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Abstract 

We present some results about the traces of solutions of the anisotropic 
hyperbolic heat equation over the boundary of cylindrical open sets of 
types ] [T,0×Ω  and ] [,,0 ∞×Ω  when the heat sources are irregular 

distributions. 

1. Introduction 

It is well known that in many important industrial processes involving 
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the irradiation of certain surfaces with laser beams of high energy, it is 
necessary to use a modified heat conduction equation, the so-called 
hyperbolic heat equation. In the very frequent case of anisotropic bodies  
with constant density ρ and specific heat c but with thermal conductivity 
depending on the position, it takes the form (see [1]) 
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where ( )tT ,x  is the temperature at point x at instant t, ( ( ))xijk  is the 

symmetric thermal conductivity tensor of the material, τ is the relaxation 
parameter and ( )tS ,x  denotes the internal heat sources in the body. If 

kkij =  for every ,3,1 ≤≤ ji  then we obtain the isotropic hyperbolic heat 

equation for a homogeneous body. The mathematical formulation of such 
problems leads naturally to the use of nonregular distributions in the 
boundary conditions of the problem or in the expression of the internal heat 
sources. Currently, physicists and engineers handle the arising equations in a 
quasi purely formal way, without any reserve about questions on existence  
or the underlying functional spaces. So, these problems deserve a rigorous 
mathematical analysis. This task has been done in [4] when the used data are 
regular distributions. In this paper, we begin the study in the “irregular” case. 

After choosing a suitable Banach space containing the irregular heat 

sources arising in practice, we consider the space ( ) ] [( )Tr ,01 ×Ω−−
AD  

containing the solutions of (1). In order to precise the permitted degree of 
irregularity in the boundary conditions of a boundary value problem 
associated to (1), we need information about the traces of ∈U  

( ) ] [( )Tr ,01 ×Ω−−
AD  over the transversal section Tt =  and over the 

boundary of a domain ] [T,0×Ω  as well as to study the same trace problem 
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for domains ] [,,0 ∞×Ω  with a nonbounded temporal interval (the natural 

framework in the investigation of the Green’s function for (1)). So the 
purpose of this paper is to study the traces over the boundary of the solutions 
of equation (1) in the cases of domains ] [T,0×Ω  and ] [.,0 ∞×Ω  

We set the hypothesis and the nonstandard notation to be used. In the 

whole paper, Ω will denote a bounded open set in nR  with ∞C  boundary 
∂Ω of dimension 1−n  lying the interior points of Ω locally in only one side          
of ∂Ω. The outer unit normal vector to ∂Ω will be represented by n. For 

every ,0>T  the open set ] [T,0×Ω  in 1+nR  will be denoted by .TΩ  

Analogously, we put ] [,,0: ∞×Ω=Ω∞  ( ) ] [TT ,0: ×Ω∂=Ω∂  and ( )∞Ω∂  

] [.,0: ∞×Ω∂=  ( )fRT  will be the restriction map to TΩ  of a function f 

defined in .∞Ω  

All the necessary information about Sobolev spaces ( ),ΩrH  ( ),0 ΩrH  

( ) ( ( )) ,: 0
′Ω=Ω− rr HH  ] [∞∈ ,0r  and the analogous spaces (( ) ),T

rH Ω∂  

] ]∞∈ ,0T  can be found in [3]. To distinguish the role of the spatial variable 

Ω∈x  and the temporal variable ] [,,0 Tt ∈  ,0>T  we use the Sobolev 

space ( ) (] [ ( )) (] [ ( )),,,0,,0 22, ΩΩ=Ω rs
T

sr HTLLTHH ∩  [ [,,0, ∞∈sr  

endowed with the standard norm of the intersection of two Banach spaces. 

We shall also need the subspace ( )T
srH Ω,
0,0  of ( )T

srH Ω,  formed by the 

closure of ( )TΩD  in ( )T
srH Ω,  and the spaces 

( ) (] [ ( )) (] [ ( )),,,0,,0: 0
22,

,0 ΩΩ=Ω rs
T

sr HTLLTHH ∩  

( ) (] [ ( )) (] [ ( )).,,0,,0: 22
0

,
0, ΩΩ=Ω rs

T
sr HTLLTHH ∩  

The topological dual of ( )T
srH Ω,
0,0  is denoted by ( ).,

T
srH Ω−−  Note that 

the above definitions are meaningful also in the limit case .∞=T  Similar 

rules are used to define (( ) )T
srH Ω∂,

,0  and (( ) ).,
0, T

srH Ω∂  
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The form of equation (1) suggests to consider general operators 
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where ,R∈λ  0>τ  and X  is a selfadjoint strongly elliptic operator in Ω  

with real coefficients ( ) ( ).Ω∈ ∞Cxαβa  It is known (theorem of Aronszajn-

Milman, [3, Chapter 2, Theorem 2.1]) that if 2

2

tt ∂
∂τ+

∂
∂λ−=∗ XA  is the 

adjoint operator of ,A  then there are a boundary differential operator =ℜ :A  

( ) ( ) ( ) ( ) ( )∑ = Ω∂→Ω
∂
∂+ 3

1
22:,cosi i

iii LHxxgf exx  with real coefficients 

f, ,1g  ,2g  3g  in ( )Ω∂2C  and a real function ( ) ( )Ω∂∈ 2CA xf  such that 

( ) 0≠xAf  for every Ω∂∈x  and the classical Green’s formula 
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holds if ( )Tu Ω∈ ∞C  and ( ),,
T

srHv Ω∈  ,2≥r  2≥s  ([3, Chapter 4, 

Remark 2.2]). 

