Far East Journal of Mathematical Sciences (FJMS)
© 2013 Pushpa Publishing House, Allahabad, India
Published Online: November 2013
Available online at http://pphmj.com/journals/fjms.htm Volume 81, Number 1, 2013, Pages 95-102

ENTROPIES AND FISHER INFORMATION MATRIX FOR THE BETA TYPE 3 DISTRIBUTION

Daya K. Nagar and Yohana Tabares-Herrera

Instituto de Matemáticas
Universidad de Antioquia
Calle 67, No. 53-108
Medellín, Colombia
e-mail: dayaknagar@yahoo.com
yohanat88@yahoo.es

Abstract

In this article, we derive Fisher information matrix and entropies such as Rényi and Shannon for the beta type 3 distribution.

1. Introduction

The beta type 1 distribution with parameters (a, b) is defined by the probability density function (p.d.f.)

$$
\begin{equation*}
f_{B 1}(u ; a, b)=\frac{u^{a-1}(1-u)^{b-1}}{B(a, b)}, \quad 0<u<1, \tag{1}
\end{equation*}
$$

where $a>0, b>0$, and $B(a, b)$ is the beta function defined by

$$
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}, \quad \operatorname{Re}(a)>0, \quad \operatorname{Re}(b)>0 .
$$

Received: September 6, 2013; Accepted: September 14, 2013
2010 Mathematics Subject Classification: 33E99, 62H99.
Keywords and phrases: beta distribution, entropy, Gauss hypergeometric function, information matrix, psi function.

The beta type 1 distribution is well known in Bayesian methodology as a prior distribution on the success probability of a binomial distribution. The random variable V with the p.d.f.

$$
\begin{equation*}
f_{B 2}(v ; a, b)=\frac{v^{a-1}(1+v)^{-(a+b)}}{B(a, b)}, \quad v>0, \tag{2}
\end{equation*}
$$

where $a>0$ and $b>0$, is said to have a beta type 2 distribution with parameters (a, b). Since (2) can be obtained from (1) by the transformation $V=U /(1-U)$, some authors call the distribution of V an inverted beta distribution. The beta type 1 and beta type 2 are very flexible distributions for positive random variables and have wide applications in statistical analysis, e.g., see Johnson et al. [5]. Systematic treatment of matrix variate generalizations of beta distributions is given in Gupta and Nagar [2]. By using the transformation $W=U /(2-U)$, the beta type 3 density is obtained as (Gupta and Nagar [3, 4], Cardeño et al. [1]),

$$
\begin{equation*}
f_{B 3}(w ; a, b)=\frac{2^{a} w^{a-1}(1-w)^{b-1}(1+w)^{-(a+b)}}{B(a, b)}, \quad 0<w<1, \tag{3}
\end{equation*}
$$

where $a>0$ and $b>0$.
It is well known that if X and Y are independent random variables having a standard gamma distribution with shape parameters a and b, respectively, then $X /(X+Y), \quad X / Y$ and $X /(X+2 Y)$ follow the beta type 1 , beta type 2 and beta type 3 distributions, respectively.

In this article, we derive Fisher information matrix, Rényi and Shannon entropies for the beta type 3 distribution. The distributions of the product and the ratio of two independent random variables when at least one of them is beta type 3 are available in Sánchez and Nagar [13]. Recently, Nagar and Joshi [10] have derived densities of sum and difference of two independent beta type 3 variables. For results on non-central beta type 3 distribution, the reader is referred to Nagar and Ramirez-Vanegas [8, 9].

2. Entropies

In this section, exact forms of Rényi and Shannon entropies are determined for the beta type 3 distribution.

