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Abstract

We present some results about the traces of solutions of the anisotropic
hyperbolic heat equation over the boundary of cylindrical open sets of
types Qx ]0, T[ and Q x ]0, oo, when the heat sources are irregular
distributions.

1. Introduction

It is well known that in many important industrial processes involving
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the irradiation of certain surfaces with laser beams of high energy, it is
necessary to use a modified heat conduction equation, the so-called
hyperbolic heat equation. In the very frequent case of anisotropic bodies
with constant density p and specific heat ¢ but with thermal conductivity

depending on the position, it takes the form (see [1])

3
_z% Z l](x) [ (x, t)+'c (x t)j
i=1 !

=1
—p(S(X t)+r (x t)j (1)

where T(x, ¢) is the temperature at point x at instant ¢, (k;(x)) is the

symmetric thermal conductivity tensor of the material, t is the relaxation

parameter and S(x, #) denotes the internal heat sources in the body. If
kij =k for every 1 <1i, j <3, then we obtain the isotropic hyperbolic heat

equation for a homogeneous body. The mathematical formulation of such
problems leads naturally to the use of nonregular distributions in the
boundary conditions of the problem or in the expression of the internal heat
sources. Currently, physicists and engineers handle the arising equations in a
quasi purely formal way, without any reserve about questions on existence
or the underlying functional spaces. So, these problems deserve a rigorous
mathematical analysis. This task has been done in [4] when the used data are

regular distributions. In this paper, we begin the study in the “irregular” case.
After choosing a suitable Banach space containing the irregular heat
sources arising in practice, we consider the space D;l(r _1)(Qx]0, T[)

containing the solutions of (1). In order to precise the permitted degree of
irregularity in the boundary conditions of a boundary value problem

associated to (1), we need information about the traces of U e
D;l(r _1)(Q><]O, T[) over the transversal section ¢#=7 and over the

boundary of a domain Q x |0, 7' as well as to study the same trace problem
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for domains Q x |0, o[, with a nonbounded temporal interval (the natural
framework in the investigation of the Green’s function for (1)). So the
purpose of this paper is to study the traces over the boundary of the solutions
of equation (1) in the cases of domains Q x |0, T and Q x |0, ool.

We set the hypothesis and the nonstandard notation to be used. In the

whole paper, Q will denote a hounded open set in R" with C* boundary
0Q of dimension n — 1 lying the interior points of Q) locally in only one side

of 0Q. The outer unit normal vector to 0Q will be represented by n. For
every T >0, the open set Qx]0, 7[ in R"*! will be denoted by Q.

Analogously, we put Q,, == Qx]0, o[, (0Q); :=0Qx]0, T[ and (6Q),,

=00 x )0, 0[. Rp(f) will be the restriction map to Qr of a function f
defined in Q.

All the necessary information about Sobolev spaces H' (Q), Hy(Q),
H(Q):= (HS(Q))I, r € ]0, o[ and the analogous spaces H'((0Q);),
T € ]0, o] can be found in [3]. To distinguish the role of the spatial variable

x € Q and the temporal variable ¢ € |0, T[, T > 0, we use the Sobolev

space H"*(Qr) = H*(]0, T[, LX(Q))N L*(J0, T[, H"(Q)), r, s [0, o,
endowed with the standard norm of the intersection of two Banach spaces.

We shall also need the subspace Hgg (Qr) of H"*(Qy) formed by the
closure of D(Q7) in H"*(Qr) and the spaces
Hy*(Qr) = H°(J0, T[, L2(@) N £2(J0, T[, H(Q2)),
H'y(@Qr) = H§ (10, T[, 2(Q) N (0, T[, H" ().
~ r.s . —r,—s
The topological dual of H;(Q7) is denoted by H™">""(Qr). Note that

the above definitions are meaningful also in the limit case 7 = oo. Similar

rules are used to define H, 6 *((6Q)7) and H f(’)s ((69Q)7).
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The form of equation (1) suggests to consider general operators