We need to consider a space containing the solutions of the equation 
F=A  when F lies in some large enough space to contain the nonregular 

distributions arising in the physical applications. To this goal, we begin 
considering for { }0∪N∈r  the space 



On the Traces of the Solutions of the Anisotropic Hyperbolic Heat … 69 

( ) ( ) ( ) ( ) ( )
( )

,,::
2
1

2
2

2


















∞<














∂
∂Ω∂=|Ω∈=ΩΦ ∑

≤ Ω
ΩΦ

r L

r fdfLf r

α
α

α
α x

x
x  

 (2) 

where ( ) yxx y −=Ω∂ Ω∂∈inf:,d  is the distance from x up to the boundary 

∂Ω. We extend the above definition to the case ] [∞∈ ,0r  by complex 

interpolation setting for [ ] θ+= rEr  in ] [,,0 ∞  10 <θ<  the space 

( ) [ [ ] ( ) [ ]( )] ,,: 1
1

θ−
+ ΩΦΩΦ=ΩΦ rErEr  endowed with any canonical norm of 

the interpolated space (E is the integer part of r). Clearly, the continuous 

inclusion ( ) ( ),ΩΦ⊂Ω rrH  0>r  holds. Finally, we define ( )ΩΦr  if 0<r  

by duality setting that ( ) ( ( ))′ΩΦ=ΩΦ− rr :  for every [ [.,0 ∞∈r  It can be 

shown that ( )ΩD  is dense in ( )ΩΦr  for 0≥r  and that ( ) ( )Ω⊂ΩΦ 2Lr  

( )ΩΦ⊂ −r  (see [3, Chapter 2], for instance). In consequence, ( )ΩD  is 

dense in ( )ΩΦ−r  too. 

In order to distinguish the behavior of temporal and spatial variables, we 

introduce another space. Given ,0 T<  we fix a number 20
TT <  and 

consider the function ( )R∞∈ϕ CTT ,0  with compact support [ ]T,0  defined 

as 

( ) ( )20
2

0

2
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TT et −−
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T

TT et +−−
−

=ϕ  if ;0 TtTT <≤−    ( ) 0:,0 =ϕ tTT  if 

] ] [ [.,0, ∞∞−∈ Tt ∪  
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Clearly, ( ) eLTT
1

,0 =ϕ ∞ R  independent of T. For every { },0∪N∈r  

we define ( )TTT
rr

,
,

0, ϕΩΦ  (or simply ( )T
rr ΩΦ ,  if there is no risk of 

confusion) as 
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As above, the definition is extended to nonnegative real numbers by 
interpolation defining 

( ) [ [ ] [ ] ( ) [ ] [ ]( )] θ−
++ ΩΦΩΦ=ΩΦ 1

,1,1, ,: T
rErE

T
rErE

T
rr  

for every 0≥r  and providing this space with any standard norm for the 

interpolated space. We obtain easily the continuous inclusion ( )T
rr

T HI Ω,:  

( ),,
T

rr ΩΦ⊂  0>r  and the estimation for its norm 

 ( )( )r
r

T eI Ω+




 +≤ diam111  (3) 

which is independent of T. For ,0<r  we define 

( ) ( ( )) .: ,, ′ΩΦ=ΩΦ −−
T

rr
T

rr  

It can be deduced from [3, Chapter 4, Proposition 9.1] that ( )TΩD  is 

dense in ( )T
rr ΩΦ ,  if .0≥r  Moreover, we have ( ) ( ) ⊂Ω⊂ΩΦ TT

rr L2,  

( ) ( ).,
∞

−− Ω′⊂ΩΦ DT
rr  
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Finally, we arrive at the desired fundamental space. We define for ,R∈r  

( )( ) { ( ) ( ) ( ) ( ) ( )( )}T
rr

T
rr

T
r uHuD ΩΦ∈|Ω∈=Ω +−+−−−−−− 1,1,11 : AA  

which becomes a Banach space endowed with the norm 

 ( )( ) ( ) ( ) ( ) ( ) ( )( ).1,1,11
T

rr
T
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T

r uuu HD ΩΦΩΩ +−+−−−−−− += A
A

 (4) 

