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Abstract

The purpose of the present work is to provide a systematic analysis of
some compact results dealing with the transport equation where the
incoming flow is related to the outgoing one by a bounded operator for
a large class of measures with support of the velocities space and
under some conditions on the collision operator. We present a new
method shorter than that established in (cf. [5]) and we emphasize,
also, the dominant role played by the neutronics theory in our proof
techniques. Finally, our results are independent from the boundary
operator and permit us to understand the time asymptotic behavior of
some solutions to Cauchy problems.
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1. Introduction

Let H be a linear bounded operator on some chosen trace spaces

covering, in particular, all well known physical models: periodicals,

reflexives or mixed.

We study the compactness of the transport operator for bounded

geometry, in mono and multidimensional cases, which can be modeled by the

integro-differential operator Ay stated as:

Apo(x, v) = —v -V, —o(v)e(x, v)
%/—/
T e(x,v)
+ | k(x, v,V , Vdu(v
[ ke v v)p(e, v)du(v)
Ko(x,v)
v_ = H(y,) (boundary conditions),

where (x, v) e Qx V:

Q is a domain set of R”, n > 1.
du(-) is a positive measure on R” with support of the velocities
space V such that du(0) = 0.

The function @(x, v) is the density of the probability of the gas

particles in the position x and velocity v.

¢@_ (resp. @, ) is the restriction of ¢ to I'_ (resp.I,), where T'_
(resp. T'y) is the incoming part (resp. outgoing) of the phase
boundary space Q x V' defined as:

[y ={(x,v) e 0QxV, tvn, > 0},
where n, is the outward normal at x € 0.
The functions o(v) is the frequency collision with velocity v.

The collision linear operator K, with nucleus the function %, reports
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the reflection (resp. scattering) and the production (resp. in the
presence of fissile materials) of neutrons by fission. It has the
peculiarity of being local with respect to the space variable x € Q.

e The operator 7y is intended to represent the streaming operator
while the operator 4y = Ty + K describes the transport of particles

(neutrons, photons, gas molecular, ...) in Q perturbed by K.

The evolution of the transport theory is related to the development of the
nuclear industry since the second world war and its origin became from the
radiative transfer (cf. [4]). The neutronics theory has benefited from the
major interest of pioneer works in physics and mathematics, especially,
Jorgens et al. (cf. [2, 3, 7, 8, 13-16]). The transport theory began to have
connections with semigroups, the spectral theory of self-adjoint operators,
the positivity and, in general, with functional analysis.

Since the transport equations are linear in nature and the proportion of

neutrons is infinitesimal than the proportion of atoms in the environment

propagation (in order of 10_11) so the interaction neutron-neutron are

negligible by comparison to the interaction neutron-environment where the
properties are independent with the neutronic populations.

For general boundary conditions (H # 0), the interactions particles-

environment are complex in nature and they are established by many
concurrent factors so the precise mathematics formulations present some
controversies. Nevertheless, the model frequently used is to suppose that the
part of outgoing flow is re-emitted in a deterministic direction (specular
reflection) whereas the part of the incoming flow is re-emitted in randomly

directions (diffusive reflection).

The results of (cf. [9]) in the absorbent case (H = 0) will be extended,

in this work, to the general one via a new method easier than that proposed in
(cf. [5]) where the transport operator with the boundary absorbent conditions
has more importance than that obtained in bounded geometry, notably in

greater dimension, n > 1.
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Recall, first, that the resolvent set of the bounded operator 7' : D(T)

c X — X with range dense in X, is defined as follow:
p(T) = {\ € C such that A.ldy — T : D(T) — X is a bijection}.
Its complement o(7) in C, known as the spectrum of 7, is compact. Hence,
the set p(7') is an open set and the application
Aep(T) RO\ T) = [hIdy — NO)]!

is analytic on every connected component of p(7’). Finally, we define an

important subset of o(7') known as punctual spectrum:
6,(T)=1{k hldy —T : D(T) — X is an injection}.
A complex number A € 6,(7) is said to be eigenvalue and each
xg € D(T)\{0} such that
(Addy = T)xg =0
is said to be eigenvector corresponding to A.

Now, we enounce the following result, (cf. [11, 14]), usually known as
the:

Theorem 1.1 (Gohberg-Shmulyan alternative). Let X be a complex
Banach space and a family L+ T(A) of compact linear holomorphic
operators in X, defined on a connected part of C. We have the following

alternative:

1. The number 1 is an eigenvalue of T(L) for all L € C.

2. The set R(1, T(\)) exists unless on a discrete set of A -pole of T(-) for

degenerate principal parts (i.e., the associated coefficients have finite rank).