Let $(\mathscr{X}, \mathscr{B}, \mathscr{P})$ be a probability space. Consider a p.d.f. f associated with \mathscr{P}, dominated by σ-finite measure μ on \mathscr{X}. Denote by $H_{S H}(f)$ the well-known Shannon entropy introduced in Shannon [12]. It is defined by

$$
\begin{equation*}
H_{S H}(f)=-\int_{\mathscr{X}} f(x) \ln f(x) d \mu \tag{4}
\end{equation*}
$$

One of the main extensions of the Shannon entropy was defined by Rényi [11]. This generalized entropy measure is given by

$$
\begin{equation*}
H_{R}(\eta, f)=\frac{\ln G(\eta)}{1-\eta} \quad(\text { for } \eta>0 \text { and } \eta \neq 1) \tag{5}
\end{equation*}
$$

where

$$
G(\eta)=\int_{\mathscr{X}} f^{\eta} d \mu
$$

The additional parameter η is used to describe complex behavior in probability models and the associated process under study. Rényi entropy is monotonically decreasing in η, while Shannon entropy (4) is obtained from (5) for $\eta \uparrow 1$. For the details, see Nadarajah and Zografos [7], Zografos and Nadarajah [15] and Zografos [14].

First, we give some definitions and results useful in deriving these entropies.

The integral representation of the Gauss hypergeometric function is given as (Luke [6, Eq. 3.6(1)]),

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\frac{1}{B(a, c-a)} \int_{0}^{1} \frac{t^{a-1}(1-t)^{c-a-1}}{(1-z t)^{b}} d t \tag{6}
\end{equation*}
$$

where $\operatorname{Re}(c)>\operatorname{Re}(a)>0,|\arg (1-z)|<\pi$. Expanding $(1-z t)^{-b},|z t|<1$,
in (6) and integrating t, the series expansion for ${ }_{2} F_{1}$ is derived as

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{j=0}^{\infty} \frac{\Gamma(a+j) \Gamma(b+j)}{\Gamma(c+j)} \frac{z^{j}}{j!},|z|<1 . \tag{7}
\end{equation*}
$$

From (6), it easily follows that

$$
\begin{equation*}
\int_{0}^{1} \frac{w^{a-1}(1-w)^{b-1}}{(1+K w)^{c}} d w=\frac{B(a, b)}{(1+K)^{c}}{ }_{2} F_{1}\left(b, c ; a+b ; \frac{K}{1+K}\right) . \tag{8}
\end{equation*}
$$

Also, from (7), it is easy to see that ${ }_{2} F_{1}(a, b ; b ; z)=(1-z)^{-a}$.
Lemma 2.1. Let $g(a, b)=\lim _{\eta \rightarrow 1} h(\eta)$, where

$$
h(\eta)=\frac{d}{d \eta}{ }_{2} F_{1}\left(\eta(b-1)+1, \eta(a+b) ; \eta(a+b-2)+2 ; \frac{1}{2}\right) .
$$

Then

$$
\begin{align*}
g(a, b) & =\sum_{r=1}^{\infty} \frac{\Gamma(b+r)}{\Gamma(b)} \frac{(1 / 2)^{r}}{r!} \\
& \times[(b-1) \psi(b+r)-2 \psi(a+b)-(b-1) \psi(b)+2 \psi(a+b+r)], \tag{9}
\end{align*}
$$

where $\psi(\alpha)=\Gamma^{\prime}(\alpha) / \Gamma(\alpha)$ is the digamma function.
Proof. Expanding ${ }_{2} F_{1}$ in series form, we write

$$
\begin{equation*}
h(\eta)=\frac{d}{d \eta} \sum_{r=0}^{\infty} \Delta_{r}(\eta) \frac{(1 / 2)^{r}}{r!}=\sum_{r=0}^{\infty}\left[\frac{d}{d \eta} \Delta_{r}(\eta)\right] \frac{(1 / 2)^{r}}{r!} \tag{10}
\end{equation*}
$$

where

$$
\Delta_{r}(\eta)=\frac{\Gamma[\eta(b-1)+1+r] \Gamma[\eta(a+b)+r] \Gamma[\eta(a+b-2)+2]}{\Gamma[\eta(b-1)+1] \Gamma[\eta(a+b)] \Gamma[\eta(a+b-2)+2+r]} .
$$