The closure of ( )TΩ∞C  in ( )( )T
rD Ω−− 1

A  will be denoted by ( )( ).1
T

r Ω−−
AD  

2. Traces on the Boundary of a Finite Cylinder TΩ  

We begin studying the traces over transversal sections in a finite time. 
We formulate our results on TΩ  but with a natural and elementary change of 

temporal variable, they become true in sets of type ] [TT ′×Ω ,  with TT ′<  

in .R  We need a previous lifting theorem: 

Lemma 1. Let 1≥r  be such that ,2
1
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and let ,0j  0k  be the greatest elements in { }0∪N  such that <≤ 00 j  

2
1+r  and ,2

30 0 +<≤ rk  respectively. Given 
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−= −− xxx X  (5) 
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such that 

( )( ) ( ),,1
0,0 T

rrHR Ω∈ −∗ gA  (6) 

( ) ( ) ( ) ( ) ( )xxgxg
kk

k

k

k
gT

t
R

t
Rkk =

∂
∂=

∂
∂≤≤∀ ,,00,,0 0  in Ω (7) 

and 

 ( ) ( ) 0,,0 0 =
∂

∂≤≤∀ tRj x
x

g
α

α
α  in ( ) .TΩ∂  (8) 

Proof. We begin checking that 

 ( ) ( )Ω∈≤≤∀ +
+



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
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1
2
11

00,0 r
rkr
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proceeding by induction. (9) is true for 1,0=k  by definition of g. Assume 

(9) holds for every .12 0 −≤≤≤ kkj  Then 

( ) ( )Ω∈ +
+






 ++−−

−
2
1

2
111

1
r
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k HgX  

and ( ).2
1

2
11

Ω∈ +
+






 +−+ r

rkr
k Hg  It follows that (9) holds for .1+k  

As a consequence of (9), we can apply [3, Chapter 4, Theorem 2.3] and 
the proof of [3, Chapter 1, Trace Theorem 3.2 and Remark 3.3] and the 
change tt ′−= 1  to obtain a continuous lifting 

( ) ( )∞
++

=
+
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
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
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such that the lifting 

( ) ( )Ω×Ω∈ +
+−+

+
+−+ 2

1
2
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0
2
1

2
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0: r
rrr
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HHR g  

( )( )( ) ( ) ( )T
rr

T HtTLR Ω∈−→ ++ 2,1,xgG  
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verifies 

 LRT ≤>∀ ,0  (10) 

(independent of T), 

 ( ) ( ) ( )xxg
kk
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Rkk =
∂
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By [3, Chapter 1, Theorem 11.5], we obtain ( ) ( )T
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Choosing a function ( ) [ ]( )Tt ,0∞∈ϕ C  such that ( ) 1=ϕ t  in some 

neighbourhood of Tt =  and ( ) 0=ϕ t  in some neighbourhood of 0=t  and 

switching to the new lifting ( ) ( ) ( ),, tRt xgϕ  it can be assumed that the initial 

R verifies, moreover, 
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k
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in the space ( ).2
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,20 −j  and now, by [3, Chapter 4, Footnote to Lemma 10.1], we have 

( )( ) ( ).,1
0,0 T

rrHR Ω∈ −∗ gA  Then, from (14) and [3, Chapter 1, Theorem 11.5], 

the lemma follows. 
 

Theorem 2. Traces over transversal sections. Let 0>T  and 1≥r  

verifying the conditions of Lemma 1. Then the map ( ) →Ω∈ ∞
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Proof. Given ( ) ( )( ) ( ) ( ),:, 2
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( )( ) ( ) ( ) ( ) 0,,0 2

2
0 =









∂
Ψ∂τ+

∂
Ψ∂λ−Ψ

∂
∂≤≤∀ t

ttj xggg
x

Xα

α
α  

in ( ) .TΩ∂  (19) 

But, from (17), one has ( ) ( ) ( ) ( ) 0,, 2

2
=

∂
Ψ∂=

∂
Ψ∂ t

t
tt xgxg  in ( )TΩ∂  and 

hence, using (19) in the case ,0=α  we obtain ( ) ( )( ) 0, =Ψ txgX  in 

( ) .TΩ∂  From (17), since X  is elliptic in ,Ω  we deduce necessarily 

( ) ( ) 0,2

2
=

∂
Ψ∂ t
xi

xg  in ( )TΩ∂  for every .1 ni ≤≤  Proceeding inductively in 

the same way, we obtain ( ) ( ) 0, =
∂

Ψ∂ t
x j

i

j
xg  in ( )TΩ∂  for every ni ≤≤1  

and .0 0jj ≤≤  Again by the quoted footnote in [3], from (18), we          

have ( ) ( ).,2
0,0 T

rrH Ω∈Ψ g  Then Green’s formula gives ( )( ) −Ψ∗ gA,U  

( ) ( ) 0, =Ψ gUA  which shows the independence of R. 

