js

l
sj

l
ccccTc  (30) 

if the variation is performed in ,n
synthR −  since straight lines are solutions 

there. 

See also [9-11] for attempts to establish variational formalisms for 
∇-geodesics without explicit synthetical coordinates. 

With the preliminaries above, it is obvious to state the following 
integration theory of the geometric PDE. 
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Theorem 14 (Integration of geometric PDEs). Let 
2

: nn RR →  be 
nondegenerate. 

The geometric PDE 

( ) ( )( )xfxDf =  (31) 

is locally integrated by the metrical ∇ -distortion 

( )gn
B

n
synthBf ..,,: RR →|Φ=| −  

associated to ,  where B
n

synthR |−  denotes the restriction to a ball B.  

It is crucial that the parameter x in (31) is synthetical and is not induced 
as in Remark 10(I). 

Remark 15. If the geometric PDE (31) is fulfilled, then the reciprocal 
PDE is 

( ) ( )yyDh 1−=  (32) 

if ( ) .yxf =  

The reciprocal PDE implicitly demands that h is a diffeomorphism. It is 

only integrable if 1−  is induced.  

The reciprocal PDE describes a lift operation of tangential structures and 
not an explicit mapping. 
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