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Abstract 

The purpose of the present work is to provide a systematic analysis of 
some compact results dealing with the transport equation where the 
incoming flow is related to the outgoing one by a bounded operator for 
a large class of measures with support of the velocities space and 
under some conditions on the collision operator. We present a new 
method shorter than that established in (cf. [5]) and we emphasize, 
also, the dominant role played by the neutronics theory in our proof 
techniques. Finally, our results are independent from the boundary 
operator and permit us to understand the time asymptotic behavior of 
some solutions to Cauchy problems. 
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1. Introduction 

Let H be a linear bounded operator on some chosen trace spaces 
covering, in particular, all well known physical models: periodicals, 
reflexives or mixed. 

We study the compactness of the transport operator for bounded 
geometry, in mono and multidimensional cases, which can be modeled by the 
integro-differential operator HA  stated as: 
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where ( ) :, Vvx ×Ω∈  

• Ω  is a domain set of .1, ≥nnR  

• ( )⋅µd  is a positive measure on nR  with support of the velocities 

space V such that ( ) .00 =µd  

• The function ( )vx,ϕ  is the density of the probability of the gas 

particles in the position x and velocity v. 

• −ϕ  ( )+ϕ.resp  is the restriction of ϕ  to −Γ  ( ),.resp +Γ  where −Γ  

( )+Γ.resp  is the incoming part (resp. outgoing) of the phase 

boundary space V×Ω  defined as: 

( ){ },0.,, ≥±×Ω∂∈=Γ± xnvVvx  

where xn  is the outward normal at .Ω∂∈x  

• The functions ( )vσ  is the frequency collision with velocity v. 

• The collision linear operator K, with nucleus the function k, reports 
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the reflection (resp. scattering) and the production (resp. in the 
presence of fissile materials) of neutrons by fission. It has the 
peculiarity of being local with respect to the space variable .Ω∈x  

• The operator HT  is intended to represent the streaming operator 

while the operator KTA HH +=  describes the transport of particles 

(neutrons, photons, gas molecular, ...) in Ω  perturbed by K. 

The evolution of the transport theory is related to the development of the 
nuclear industry since the second world war and its origin became from the 
radiative transfer (cf. [4]). The neutronics theory has benefited from the 
major interest of pioneer works in physics and mathematics, especially, 
Jörgens et al. (cf. [2, 3, 7, 8, 13-16]). The transport theory began to have 
connections with semigroups, the spectral theory of self-adjoint operators, 
the positivity and, in general, with functional analysis. 

Since the transport equations are linear in nature and the proportion of 
neutrons is infinitesimal than the proportion of atoms in the environment 

propagation (in  order of )1110−  so the interaction neutron-neutron are 

negligible by comparison to the interaction neutron-environment where the 
properties are independent with the neutronic populations. 

For general boundary conditions ( ),0≠H  the interactions particles-

environment are complex in nature and they are established by many 
concurrent factors so the precise mathematics formulations present some 
controversies. Nevertheless, the model frequently used is to suppose that the 
part of outgoing flow is re-emitted in a deterministic direction (specular 
reflection) whereas the part of the incoming flow is re-emitted in randomly 
directions (diffusive reflection). 

The results of (cf. [9]) in the absorbent case ( )0=H  will be extended, 

in this work, to the general one via a new method easier than that proposed in 
(cf. [5]) where the transport operator with the boundary absorbent conditions 
has more importance than that obtained in bounded geometry, notably in 
greater dimension, .1>n  
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Recall, first, that the resolvent set of the bounded operator ( )TDT :  

XX →⊂  with range dense in X, is defined as follow: 

( ) { ( ) }.bijectionais:.thatsuch: XTDTIdT X →−λ∈λ=ρ C  

Its complement ( )Tσ  in ,C  known as the spectrum of T, is compact. Hence, 

the set ( )Tρ  is an open set and the application 

( ) ( ) ( )[ ] 1.:, −λ−λ=λρ∈λ NIdTRT X  

is analytic on every connected component of ( ).Tρ  Finally, we define an 

important subset of ( )Tσ  known as punctual spectrum: 

( ) ( ){ }.injectionanis:.;: XTDTIdT Xp →−λλ=σ  

A complex number ( )Tpσ∈λ0  is said to be eigenvalue and each 

( ) { }0\0 TDx ∈  such that 

( ) 0. 0 =−λ xTIdX  

is said to be eigenvector corresponding to .0λ  

Now, we enounce the following result, (cf. [11, 14]), usually known as 
the: 

Theorem 1.1 (Gohberg-Shmulyan alternative). Let X be a complex 
Banach space and a family ( )λλ T  of compact linear holomorphic 

operators in X, defined on a connected part of .C  We have the following 
alternative: 

1. The number 1 is an eigenvalue of ( )λT  for all .C∈λ  

2. The set ( )( )λTR ,1  exists unless on a discrete set of λ -pole of ( )⋅T  for 

degenerate principal parts (i.e., the associated coefficients have finite rank). 