On the other hand, as ( )( ),1
T

rU Ω∈ −−
AD  we have 

( ) h,UZ  

( ) ( ) ( )( ) ( )T
rr

T
rr HH RU Ω

∗
Ω −−−−≤ ,1

0,0
,1 gA  

( ) ( ) ( )( ) ( ) ( )T
rr

T
rr HT RIU ΩΩΦ +++−+−+ 2,1

0,0
1,1 gA  

( ) ( )( ) ( ) ( ).2
1

2
31

0
2
1

2
11

0
1 Ω×ΩΩ +

+−+
+
+−+−−+≤ r

rrr
rr

T
r HHT URI gDA

A  (20) 

Then ( )UZ  is well defined and it turns out that, by density, Z can be 

continuously extended to a continuous linear map from ( )( )T
r Ω−− 1

AD  into 

( )
( )

( )
( ).2

1
2
312

1
2
11

Ω×Ω +
+++−

+
+++− r

rrr
rr

HH  
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Finally, taking ( ) ( ),Ω×Ω∈ DDh  by duality we have ( ) =h,UZ  

1100 ,, hh ϕ+ϕ  and by classical Green’s formula and the definition of Z, 

( ),TU Ω∈∀ ∞C  

( ) ( ) ( ) ( ) Ωλ= TRTUUZ ,,,, xgxh  

( ) ( ) ( ) ( ) ( ) ( ) 







∂
∂−

∂
∂τ+

ΩΩ
Tt

RTUTRTt
U ,,,,,, xgxxgx  

( ) ( ) ( ) ( )xxxx 01 ,,,, hTt
UhTU
∂
∂+=  

and hence ( ) ( ) ( ) ,,,, 






∂
∂= Tt
UTUUZ xx  h being arbitrary in ( )ΩD  

( ).Ω× D  
 

To study the traces over the lateral boundary ( ) ,TΩ∂  we need another 

lifting theorem: 

Lemma 3. Let .0>T  Let 1≥r  be such that 






+
+−+ 1

2
2
3

r
rr  

,2
1 Z∉




 +⋅ k  rk ≤≤0  and let ( ) ( ) ( )( ).,,,:, 10 tgtgtg xxx =  Then there 

is a lifting 

( ) (( ) ) (( ) )T
r
rrr

T
r
rrr

HHtR Ω∂×Ω∂∈ +
+






 −−

+
+






 1++ 1

2
2
1,2

1

0,
1
2

2,2
1

0,,: xg  

( )T
rrH Ω→ ++ 2,1  

such that ( )( ) ( ),,1
0,0 T

rrHR Ω∈ −∗ gA  ( )( ) ( )tgtR ,, 0 xxg =  and ( )( )( )tR ,xgAℜ  

( )tg ,1 x=  in ( )TΩ∂  and 

 ( ) ( ) ( ) ( ) 0,0,,2
30 =

∂
∂=

∂
∂+<≤∀ T

t
R

t
Rrk k

k

k

k
xgxg  in Ω. (21) 
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Proof. Let ,0j  0k  be as in Lemma 1. Given ( )t,xg  as announced, define 

{ ( )} 0
2, j

jj tg =x  in ( )TΩ∂  by the same rule used in (15). By [3, Chapter 1, 

Theorem 3.2 and Remark 3.3] and [3, Chapter 4, Theorem 2.3], there is a 
continuous linear map 

(( ) ) (( ) )T
r
rrr

T
r
rrr

HHFR Ω∂×Ω∂= +
+






 −−

+
+






 1++ 1

2
2
1,2

1

0,
1
2

2,2
1

0,1 ::  

( )T
rrH Ω→ ++ 2,1  

such that ( ) ( ) 00,1 =
∂

∂ xg
k

k

t
R

 in Ω for each 00 kk ≤≤  and ( ) =g1R  

( ),,0 tg x  ( )( ) ( )tgR ,11 xg =ℜA  and ( ) ( ) ( ),,,1 tgtR
jj

j
xx

n
g =

∂

∂  02 jj ≤≤  

in ( )TΩ∂  for every .0 0jj ≤≤  Analogously, after the variable change =′t  

,tT −  using [3, Chapter 4, Theorems 2.1 and 2.3], there is another continuous 

linear map ( )T
rrHFR Ω→ ++ 2,1

2 :  such that 

( ) ( ) ( ) ( )T
t

RT
t

R
k

k

k

k
,, 12 xgxg

∂

∂=
∂

∂  

in Ω for every 00 kk ≤≤  and ( )( ) ,02 =ℜ gRA  ( ) 02 =gR  and ( ) 02 =
∂

∂
j

jR
n

g  

in ( )TΩ∂  for every .2 0jj ≤≤  

Choosing a function ( )TΩ∈ϕ ∞C  such that ( ) 0, =ϕ tx  in a 

neighbourhood of the section ( ){ }Ω∈xx ,0,  and ( ) 1, =ϕ tx  in a 

neighbourhood of the section ( ){ },,, Ω∈xx T  it turns out that ( ) :, tR x  

( ) ( ) ( )tRttR ,,, 21 xxx ϕ−=  verifies 

( ) ( ) ( ) ( ) 0,0, =
∂

∂=
∂

∂ T
t
R

t
R

k

k

k

k
xgxg  
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in Ω for 00 kk ≤≤  and ( ) ( ),,0 tgR xg =  ( )( ) ( )tgR ,1 xg =ℜA  and 

( ) ( ) ( ),,, tgtR
jj

j
xx

n
g =

∂
∂  02 jj ≤≤  in ( ) .TΩ∂  From now on, the proof 

follows as in Lemma 1. 
 

Theorem 4. Traces on the lateral boundary ( ) .TΩ∂  Let 1≥r  be as       

in Lemma 3. Then the map ( ) (( ) ) ×Ω∂∈






∂
∂→Ω∈ ∞∞

TT
UUUZ CC n,:  

(( ) )TΩ∂∞C  can be continuously extended to a map (again denoted by Z) 

( )( ) ( )( )T
r
rrr

T
r HZ Ω∂→Ω +

+





 −−





 −−−− 1

2
2
1,2

1
1: AD  

( )( ).1
2

2
1,2

1

T
r
rrr

H Ω∂× +
+






 +−





 +−

 

Proof. It is the same as that in Theorem 2 but starting from =:h  

( ) ( )( ) ( )( ) (( ) )T
r
rrr

T
r
rrr

HHthth Ω∂×Ω∂∈ +
+






 −−

+
+






 ++ 1

2
2
1,2

1

0,
1
2

2
1,2

1

0,10 ,,, xx  

using Lemma 3 and defining in ( )TΩ∂  functions ( ) ( )
( ) ,,, 0

0 x
xx
Af

thtg −=  

( ) ( )thtg ,, 11 xx =  and ( ){ } 0
2, j

kk tg =x  according to rule (5). By Green’s 

formula, if ( ) ( )( ) (( ) ) (( ) ),,,, 10 TTthth Ω∂×Ω∂∈ ∞∞ CCxx  then we have 

( ) ( ) ( )( ) ( ) ( ) ( )
( )T

T
tgUthUththUZ

Ω∂
Ω∂ ∂

∂+= ,,,,,,,, 0101 xnxxx  and 

the result follows. 
 

3. Traces on the Boundary of an Infinite Cylinder ∞Ω  

Our goal in this section is to obtain the corresponding versions of 
Theorems 2 and 4 in the case of domains of type .∞Ω  We need to define 
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suitable spaces ( )( )∞
−− Ω1r

AD  since previous definitions do not directly apply 

to define spaces ( ).,
∞ΩΦ rr  

Consider a strictly increasing and unbounded sequence { }∞=0mmT  such 

that .20 1
0

TT <<  Fixed ,0 r<  with the help of the functions mTT ,0ϕ  

defined in Section 1, we can define spaces ( ),, ,
,

0 mm TTT
rr ϕΩΦ  (which will 

be denoted in the sequel by ( )mT
rr ΩΦ ,  to simplify notation) for every 

.N∈m  Let nR  be the map sending every measurable function in ∞Ω  to        

its restriction to nTΩ  and let ( ) ( )nn T
rr

T
rr

nnR ΩΦ→ΩΦ
++

,,
,1 1:  be the 

restriction map to .nTΩ  Clearly, ( ( )) ( ).,,
1 1 nn T

rr
T

rr
nR ΩΦ⊂ΩΦ

++  We 

define 

( ) { ] [ ( ) :,0:: ,,
∞ΩΦ∞ |→∞×Ω=ΩΦ rrffrr R  

( ) ( ) }.sup , ∞<= ΩΦ
∈ nT

rrfRn
n N

 

Remark that the continuous inclusion ( ( )) ( )nT
rrrr

n HR ΩΦ⊂Ω∞
,,

0,0  and 

(3) imply that the inclusion ( ) ( )∞∞∞ ΩΦ⊂Ω rrsrHI ,,
0,0:  holds and hence 

( ) { }0, ≠ΩΦ ∞
sr  becomes a nontrivial Banach space endowed with the norm 

( )∞ΩΦ rrf ,  (see [2]). Of course, we put ( ) ( ( )) .: ,, ′ΩΦ=ΩΦ ∞∞
−− rrrr  

Finally, we define for ,R∈r  

( )( ) { ( ) ( ) ( ) ( ) ( )( )}∞
+−+−

∞
−−−

∞
−− ΩΦ∈Φ|Ω∈Θ=Ω 1,1,11 : rrrrr HD A  

endowed with the topology derived from the norm 

( )( ) ( ) ( ) ( ) ( ) ( )( ).1,1,11
∞

+−+−
∞

−−−
∞

−− ΩΦΩΩ Θ+Θ=Θ rrrrr HD A  
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In order to obtain a theorem of transversal traces “at ∞”, we need an 

adequate subspace of ( )( )∞
−− Ω1rDA  which allows the application of classical 

Green’s formula at the side .∞→t  We define ( )( )∞
−− Ω1rW  as the 

subspace of ( )( )∞
−− Ω1rDA  of those functions ( ) ( )( )∞

−−
∞

∞ ΩΩ∈ 1rDU AC ∩  

such that there exists 

( ) ( ) ( ) ( )