Now, differentiating the logarithm of $\Delta_{r}(\eta)$ w.r.t. to η, one obtains

$$
\begin{align*}
\frac{d}{d \eta} \Delta_{r}(\eta)= & \Delta_{r}(\eta)[(b-1) \psi(\eta(b-1)+1+r)+(a+b) \psi(\eta(a+b)+r) \\
& +(a+b-2) \psi(\eta(a+b-2)+2)-(b-1) \psi(\eta(b-1)+1) \\
& -(a+b) \psi(\eta(a+b))-(a+b-2) \psi(\eta(a+b-2)+2+r)] . \tag{11}
\end{align*}
$$

Finally, substituting (11) in (10) and taking $\eta \rightarrow 1$, one obtains the desired result.

Now, we derive the Rényi and the Shannon entropies for the beta type 3 distribution.

Theorem 2.1. For the beta type 3 distribution defined by the p.d.f. (3), the Rényi and the Shannon entropies are given by

$$
\begin{align*}
H_{R}(\eta, f)=\frac{1}{1-\eta}[& \eta \ln \Gamma(a+b)-\eta \ln \Gamma(a)-\eta \ln \Gamma(b)-\eta b \ln 2 \\
& +\ln \Gamma[\eta(a-1)+1]+\ln \Gamma[\eta(b-1)+1] \\
& -\ln \Gamma[\eta(a+b-2)+2] \\
& \left.+\ln _{2} F_{1}\left(\eta(b-1)+1, \eta(a+b) ; \eta(a+b-2)+2 ; \frac{1}{2}\right)\right] \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
H_{S H}(f)= & -\ln \Gamma(a+b)+\ln \Gamma(a)+\ln \Gamma(b)+b \ln 2 \\
& -[(a-1) \psi(a)+(b-1) \psi(b)-(a+b-2) \psi(a+b)] \\
& -2^{-b} g(a, b), \tag{13}
\end{align*}
$$

respectively, where $\psi(\alpha)=\Gamma^{\prime}(\alpha) / \Gamma(\alpha)$ is the digamma function and $g(a, b)$ is given by (9).

Proof. For $\eta>0$ and $\eta \neq 1$, using the p.d.f. of W given by (3), we have

$$
\begin{aligned}
G(\eta)= & \int_{0}^{1}\left[f_{B 3}(w ; a, b)\right]^{\eta} d w \\
= & \frac{2^{\eta a}}{[B(a, b)]^{\eta}} \int_{0}^{1} \frac{w^{\eta(a-1)}(1-w)^{\eta(b-1)}}{(1+w)^{\eta(a+b)}} d w \\
= & \frac{2^{\eta a}}{[B(a, b)]^{\eta}} \frac{B(\eta(a-1)+1, \eta(b-1)+1)}{2^{\eta(a+b)}} \\
& \times{ }_{2} F_{1}\left(\eta(b-1)+1, \eta(a+b) ; \eta(a+b-2)+2 ; \frac{1}{2}\right)
\end{aligned}
$$

where the last line has been obtained by using (8). Now, taking logarithm of $G(\eta)$ and using (5), we get (12). The Shannon entropy (13) is obtained from (12) by taking $\eta \uparrow 1$ and using L'Hopital's rule.

3. Fisher Information Matrix

In this section, we calculate the Fisher information matrix for the beta type 3 distribution. The information matrix plays a significant role in statistical inference in connection with estimation, sufficiency and properties of variances of estimators. For a given observation w, the Fisher information matrix for the beta type 3 distribution is defined as

$$
-\left[\begin{array}{lr}
E\left(\frac{\partial^{2} \ln L(a, b)}{\partial a^{2}}\right) & E\left(\frac{\partial^{2} \ln L(a, b)}{\partial b \partial a}\right) \tag{14}\\
E\left(\frac{\partial^{2} \ln L(a, b)}{\partial b \partial a}\right) & E\left(\frac{\partial^{2} \ln L(a, b)}{\partial b^{2}}\right)
\end{array}\right],
$$

where $L(a, b)=\ln f_{B 3}(w ; a, b)$. From (3), the natural logarithm of $L(a, b)$ is obtained as

$$
\begin{align*}
\ln L(a, b)= & a \ln 2-\ln \Gamma(a)-\ln \Gamma(b)+\ln \Gamma(a+b)+(a-1) \ln w \\
& +(b-1) \ln (1-w)-(a+b) \ln (1+w), \quad 0<w<1 . \tag{15}
\end{align*}
$$