Corollary 1.2. If the family ( )λλ T  has only compact power of order 

m, then the alternative still remains true. 
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Remark 1.3. Let C be an open connected subset of ( ).Tρ  If the power of 

( )TIdKR ,.λ  is compact for all ( ),Tρ∈λ  then we prove that 

• either ( ) ( )KTKTC p +σ⊂+σ∩  

• or ( )KTC +σ∩  is reduced to the isolated eigenvalues with finite 

algebraic multiplicities. 

For this end, we apply Corollary 1.2 to ( ) ( )TKRN ,λ=λ  and the fact 

that 1 is an eigenvalue of ( )TKR ,λ  if and only if λ  is an eigenvalue of 

KT +  (cf. [6, Theorem 1]). We state that the second situation is produced 
for the set 

( ) ( ){ }.Re: 0 TKT ω>λλ+σ ∩  

This means that it contains, at least, the eigenvalues of finite algebraic 
multiplicities. This enables us, with the help of the Dunford formula           
and some supplementary hypothesis, to have an asymptotical description         

of ( ) 0ϕtV  (semigroup perturbed at initial data) when [( ) ]2
0 KTD +∈ϕ           

(cf. [6]). For this reason, we study the compactness power of ( )., TKR λ   

2. Notation 

Fix ( ) ., Vvx ×Ω∈  Let 

( ) { }.0,,0sup, tssvxtvxt <<Ω∈±>=±  

Hence, for ( ) ,, ±Γ∈vx  we have ( ) 0, =± vxt  and 0>±t  otherwise. In fact, 

in all cases, we have 

( ( ) ) .,, ±
± Γ∈± vvxtx  

Letting ,1 ∞+<< p  we define the following functional spaces: 

{ },.thatsuch pxpp XvXW ∈ϕ∇∈ϕ=  
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where 

( )( )., vdxdVLX pp µ×Ω=  

A suitable traces space is defined by: 

( ( )),.;:, vddnvLL xX
pp µγΓ= ±

±  

where xdγ  is the Lebesgue measure on .Ω∂  The traces ±ϕ  of pW∈ϕ  on 

±Γ  can be defined. We noted, in general, that these traces are not in ±,pL  

but in ., ±p
locL  Precisely, they are in the so called space pL  with weight       

(c.f. [1]). We define a new subset of pW  as: 

{ }.,ˆ , −
− ∈ϕ∈ϕ= p

pp LWW  

Remark 2.1. This subset can be written as: 

{ } { } p
p

p
p

pp WLWLWW ⊆∈ϕ∈ϕ=∈ϕ∈ϕ= +
+

−
−

,, ,,ˆ  

because for ,pW∈ϕ  we have +
+ ∈ϕ ,pL  if and only if ., −

− ∈ϕ pL   

Let −+ ,,: pp LLH  be a bounded operator. The advection operator 

HT  and its domain are defined as: 

( ) ( ) ( ) ( )

( ) { ( )}





ϕ=ϕ∈ϕ=

ϕσ−ϕ∇−=ϕ

+− ,:ˆ

,,.,

HWTD

vxvvxvvxT

pH

xH
 

where the collision frequency ( )⋅σ  must be in ( ).VL∞  Let C∈λ  and 

consider the following limits problem: 

( ) ( ) ( ) ( ) ( )

( )



ϕ=ϕ

ψ=ϕσ+ϕ∇+λϕ

+− ,

,,,.,

H

vxvxvvxvvx x  (2.1) 

where ψ  is a given function in pX  and the unknown function ϕ  must be in 

( ).HTD  
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Let 

( ).infess v
Vv
σ−µ=λ

∈

∗  

For ,0Re >λ+λ∗  equation (2.1) must be resolved formally as: 

( ) ( ( ) ) ( )( ) ( )vxtvevvvxtxvx ,,,,
−σ+λ−−−ϕ=ϕ  

( )( ) ( )
( )

∫
−

−ψ+ σ+λ−vxt sv dsvsvxe
,

0
.,  (2.2) 

For ( ) ,, +Γ∈vx  the restriction 
+Γ|

ϕ  of the solution of (2.2) can be written 

as: 

( )( ) ( ) ( )( ) ( )
( )