∂
∂=

∞→
tt

UtUtUZ
t

,,,lim:, xxx  in 

( )
( )

( )
( ).2

1
2
112

1
2
31

Ω×Ω +
+++−

+
+++− r

rrr
rr

HH  (22) 

Clearly, ( ) ( )( )∞
−−

∞ Ω⊂Ω 1rWD  and ( ) { }.0≠Ω∞W  We define 
( )( )∞
−− Ω1r

AW  as the closure of ( )( )∞
−− Ω1rW  in ( )( ).1

∞
−− ΩrDA  

Theorem 5. Let .1≥r  Then the map 

( )( ) ( ) ( )






∂
∂→Ω∈

∞→
∞

−− tt
UtUUW

t
r ,,,lim: 1 xxW  

can be extended to a continuous linear map (again denoted by W) 

( )( )
( )

( )
( )

( ).: 2
1

2
112

1
2
311 Ω×Ω→Ω +

+++−
+
+++−

∞
−− r

rrr
rrr HHW AW  

Proof. By Lemma 1, there is a continuous lifting 

( ) ( )( ) ( ) ( )Ω×Ω∈= +
+−+

+
+−+ 2

1
2
31

0
2
1

2
11

010 ,:: r
rrr

rr
HHggL xxg  

( )1
2,1 Ω→ ++ rrH  

verifying (6), (7) and (8). Then 

( ) ( ) ( ) ( ) 




 







+
=Ψ→Ω×Ω∈Ψ +

+−+
+
+−+

t
tLtHH r

rrr
rr

1,:,: 2
1

2
31

0
2
1

2
11

0 xgxgg  

is a ( )∞
++ Ω2,1 rrH -valued lifting verifying (7), ( ) ( ) 0, =

∂
Ψ∂ tx
x

g
α

α
 in 
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( )∞Ω∂  for every 2
10 +<≤ rα  and moreover, by [3, Chapter 5, Theorem 

11.5], there exists ( )( ).gΨW  

For every ,0>T  let TZ  be the function defined on ( )TΩ∞C  as in (16) 

with the help of the lifting ( ).ΨTR  Consider the continuous linear map 

( )( )
( )

( )
( )

( )Ω×Ω=→Ω∈= +
+++−

+
+++−

∞
−− 2

1
2
112

1
2
311 :: r

rrr
rrr

T HHFUW W  

such that ( ) ( ) ( )TUZUW TT ,: x=  and denote TW  again its continuous 

extension to ( )( ).1
∞

−− Ωr
AW  By [3, Chapter 5, Theorem 11.5], we have 

( ) ( ) ,0lim
,

=− ′
∞→′∞→ FTT

TT
UWUW  

and so there exists ( ) ( ) .,lim:, gg UZUZ TT ∞→=  From Banach-

Steinhaus’s theorem, we obtain that there exists ( ) ( )UZUZ TT ∞→= lim           

in F. The end of the proof can be accomplished noting that if ∈U  
( )( )∞
−− Ω1rW  and ( ) ( ) ( )( ) ,, 10 FUZ ∈ϕϕ= xx  given ( ) ( )( ) ∈= xxh 10 , hh  

( ) ( ),Ω×Ω DD  with the same argumentation of Theorem 2 and the same 

definition for g and { } ,0
0

k
kkg =  by duality and by Green’s formula, using (22) 

and (10) we have 

( ) Ω×Ωh,UZ  

1100 ,, hh ϕ+ϕ=  

( ) ( ) ( ) Ω∞→
Ψλ= TTU

T
,,,lim xgx  

( ) ( ) ( ) ( ) ( ) ( ) 







∂
Ψ∂

−Ψ
∂
∂τ+

ΩΩ∞→
T

t
TUTT

t
U

T
,,,,,,lim xgxxgx  

( ) ( ) ( ) ( ) .,,lim,,lim 01 xxxx hTt
UhTU

TT ∂
∂+=

∞→∞→
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Finally, we consider the traces over a boundary of type ( ) .∞Ω∂  As 

above, we need a suitable subspace of ( )( ).1
∞

−− Ωr
AD  By Theorem 5, we  can 

consider the set ( )( )∞
−− Ω1rV  of the functions ( ) ( )( )∞

−−
∞

∞ ΩΩ∈ 1rU ADC ∩  

such that ( ) ( ) .0,lim,lim =
∂
∂= ∞→∞→ Tt
UTU TT xx  We define ( )( )∞

−− Ω1r
AV  

as the closure of ( )( )∞
−− Ω1rV  in ( )( ).1

∞
−− ΩrDA  We obtain 

Theorem 6. Traces over ( ) .∞Ω∂  Let .1≥r  Then the map ∈UZ :  