Corollary 1.2. If the family L — T()) has only compact power of order

m, then the alternative still remains true.
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Remark 1.3. Let C be an open connected subset of p(7'). If the power of
KR(\.Id, T) is compact for all A € p(T'), then we prove that
o cither CNo(T +K) < 6,(T +K)
e or CNo(T +K) is reduced to the isolated eigenvalues with finite
algebraic multiplicities.

For this end, we apply Corollary 1.2 to N(A) = KR(A, T') and the fact
that 1 is an eigenvalue of KR(A, T) if and only if A is an eigenvalue of

T + K (cf. [6, Theorem 1]). We state that the second situation is produced
for the set

o(T + K)N{L:Reh > wy(T)}.

This means that it contains, at least, the eigenvalues of finite algebraic
multiplicities. This enables us, with the help of the Dunford formula

and some supplementary hypothesis, to have an asymptotical description
of V(f)py (semigroup perturbed at initial data) when @q € D[(T + K)*]

(cf. [6]). For this reason, we study the compactness power of KR(A, T'). [

2. Notation
Fix (x, v) e Qx V. Let
F(x,v)=suplt >0, x£sv e Q, 0<s <1}

Hence, for (x, v) € Iy, we have /~(x, v) = 0 and % > 0 otherwise. In fact,
in all cases, we have
(x +15(x, v), v) e Ty.
Letting 1 < p < +o, we define the following functional spaces:

W, ={o € X, such that vV,0 € X},
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where
X, = L,(QxV, dxdu(v)).
A suitable traces space is defined by:
1% = 1P(Ty: [ vy |dy cdp(v).
where dy, is the Lebesgue measure on 0€. The traces ¢1 of ¢ € W, on

[, can be defined. We noted, in general, that these traces are not in L” -+

but in Lfo’ci. Precisely, they are in the so called space LP with weight

(c.f. [1]). We define a new subset of W, as:

W,={peW,, o_cl}.
Remark 2.1. This subset can be written as:

Vf/pz{(peW,(p_eLp’_}z{(peW’(P+€LP,+}QWP

because for ¢ € W, we have @, € I/" ifand only if ¢_ € L™, O

p’

Let H:L”" + L”>~ be a bounded operator. The advection operator

Ty and its domain are defined as:
{TH@(x, v) = vV ,0(x, v) - o(v)e(x, v)
D(Ty)={peW, o =H(p,)},

where the collision frequency o(-) must be in L°(V). Let A € C and

consider the following limits problem:

{K(p(x, v) +v.V,0(x, v) + o(v)o(x, v) = y(x, v) @

¢- = H(o,),
where y is a given function in X, and the unknown function ¢ must be in

D(Ty).
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Let

A = —ess inf o(v).
velV

For X' + Re A > 0, equation (2.1) must be resolved formally as:

o(x, v) = o(x — £ (x, v), V)e—(%m(v))t‘(x, V)

+ I;_(X’ K e_(7‘+<’(v))s\ll(x — sV, v)ds. (22)

For (x, v) e T, the restriction Pl of the solution of (2.2) can be written
+

as:

— o(v))tx,v r(t,v)_ c(v))s
Plp, = @|p_e (rolr))l, ”JO e oMy (x sy, vyds,  (2.3)

where
tw(x, v) =t (x, v)+ ¢ (x,v) and (x,v)el,, " (x, v).

To give an abstract formulation of (2.2) and (2.3), we define the

following A -operators:

My 17" = 1P uw Myu= ue”(+o(v)e(xv)

By, P T Xp U Byu = ue—(?ﬁc(v))t_(x, V)

t(x,v)
G X, P+ o Go= IO e_(MG(V))S(p(x — sv, v)ds

and

t(x,v)
G X,» X, omGo= IO mY e_(“G(V))S(p(x — sV, v)ds.



60 Hitta Amara and Saoudi Khaled

By the Holder inequality, these operators are bounded such that

| My ] <1,

1
[p(Reh + X)/P

I .1 <

1

G, || < ,
1G] [g(Re + A7 )]4

1C < —— where -+ =1,
ReA + A 2

With the help of these operators and the fact that ¢ will satisfy the

boundary conditions, the equality (2.3) becomes:
¢, = My Ho, + Gy.
Let H(\) = Id — M; H. Then if [H(1)]"! exists, then one obtains that
¢ = [HQ) ' Gry. (2.4)
In the other hand, the equality (2.2) can be written like:
¢ = B Hop, + Cy.
By substitution of (2.4) in the above equation, it appears that
¢ = BLH[HM] ' Gy + Gy,
Consequently,
(\Id - Ty ) ' = BLH[HOV)] Gy, + G (2.5)

Remark 2.2. We can prove that if |H | <1 or one of the powers

of the operator M, H is compact, then the existence of the operator

(Add — Ty )_1 is ensured for great values of Re A. U
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3. Principal Results

We present here a principal result that allows us to generate a strongly
continuous semigroup for the advection operator.

Theorem 3.1. Let
X, =LP(]-a, a[ x[-1, 1], dxdg), 1< p <.

For all H € L(LP*, IP"7), the advection operator Ty generates a C-

semigroup {Up (t); t > O} in X ,. Furthermore,

;max{ZLH Hl, o}
Uy ()] < max{l, | H |}e a , t>0. 3.1
H

Now, it well known that Ty generates or not a C-semigroup depends
on the geometry of Q x V. In fact, as illustrated by the following example,
some models can be constructed such that 7j; does not generate any strongly

continuous semigroups.

Example. Consider a transport model in L' where Q= ]0,1[,
V =0, +oo[. If we fix a Lebesgue measure v(-) on ¥, then we obtain
I, ={}xV, T_={0}xV and I"* = I/([0, 4 [, vdv)
and the boundary operator H verifies the identity:
H((P(L )) = (P(O, ')’ ¢ e .
We claim that Ty is not closed in 1!, For this end, pick & e
1[0, +o0 [, dv) such that
+00
J.O | h(v)|vdv = +oo. (3.2)
For n e N, let

h(v) ifO0<v<n
0 otherwise.

ol ) = {
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We see that ¢,, € ]. Since
n
-[0 | A(v)|vdv < +o0, Vn eN,

one obtains

P, el"* and ¢eD(Ty), VneN.

So lim ¢, = ¢ and lim Tyo, =0, where ¢(x, v) = A(v) forall (x, v) €

n—>® n—»®

QxV, ¢ e Xq. With the relation (3.2), we have:

L+
O =hel .

Then ¢ ¢ D(Ty ). The operator Ty is not closed and does not generate any
Cp-semigroup in X;. ]

Suppose that the inverse Laplace transformation of the operator
(A—Ty)™' exists and noted as S(f). Then the inverse Laplace
transformation M (¢) of the operator By H[H ]! G, exists and satisfies

M(t) = S(t) = Up (1),
where Uy (¢) is a transport semigroup in the neutronic framework (H = 0).

Theorem 3.2. The advection operator Ty generates a Cy-semigroup

{S(t),;50} if and only if the bounded operators {M(t)},s verify:

1. M(0) = 0,

2. for all t,t, 20, Mt +1t)=M(@t)M(ty)+ Uy(t))M(t5) +
M(1n)Uo(t2),

3.forall ¢ € X, we have lim | M(¢)¢| = 0.
t—0*

p’
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Proof. We prove that these conditions are necessary and sufficient:
1. M(0) = S(0)—Uy(0) = 1d — Id = 0.
2. Since
S(n) = M(1) + Up(t))pS(12) = M(1y) + Up(t),
St +12) =Mt + 1) + Ug(ty + 1) = S(t)S(12)
and by identification, we obtain
Mt +ta) = M(n)M(1y) + Up(1)M(12) + M(1)Up(12)-

3.Forall ¢ € X, we have

lim || S@)¢ - ¢ = 0,

t—0
then
lim | M(t)o + Up(t)e — o = 0.
t—0"
Since
0 < lim [[ MO -[Uo()o -]
t—0
< lim [ M()e + Ug()e - o = 0,
t—0
one obtains that 0 < lim | M(t)e | < 0 so lim | M(¢)e| = 0. O
-+ +

t—0 t—0

Remark 3.3. In the neutronic framework H = 0, the family of operators

{M(1)},( is reduced to 0, and verifies trivially the conditions (1), (2) and

(3), whereas in:

1. Periodic framework and o even: M (¢) is written explicitly as:

e—(’(a)t Z ol(sgn&)2na + x — t&, a]X[(sgné)x-i-(
I

2n-1)a (sgm";)x+(2n+1)a} .
n>0 ’

| €]
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2. Reflexive framework and c even: M(¢) is written explicitly as

e—c(&)t Z ¢l(sgn&)dna + x - &t, &]X[(sgn&_,)x-&-@n—l)a (sgn&,)x+(4n+1)a}(t)
n>0 €] , H

+ e“’(a){z o[—(sgn&)(4n + 2)a — x + &t, &]

n>0

'X[(sgnﬁ)x+(4n+l)a (sgn?;)x+(4n+3)a}(t) .
€] ’ €]

Conjecture. We conjecture that

Ty generates a Cy-semigroup
if and only if

Jho € R such that |Ag, +o[ < p(Tx ).
4. The Compactness Properties

The transport operator Ay can be written as Ay = Ty + K, where K is

the bounded operator defined on X, as:

K : Xp = Xp
(TS -[V k(x, v, V)y(x, v)du(v'),

where the nucleus collision k:QxV xV > R is supposed to be
measurable. We note, as we have mentioned earlier, that the operator K is

locally in x. So, it will be seen as an application:

K():xeQm K(x) e L(LP(V; d)).
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Suppose that K(.) is strictly measurable, this means that the application
xe Q- K(x)f e LP(V; dy) is:
1. measurable for all 1 e LP(V; du),
2. bounded, in the sense: ess — sup < p| K(x) ||£(Lp(V;d“)) < +o0.
We obtain a bounded operator ¢ € X, = K(x)o(x) € X, such that
| K(x) "E(Xp) < ess — sup| K(x) ||£(Lp(V;dH)).
xeD
Now, we use the concept of regular collision operator defined first in
(cf. [10, Chapter 4]).
Definition 4.1. Let X(L”(V; du)) be the subspace of compact operators.
Then the collision operator
K :xe D K(x)e L(LP(V; dp))
is regular if:
1. K(x) e K(LP(V; dp)) for almost x,
2. the operator x € Q — K(x) € K(LP (V; du)) is measurable,
3. the set {K(x), x € D} is relatively compact in L(L? (V; dp)).
Let R(X p) be the space of regular collision operators in X ,,. Then:

Lemma 4.2. 4 collision operator K can be approximated in the uniform

topology, by a sequence (K, )n of collision operators with nucleus
D ai(x) £(8) i),
iel

where

a; € L”(D, dx), f; e LP(V;dn), g; € L1(V; dn), q= pp ] and a finite

set I.
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Proof. More details can be found in (cf. [10, Chapter 4]). O
Now, consider the following (H1)-hypothesis:
Let S"! be the unit sphere of R” such that the hyperplanes, i.c.,
(veR"/ve=0,VceS"
have zero | -measure.
According to this, we have:

Theorem 4.3. Let 1 < p <+, Q be a bounded convex subset of R"
and that the (H1)-hypothesis is true. If {H(\))™" exists and K € R(X )
then, for all A e C such that Re) > —)\', the operators K(\.Id — Ty )"\
and (\Id — Ty; Y 'K are compact subsets of X e

Proof. Let ¢ = p/(p —1). Since K is a regular set and according to

Lemma 4.2, we can establish the proof only for the following collision
operators:

k(x, v, V) = a(x) f(v) g(v),

where o) e L*(D; dx), f()e LP(V;du(v)) and g()e LI(V; du(v)).
Without losing of majority, we can suppose that f and g have a compact
support. For some interpolation argument (cf. [10], Theorem 1.3), we content
ourselves to the case p = 2. By the following duality:

KOuld - Ty ) ' =[[(dd - Ty Y 'TK*T

and by the Schauder theorem, we can only use the operator (A.Id — Ty )_IK .
In addition, the existence of the operator [H()\.Id )]_1 permits us to write

(Id — Ty )" as:

Odd =Ty ) ' =8, + (Jd - Ty) "\,
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where

$). = . BHHMW]'G,.

n>0

Then

(hdd =Ty ) 'K = )" B H[HOW] ' Gy K + (hdd - Ty)™' K.

n=>0

Since the operator (A.Jd — T )_IK is compact (c.f. [9]), to prove that the

operator (A.Id — T, H)_IK is compact, one only needs to establish that

the operator G; K is compact but this is a consequence of the uniform

convergence of the series »_ By H[H (W] 'G,K. Forall ¢ € X p» We have:
n=0

(G1.K)(9) = Gy[Ko] = (CLK) (@) -

On the other hand, we can prove that the operator G, : X, — LP>" can

be written as
G, =T, G,
where T,. is the trace operator D(Ty) — L¥>*. Letting B p be the unit ball of

X,,

we will prove that (G K)(B,),) is relatively compact in L *. In fact,
-1
(GK)(B,) = (R (By) =10-0d - 1o K18,
-1
= T,[(n1d - Ty)'K](B,).

But (A.Jd — TO)_IK (B),) is relatively compact in X, and preserves also
this property in (D(Ty), |-|). Since T, :(D(Ty), |-|) = " is bounded,

the range of the compact set (D(Ty),|-|) is compact in L”*, so
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(GK)(B,) is relatively compact in L”*. So, K(rId —Ty) "' and

(Add — Ty )"'K are compact subsets of X P O

Remark 4.4. We note that the compactness of the operator

K(\.Id - Ty ! (or (WId-T, ) )'K) is independent from the border

operator H, in fact, we have used only the bounded property of H. O
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