∫
τ σ+λ−τσ+λ−

|| −ψ+ϕ=ϕ
−Γ+Γ

vt svvxv dsvsvxee
,

0
, ,,  (2.3) 

where 

( ) ( ) ( )vxtvxtvx ,,, −+ +=τ     and    ( ) ( ).,,, vxtvx +
+Γ∈  

To give an abstract formulation of (2.2) and (2.3), we define the 
following λ -operators: 

( )( ) ( )vxvpp ueuMuLLM ,,,: τσ+λ−
λ

+−
λ =  

( )( ) ( )vxtv
p

p ueuBuXLB ,,:
−σ+λ−

λ
−

λ =  

( )( ) ( )
( )

∫
τ σ+λ−

λ
+

λ −ϕ=ϕϕ
vx svp

p dsvsvxeGLXG
,

0
, ,:  

and 

( )( ) ( )
( )

∫
−

−ϕ=ϕϕ σ+λ−
λλ

vxt sv
pp dsvsvxeGXXC

,

0
.,:  
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By the Hölder inequality, these operators are bounded such that 

,1≤λM  

[ ( )]
,

Re
1

1 pp
B

∗λ
λ+λ

≤  

[ ( )]
,

Re
1

1 qq
G

∗λ
λ+λ

≤  

,
Re

1
∗λ
λ+λ

≤C  where .111 =+ qp  

With the help of these operators and the fact that ϕ  will satisfy the 

boundary conditions, the equality (2.3) becomes: 

.ψ+ϕ=ϕ λ+λ+ GHM  

Let ( ) .HMIdH λ−=λ  Then if ( )[ ] 1−λH  exists, then one obtains that 

( )[ ] .1 ψλ=ϕ λ
−

+ GH  (2.4) 

In the other hand, the equality (2.2) can be written like: 

.ψ+ϕ=ϕ λ+λ CHB  

By substitution of (2.4) in the above equation, it appears that 

( )[ ] .1 ψ+ψλ=ϕ λλ
−

λ CGHHB  

Consequently, 

( ) ( )[ ] .. 11
λλ

−
λ

− +λ=−λ CGHHBTId H  (2.5) 

Remark 2.2. We can prove that if 1≤H  or one of the powers            

of the operator HMλ  is compact, then the existence of the operator 

( ) 1. −−λ HTId  is ensured for great values of Re .λ   
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3. Principal Results 

We present here a principal result that allows us to generate a strongly 
continuous semigroup for the advection operator. 

Theorem 3.1. Let 

( ] [ ][ ) .1,,1,1, ∞<≤ξ−×−= pdxdaaLX p
p  

For all ( ),, ,, −+∈ pp LLH L  the advection operator HT  generates a 0C -

semigroup ( ){ }0; ≥ttUH  in .pX  Furthermore, 

( ) { } .0,,1max
0,2

1max
≥≤ 





teHtU
Hat

H  (3.1) 

Now, it well known that HT  generates or not a 0C -semigroup depends 

on the geometry of .V×Ω  In fact, as illustrated by the following example, 
some models can be constructed such that HT  does not generate any strongly 

continuous semigroups. 

Example. Consider a transport model in 1L  where ] [,1,0=Ω  

[ [.,0 ∞+=V  If we fix a Lebesgue measure ( )⋅ν  on V, then we obtain 

{ } { } VV ×=Γ×=Γ −+ 0,1     and   [ [( )vdvLL ,,01,1 ∞+=±  

and the boundary operator H verifies the identity: 

( )( ) ( ) .,.,0.,1 1WH ∈ϕϕ=ϕ  

We claim that HT  is not closed in .1L  For this end, pick ∈h  

[ [( )dvL ,,01 ∞+  such that 

( )∫
∞+

∞+=
0

.vdvvh  (3.2) 

For ,N∈n  let 

( )
( )



 <<

=ϕ
otherwise.0

0if
,

nvvh
vxn  
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We see that .1Wn ∈ϕ  Since 

( )∫ ∈∀∞+<
n

nvdvvh
0

,, N  

one obtains 

±
| ∈ϕ
±Γ

,1Ln      and    ( ) ., N∈∀∈ϕ nTD H  

So ϕ=ϕ
∞→

n
n
lim  and ,0lim =ϕ

∞→
nH

n
T  where ( ) ( )vhvx =ϕ ,  for all ( ) ∈vx,  

., 1XV ∈ϕ×Ω  With the relation (3.2), we have: 