( ) ( )( ) (( ) ) (( ) )TT
r UU Ω∂×Ω∂∈







∂
∂→ΩΩ ∞∞

∞
−−

∞
∞ CCVC n,1∩  can be 

continuously extended to a map (again denoted by Z) 

( )( ) (( ) )∞
+
+






 −−





 −−

∞∞
−− Ω∂=→Ω 1

2
2
1,2

1
1 : r

rrrr HGAV  

( )( ).1
2

2
1,2

1

∞
+
+






 +−





 +−

Ω∂× r
rrr

H  

Proof. The proof is based on a combination of the ideas applied in 
Theorems 5 and 4. For this reason, we only will mention the main details. 
Given 

( ) ( )( ) (( ) )1
1
2

2
1,2

1

0,10 :,,, Ω∂=∈= +
+






 ++ r

rrr
HEtgtg xxg  

(( ) ),1
1
2

2
1,2

1

0, Ω∂× +
+






 −− r

rrr
H  

by Lemma 3, there is a continuous lifting ( )1
2,1: Ω→∈ ++ rrHEL g  

verifying (6), (21) and ( ) ( ) ( )tgtR ,, 0 xxg =  and ( )( ) ( ) ( )tgtRA ,, 1 xxg =R  

in ( ) .TΩ∂  Now choose a function ( )1Ω∈ϕ ∞C  such that ( ) 1, =ϕ tx  in         

a neighbourhood of the section ( ){ }Ω∈xx ,0,  and ( ) 0, =ϕ tx  in a 

neighbourhood of the section ( ){ }.,1, Ω∈xx  If ( ( ))( ( )( ))txhtxh ,,, 10=h  

,E∈  then we choose 
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( ) ( ) ( ) .1,,,1,1:, 1100 




 −1=





 −1−= thtgthtg xxxxx

Af
 

For every ,0>T  put 

(( ) ) (( ) )T
r
rrr

T
r
rrr

T HHF Ω∂×Ω∂= +
+






 +−





 +−

+
+






 −−





 −− 1

2
2
1,2

1
1
2

2
1,2

1

:  

and consider the map TZ  defined as in Theorem 4 with the help of the 

( )∞
++ Ω2,1 rrH -valued lifting 

( ) ( ) .1,1,,: 




 







+






+
ϕ=Ψ→∈Ψ t

tLt
ttE xgxxgg  

Denote by ( )fQM  the restrictions to ( )∞Ω∂⊂M  of a distribution f defined 

in ( ) .∞Ω∂  Given ,TT ′<  we have ] [( ) TTT ZZQ =′,0  because ( ) ⊂Ω∂ TD  

( ) .T ′Ω∂  On the other hand, there is 0>K  independent of T such that 

( ) ( )( ) ( ) .supsupsup
000

ULKURLKURZUZ T
T

FTT
T

FT
T TT

≤≤=
>>>

 

It turns out that the distribution ( ) (( ) )∞Ω∂′∈ DUZ  coinciding with 

( )( )URZ TT  for every 0>T  actually lies in .∞G  
 

4. An Application to Green’s Formula 

Previous results can be applied to obtain a generalization of classical 
Green’s formula. To do this, we begin noting that with the same 

argumentation used in [5] to represent the dual space ( ( )) ,′ΩT
kH  ,N∈k  it 

can be easily shown that every ( )TLf Ω∈ 2  defines in a natural way two 

continuous linear forms ( )T
sr

f H Ω∈ϕ −− ,  and ( ( ))′Ω∈Φ T
sr

f H ,  such 

that 

 .ff Φ=ϕ  (23) 



On the Traces of the Solutions of the Anisotropic Hyperbolic Heat … 85 

Assume that ,1≥r  ,2
1

2
1

2
1 Z∉







+
+






 +−+ r

rir  ,1,0=i  and ∈u  

( )( ).1
T

r Ω−−D  By Theorem 2, we have 

( ) ( ){ }
( )

( ) ( ( )) .,,0, 2
1

2
31

0
2
1

2
31 ′Ω=Ω⊂ +

+−+
+
+++− r

rr
r
rr

HHTuu xx  

Both the elements ( ),0,xu  ( )Tu ,x  can be extended to specific elements in 

( ( ))′ΩsH  for every 2
1

2
31

+
+−+≥ r

rrs  in the following way: choose a 

sequence { } ( )Tkku Ω⊂ ∞∞
= C1  such that kk uu ∞→= lim  in ( )( ).1

T
r Ω−−

AD  

Then ( ){ } ( )Ω⊂ ∞∞
= C10, kku x  and by Theorem 2, we have ( )0,lim xkk u∞→  

( )0,xu=  in 
( )