A=X+rA—+1—, X:= Z (-1) agp(X)—=
ot 2° o | “oB ’
ot OS‘G‘,‘B‘SI Ox GXB
where L € R, >0 and X is a selfadjoint strongly elliptic operator in Q

with real coefficients agg(x) € C*(Q). It is known (theorem of Aronszajn-

2
Milman, [3, Chapter 2, Theorem 2.1]) that if A" = X' — k% + ra—z is the
ot

adjoint operator of A, then there are a boundary differential operator R 4 =
f(x)+ Z?:l gi(x)cos(x;, ei)% . H3(Q) — 1*(6Q) with real coefficients
i

£ g1, g, g3 in C2(6Q) and a real function f 4(x)eC 2(6Q) such that
f4(x) # 0 for every x € dQ and the classical Green’s formula
T
0

j ( j NEIOR uA*(v))dxj di

- OT Uag (uﬁR A) = v g—:‘lj . dcsjdt ' 7{ [ b outx, b dxj
' 1{ [ [V(x, 0% 1)~ ux. ) 2 (x. t)IdexJ

holds if u € C*(Qr) and ve H"S(Qr), r=2, s=2 ([3, Chapter 4,
Remark 2.2]).

We need to consider a space containing the solutions of the equation
A = F when F lies in some large enough space to contain the nonregular
distributions arising in the physical applications. To this goal, we begin

considering for » € N U {0} the space
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1

a\ a ‘f 2
d(x, 00)* <L (x) <ot
5Xa LZ(Q)

2

where d(x, 0Q) := infyaq) x —y || is the distance from x up to the boundary

©"(Q) =11 € P/ o) = [ Z

|a|<r

0Q. We extend the above definition to the case » € |0, o[ by complex
interpolation setting for » = E[r]+0 in ]0, o[, 0<0 <1 the space
O’(Q) = [dF [r ]H(Q), DLl ](Q)]l_e, endowed with any canonical norm of
the interpolated space (£ is the integer part of r). Clearly, the continuous
inclusion H"(Q) c ®"(Q), r > 0 holds. Finally, we define ®"(Q) if » <0
by duality setting that ® " (Q) := (®” (Q))I for every r € [0, oo[. It can be
shown that D(Q) is dense in ®"(Q) for > 0 and that ®"(Q) = I*(Q)
c ®"(Q) (see [3, Chapter 2], for instance). In consequence, D(Q) is

dense in @~ (Q) too.

In order to distinguish the behavior of temporal and spatial variables, we

introduce another space. Given 0<7, we fix a number T <§ and

consider the function 01,7 € C”(R) with compact support [0, 7] defined
as
I

_T()z—(t—To)z . 1.
(PTO,T(t)Ze if 0 <t <Tp; (PTO,T(I)=zlf Tp £t < T -1y,

¢

2 2
o r()=¢ 1 TR e T oy <i<T; o7y, 7(1) = 0 if

t € |-, 0]UIT, oo.
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1 .
Clearly, | o7, 7 ||L°°(R) == independent of 7. For every r € N U {0},

we define ®""(Qr, @7, 7) (or simply ®""(Qr) if there is no risk of

confusion) as

" (Qr) =1/ € (10, T[ @ @) || / lpr-r ()

> 2 5

j=0

.ajf
oo(t) [ —+
o)} £

£(J0,7[, "/ (Q))

As above, the definition is extended to nonnegative real numbers by

interpolation defining
" (QT ) = [CDE[V]+1, E[r]+1(QT )’ CDE[}’], E[r](QT )]1_6

for every » > 0 and providing this space with any standard norm for the

interpolated space. We obtain easily the continuous inclusion I : H"" (Q7)

c ®""(Qr), r > 0 and the estimation for its norm

r
TAE (1 " 3 (1 + diam(Q))" 3)
which is independent of 7. For » < 0, we define

"7 (Qr) = (@7 (Qr)).

It can be deduced from [3, