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Abstract 

In this article, we derive Fisher information matrix and entropies such 
as Rényi and Shannon for the beta type 3 distribution. 

1. Introduction 

The beta type 1 distribution with parameters ( )ba,  is defined by the 

probability density function (p.d.f.) 

 ( ) ( )
( ) ,10,,
1,;

11
1 <<−=

−−
ubaB

uubauf
ba

B  (1) 

where ,0>a  ,0>b  and ( )baB ,  is the beta function defined by 
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The beta type 1 distribution is well known in Bayesian methodology as a 
prior distribution on the success probability of a binomial distribution. The 
random variable V with the p.d.f. 
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where 0>a  and ,0>b  is said to have a beta type 2 distribution with 

parameters ( )., ba  Since (2) can be obtained from (1) by the transformation 

( ),1 UUV −=  some authors call the distribution of V an inverted beta 

distribution. The beta type 1 and beta type 2 are very flexible distributions 
for positive random variables and have wide applications in statistical 
analysis, e.g., see Johnson et al. [5]. Systematic treatment of matrix variate 
generalizations of beta distributions is given in Gupta and Nagar [2]. By 
using the transformation ( ),2 UUW −=  the beta type 3 density is obtained 

as (Gupta and Nagar [3, 4], Cardeño et al. [1]), 
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where 0>a  and .0>b  

It is well known that if X and Y are independent random variables having 
a standard gamma distribution with shape parameters a and b, respectively, 
then ( ),YXX +  YX  and ( )YXX 2+  follow the beta type 1, beta type 2 

and beta type 3 distributions, respectively. 

In this article, we derive Fisher information matrix, Rényi and Shannon 
entropies for the beta type 3 distribution. The distributions of the product and 
the ratio of two independent random variables when at least one of them is 
beta type 3 are available in Sánchez and Nagar [13]. Recently, Nagar and 
Joshi [10] have derived densities of sum and difference of two independent 
beta type 3 variables. For results on non-central beta type 3 distribution, the 
reader is referred to Nagar and Ramirez-Vanegas [8, 9]. 
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2. Entropies 

In this section, exact forms of Rényi and Shannon entropies are 
determined for the beta type 3 distribution. 

Let ( )PBX ,,  be a probability space. Consider a p.d.f. f associated 

with ,P  dominated by σ-finite measure μ on .X  Denote by ( )fHSH  the 

well-known Shannon entropy introduced in Shannon [12]. It is defined by 

 ( ) ( ) ( )∫ μ−=
X

.ln dxfxffHSH  (4) 

One of the main extensions of the Shannon entropy was defined by 
Rényi [11]. This generalized entropy measure is given by 

 ( ) ( ) ( ),1and0for1
ln, ≠η>η

η−
η=η GfH R  (5) 

where 

( ) ∫ μ=η η
X

.dfG  

The additional parameter η is used to describe complex behavior in 
probability models and the associated process under study. Rényi entropy is 
monotonically decreasing in η, while Shannon entropy (4) is obtained from 
(5) for .1↑η  For the details, see Nadarajah and Zografos [7], Zografos and 

Nadarajah [15] and Zografos [14]. 

First, we give some definitions and results useful in deriving these 
entropies. 

The integral representation of the Gauss hypergeometric function is 
given as (Luke [6, Eq. 3.6(1)]), 
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where ( ) ( ) ,0ReRe >> ac  ( ) .1arg π<− z  Expanding ( ) ,1 bzt −−  ,1<zt  
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in (6) and integrating t, the series expansion for 12 F  is derived as 
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From (6), it easily follows that 
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Also, from (7), it is easy to see that ( ) ( ) .1;;,12
azzbbaF −−=  
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where ( ) ( ) ( )αΓαΓ′=αψ  is the digamma function. 

Proof. Expanding 12 F  in series form, we write 
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Now, differentiating the logarithm of ( )ηΔr  w.r.t. to η, one obtains 

( ) ( ) ( ) ( )( ) ( ) ( )( )[ rbabarbbd
d

rr ++ηψ++++−ηψ−ηΔ=ηΔ
η

111  

( ) ( )( ) ( ) ( )( )111222 +−ηψ−−+−+ηψ−++ bbbaba  

( ) ( )( ) ( ) ( )( )].222 rbabababa ++−+ηψ−+−+ηψ+−  (11) 

Finally, substituting (11) in (10) and taking ,1→η  one obtains the desired 

result. ~ 

Now, we derive the Rényi and the Shannon entropies for the beta type 3 
distribution. 

Theorem 2.1. For the beta type 3 distribution defined by the p.d.f. (3), 
the Rényi and the Shannon entropies are given by 
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respectively, where ( ) ( ) ( )αΓαΓ′=αψ  is the digamma function and ( )bag ,  

is given by (9). 
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Proof. For 0>η  and ,1≠η  using the p.d.f. of W given by (3), we have 
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where the last line has been obtained by using (8). Now, taking logarithm of 
( )ηG  and using (5), we get (12). The Shannon entropy (13) is obtained from 

(12) by taking 1↑η  and using L’Hopital’s rule. ~ 

3. Fisher Information Matrix 

In this section, we calculate the Fisher information matrix for the beta 
type 3 distribution. The information matrix plays a significant role in 
statistical inference in connection with estimation, sufficiency and properties 
of variances of estimators. For a given observation w, the Fisher information 
matrix for the beta type 3 distribution is defined as 
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where ( ) ( ).,;ln, 3 bawfbaL B=  From (3), the natural logarithm of ( )baL ,  

is obtained as 

( ) ( ) ( ) ( ) ( ) wababaabaL ln1lnlnln2ln,ln −++Γ+Γ−Γ−=  

( ) ( ) ( ) ( ) .10,1ln1ln1 <<++−−−+ wwbawb  (15) 
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Now, differentiating (15) appropriately, we obtain 
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where ( )αψ1  is the trigamma function defined as the derivative of the 

digamma function ( ) ( ) ( ).αΓαΓ′=αψ  

Now, noting that expected value of a constant is the constant itself and 
observing that (16), (17) and (18) are constants, we have the information 
matrix as 
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