( ).2
1

2
31

Ω+
+++− r

rr
H  By (23), we obtain 

( ) ( ) ( ) ( ) ( ) ,,, 2
1

2
31

0,0,0,0,

′














Ω∈Φ−Φ=Φ∈∀ +

+−+
−

r
rr

uuuu Hmk mkmk xxxxN  

and since ( ) ( ) ( ) ( ) ( )
( ),0,0, 2

1
2
31

0,0, Ω+
+++−−=Φ−Φ r

rr
mk Hmkuu uu xxxx  

{ ( )}
∞
=Φ 10, kuk x  is a Cauchy sequence in ( )

′














Ω+

+−+ 2
1

2
31 r

rr
H  and there exists 

( )0,
0 lim xkuku Φ=ϕ ∞→  in ( ) .2

1
2
31

′














Ω+

+−+ r
rr

H  The desired extension is 

.0
uϕ  In fact, if ( )

( )
( )Ω→

′














Ω +

+++−
+
+−+ 2

1
2
312

1
2
31

: r
rrr

rr
HHQ  is the 

canonical continuous quotient map, then we have 

( ) ( ( ) ) ( ) ( )0,0,limlim 0,
0 xxx uuQQ k

k
u

k
u k ==Φ=ϕ

∞→∞→
 in 

( )
( )Ω+

+++− 2
1

2
31 r

rr
H  (24) 
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and it is clear that this value is independent of the chosen sequence { } .1
∞
=kku  

It is also clear that 0
uϕ  is an extension of ( ).0,xu  If ,2

1
2
31

+
+−+≥ r

rrs  

then the restriction to ( )ΩsH  of 0
uϕ  shows our assertion. In the same way, 

the extension T
uϕ  of ( )Tu ,x  can be obtained. 

Under the same hypothesis and after the analogous argumentation,        

the traces ( )0,xt
u
∂
∂  and ( )Tt

u ,x
∂
∂  of ( )( )T

ru Ω∈ −− 1D  can be considered 

as elements of ( ( ))′ΩsH  for every .2
1

2
11

+
+−+≥ r

rrs  Analogously, it    

can be shown that if ,2
1

1
2

2
3 Z∉





 +






+
+−+ kr

rr  rk ≤≤0  and ∈u  

( )( ),1
T

r Ω−−D  then the traces ( )tu ,x  ( )






∂
∂ tu ,.resp xn  on ( )TΩ∂  can be 

considered as elements of ( (( ) ))′Ω∂ T
wsH ,  for every ,2

1−≥ rs  ≥w  

1
2

2
1

+
+






 − r

rr  .1
2

2
1,2

1.resp 






+
+






 +≥+≥ r

rrwrs  In the sequel, all the 

considered extensions will be denoted by the same symbols representing the 
functional to be extended. 

Now we can state 

Proposition 7. A generalization of Green’s formula. Let 1≥r  verifying 

,2
1

2
1

2
1 Z∉







+
+






 +−+ r

rir  1,0=i  and Z∉




 +






+
+−+ 2

1
1
2

2
3 kr

rr  

for every .0 rk ≤≤  Let ( )Tv Ω∈ ∞C  be such that ( ) ( ).,1
0,0 T

rrHv Ω∈ −∗A  

Let ( )( ).1
T

ru Ω∈ −−
AD  There are a boundary operator AR  and a function 

Af  such that 
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( ) ( ) ( ) ( ) ( ) ( )
TT

tvtututv Ω
∗

Ω − ,,,,,, xxxx AA  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( )TT

tutvtvtu
Ω∂

Ω∂ ∂
∂−= ,,,,,, xnxxxx AA fR  

[ ( ) ( ) ] Tt
ttutv =
=Ωλ+ 0,,, xx  

( ) ( ) ( ) ( ) ,,,,,,,
0

Tt

t
tt

vtutt
utv

=

=ΩΩ






∂
∂−

∂
∂τ+ xxxx  (25) 

where every bracket is understood as the duality in the corresponding dual 
pair. 

Proof. If we choose a sequence { } ( )Tkku Ω⊂ ∞∞
= C1  such that =u  

kk u∞→lim  in ( )( ),1
T

r Ω−−
AD  as ( ) ( ),,1

0,0 T
rrHv Ω∈ −∗A  by classical Green’s 

formula, (25) holds for v and every ,ku  .N∈k  Then, taking limits when 

,∞→k  the conclusion follows from the introduction to this section. 
 

References 

 [1] D. S. Chandrasekharaiah, Thermoelasticity with second sound: a review, Appl. 
Mech. Rev. 39(3) (1986), 355-376. 

 [2] J. A. Dubinskij, Sobolev Spaces of Infinite Order and Differential Equations,        
D. Reidel Publishing Company, Dordrecht, 1986. 

 [3] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, 
I, II, III, Dunod, París, 1968. 

 [4] J. A. López Molina and M. Trujillo, On the regularity of solutions of the 
homogeneous mixed Neumann problem for the hyperbolic heat equation in 
anisotropic bodies, J. Anal. Appl. 3(3) (2005), 175-189. 

 [5] V. G. Maz’ja, Sobolev Spaces, Springer-Verlag, Berlin, 1985. 