.,1 ±
| ∉=ϕ
−Γ

Lh  

Then ( ).HTD∉ϕ  The operator HT  is not closed and does not generate any 

0C -semigroup in .1X   

Suppose that the inverse Laplace transformation of the operator 

( ) 1−−λ HT  exists and noted as ( ).tS  Then the inverse Laplace 

transformation ( )tM  of the operator ( )[ ] λ
−

λ λ GHHB 1  exists and satisfies 

( ) ( ) ( ),0 tUtStM −=  

where ( )tU0  is a transport semigroup in the neutronic framework ( ).0=H  

Theorem 3.2. The advection operator HT  generates a 0C -semigroup 

{ ( ) }0≥ttS  if and only if the bounded operators ( ){ } 0≥ttM  verify: 

1. ( ) ,00 =M  

2. for all ,0, 21 ≥tt  ( ) ( ) ( ) ( ) ( ) ++=+ 2102121 tMtUtMtMttM  

( ) ( ),201 tUtM  

3. for all ,pX∈ϕ  we have ( ) .0lim
0

=ϕ
+→

tM
t
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Proof. We prove that these conditions are necessary and sufficient: 

1. ( ) ( ) ( ) .0000 0 =−=−= IdIdUSM  

2. Since 

( ) ( ) ( ) ( ) ( ) ( ),20121011 tUtMtStUtMtS +=ρ+=  

( ) ( ) ( ) ( ) ( )212102121 tStSttUttMttS =+++=+  

and by identification, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ).2012102121 tUtMtMtUtMtMttM ++=+  

3. For all ,pX∈ϕ  we have 

( ) ,0lim
0

=ϕ−ϕ
+→

tS
t

 

then 

( ) ( ) .0lim 0
0

=ϕ−ϕ+ϕ
+→

tUtM
t

 

Since 

( ) ( ) ϕ−ϕ−ϕ≤
+→

tUtM
t

0
0

lim0  

( ) ( ) ,0lim 0
0

=ϕ−ϕ+ϕ≤
+→

tUtM
t

 

one obtains that ( ) 0lim0
0

≤ϕ≤
+→

tM
t

 so ( ) .0lim
0

=ϕ
+→

tM
t

  

Remark 3.3. In the neutronic framework ,0=H  the family of operators 
( ){ } 0≥ttM  is reduced to 0, and verifies trivially the conditions (1), (2) and 

(3), whereas in: 

1. Periodic framework and σ  even: ( )tM  is written explicitly as: 

( ) ( )[ ] ( ) ( ) ( ) ( ) .,2
0

12,12 










χξξ−+ξϕ∑

> 





ξ
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ξ
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2. Reflexive framework and σ  even: ( )tM  is written explicitly as 

( ) ( )[ ] ( ) ( ) ( ) ( ) ( )











χξξ−+ξϕ∑

> 





ξ
++ξ

ξ
−+ξ

ξσ−

0
14,14,4

n
anxsgnanxsgn

t ttxnasgne  

( ) ( ) ( )[ ]





ξξ+−+ξ−ϕ+ ∑

>

ξσ−

0
,24

n

t txansgne  

( ) ( ) ( ) ( ) ( ) .34,14 




χ⋅







ξ
++ξ

ξ
++ξ tanxsgnanxsgn  

  

Conjecture. We conjecture that 

HT  generates a 0C -semigroup 

if and only if 

R∈λ∃ 0  such that ] [ ( ).,0 HTρ⊆∞+λ  

4. The Compactness Properties 

The transport operator HA  can be written as ,: KTA HH +=  where K is 

the bounded operator defined on pX  as: 

pp XXK :  

( ) ( ) ( ),,,,∫ ′µ′ψ′ψ
V

vdvxvvxk  

where the nucleus collision RVVk ××Ω:  is supposed to be 
measurable. We note, as we have mentioned earlier, that the operator K is 
locally in x. So, it will be seen as an application: 

( ) ( ) ( ( )).;:. µ∈Ω∈ dVLxKxK pL  
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Suppose that ( ).K  is strictly measurable, this means that the application 

( ) ( )µ∈Ω∈ dVLfxKx p ;  is: 

1. measurable for all ( ),; µ∈ dVLf p  

2. bounded, in the sense: ( ) ( ( )) .supess ; ∞+<− µ∈ dVLDx pxK L  

We obtain a bounded operator ( ) ( ) pp XxxKX ∈ϕ∈ϕ  such that 

( ) ( ) ( ) ( ( )).supess ; µ
∈

−≤ dVL
Dx

X p
p

xKxK LL  

Now, we use the concept of regular collision operator defined first in  
(cf. [10, Chapter 4]). 

Definition 4.1. Let ( ( ))µdVLp ;K  be the subspace of compact operators. 