Now, differentiating (15) appropriately, we obtain

$$
\begin{align*}
& \frac{\partial^{2} \ln L(a, b)}{\partial^{2} a}=-\psi_{1}(a)+\psi_{1}(a+b) \tag{16}\\
& \frac{\partial^{2} \ln L(a, b)}{\partial b \partial a}=\psi_{1}(a+b) \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} \ln L(a, b)}{\partial^{2} b}=-\psi_{1}(b)+\psi_{1}(a+b) \tag{18}
\end{equation*}
$$

where $\psi_{1}(\alpha)$ is the trigamma function defined as the derivative of the digamma function $\psi(\alpha)=\Gamma^{\prime}(\alpha) / \Gamma(\alpha)$.

Now, noting that expected value of a constant is the constant itself and observing that (16), (17) and (18) are constants, we have the information matrix as

$$
\left[\begin{array}{cc}
\psi_{1}(a)-\psi_{1}(a+b) & -\psi_{1}(a+b) \\
-\psi_{1}(a+b) & \psi_{1}(b)-\psi_{1}(a+b)
\end{array}\right]
$$

Acknowledgment

The research work of DKN was supported by the Sistema Universitario de Investigación, Universidad de Antioquia under the project no. IN10182CE.

References

[1] Liliam Cardeño, Daya K. Nagar and Luz Estela Sánchez, Beta type 3 distribution and its multivariate generalization, Tamsui Oxford J. Math. Sci. 21(2) (2005), 225-241.
[2] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions, Chapman \& Hall/CRC, Boca Raton, 2000.
[3] A. K. Gupta and D. K. Nagar, Matrix variate beta distribution, Int. J. Math. Math. Sci. 23(7) (2000), 449-459.
[4] Arjun K. Gupta and Daya K. Nagar, Properties of matrix variate beta type 3 distribution, Int. J. Math. Math. Sci. 2009 (2009), Article ID308518, 18 pages (doi:10.1155/2009/308518).
[5] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions -2, 2nd ed., John Wiley \& Sons, New York, 1994.
[6] Y. L. Luke, The Special Functions and their Approximations, Vol. 1, Academic Press, New York, 1969.
[7] S. Nadarajah and K. Zografos, Expressions for Rényi and Shannon entropies for bivariate distributions, Inform. Sci. 170(2-4) (2005), 173-189.
[8] Daya K. Nagar and Yeison Arley Ramirez-Vanegas, Noncentral beta type 3 distribution, Progress in Applied Mathematics 4(2) (2012), 29-43.
[9] Daya K. Nagar and Yeison Arley Ramirez-Vanegas, Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables, British J. Mathematics and Computer Science 3(1) (2013), 12-23.
[10] Daya K. Nagar and Lata Joshi, Sum and difference of independent beta type 3 variables, (submitted).
[11] A. Rényi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, Univ. California Press, Berkeley, Calif., 1961, pp. 547-561.
[12] C. E. Shannon, A mathematical theory of communication, Bell System Technical J. 27 (1948), 379-423; 623-656.
[13] Luz Estela Sánchez and Daya K. Nagar, Distributions of the product and quotient of independent beta type 3 variables, Far East J. Theo. Stat. 17(2) (2005), 239-251.
[14] K. Zografos, On maximum entropy characterization of Pearson’s type II and VII multivariate distributions, J. Multivariate Anal. 71(1) (1999), 67-75.
[15] K. Zografos and S. Nadarajah, Expressions for Rényi and Shannon entropies for multivariate distributions, Statist. Probab. Lett. 71(1) (2005), 71-84.