Then the collision operator 

( ) ( ( ))µ∈∈ dVLxKDxK p ;: L  

is regular if: 

1. ( ) ( ( ))µ∈ dVLxK p ;K  for almost x, 

2. the operator ( ) ( ( ))µ∈Ω∈ dVLxKx p ;K  is measurable, 

3. the set ( ){ }DxxK ∈,  is relatively compact in ( ( )).; µdVLpL  

Let ( )pXR  be the space of regular collision operators in .pX  Then: 

Lemma 4.2. A collision operator K can be approximated in the uniform 
topology, by a sequence ( )nnK  of collision operators with nucleus 

( ) ( ) ( )∑
∈

ξ′ξα
Ii

iii gfx ,  

where 

( ),, dxDLi
∞∈α  ( ),; µ∈ dVLf p

i  ( ),; µ∈ dVLg q
i  1−= p

pq  and a finite 

set I. 
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Proof. More details can be found in (cf. [10, Chapter 4]).  

Now, consider the following (H1)-hypothesis: 

Let 1−nS  be the unit sphere of nR  such that the hyperplanes, i.e., 

{ }1,0. −∈∀=∈ nn ccvv SR  

have zero µ -measure. 

According to this, we have: 

Theorem 4.3. Let ,1 ∞+<< p  Ω  be a bounded convex subset of nR  

and that the (H1)-hypothesis is true. If ( ){ } 1−λH  exists and ( ),pXK R∈  

then, for all C∈λ  such that ,∗λ−>λRe  the operators ( ) 1. −−λ HTIdK  

and ( ) KTId H
1. −−λ  are compact subsets of .pX  

Proof. Let ( ).1−= ppq  Since K is a regular set and according to 

Lemma 4.2, we can establish the proof only for the following collision 
operators: 

( ) ( ) ( ) ( ),,, vgvfxvvxk ′α=′  

where ( ) ( ),;. dxDL∞∈α  ( ) ( ( ))vdVLf p µ∈ ;.  and ( ) ( )( ).;. vdVLg q µ∈  

Without losing of majority, we can suppose that f and g have a compact 
support. For some interpolation argument (cf. [10], Theorem 1.3), we content 
ourselves to the case .2=p  By the following duality: 

( ) [[( ) ] ]∗∗∗−− −λ=−λ KTIdTIdK HH
11 ..  

and by the Schauder theorem, we can only use the operator ( ) .. 1KTId H
−−λ  

In addition, the existence of the operator ( )[ ] 1. −λ IdH  permits us to write 

( ) 1. −−λ HTId  as: 

( ) ( ) ,.. 1
0

1 −
λ

− −λ+=−λ TIdSTId H  
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where 

( )[ ]∑
≥

λ
−

λλ λ=
0

1 .
n

GHHBS  

Then 

( ) ( )[ ] ( )∑
≥

−
λ

−
λ

− −λ+λ=−λ
0

1
0

11 ...
n

H KTIdKGHHBKTId  

Since the operator ( ) KTId 1
0. −−λ  is compact (c.f. [9]), to prove that the 

operator ( ) KTId H
1. −−λ  is compact, one only needs to establish that           

the operator KGλ  is compact but this is a consequence of the uniform 

convergence of the series ( )[ ]∑
≥

λ
−

λ λ
0

1 .
n

KGHHB  For all ,pX∈ϕ  we have: 

( ) ( ) [ ] ( ) ( ) .
+Γ|λλλ ϕ=ϕ=ϕ KCKGKG  

On the other hand, we can prove that the operator +
λ

,: p
p LXG  can 

be written as 

,λλ = CTG r  

where rT  is the trace operator ( ) .,
0

+→ pLTD  Letting pB  be the unit ball of 

,pX  we will prove that ( ) ( )pBKGλ  is relatively compact in ., +pL  In fact, 

( ) ( ) ( ) ( ) [( ) ]( )
+Γ+Γ |

−
|λλ −λ== ppp BKTIdBKCBKG 1

0.  

[( ) ]( ).. 1
0 pr BKTIdT −−λ=  

But ( ) ( )pBKTId 1
0. −−λ  is relatively compact in pX  and preserves also 

this property in ( )( ).,0 ⋅TD  Since rT ( )( ) +⋅ ,
0 ,: pLTD  is bounded, 

the range of the compact set ( )( )⋅,0TD  is compact in ,, +pL  so 
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( ) ( )pBKGλ  is relatively compact in ., +pL  So, ( ) 1. −−λ HTIdK  and 

( ) KTId H
1. −−λ  are compact subsets of .pX   

Remark 4.4. We note that the compactness of the operator 

( ) 1. −−λ HTIdK  (or  ( ) )KTId H
1. −−λ  is independent from the border 

operator H, in fact, we have used only the bounded property of H.  
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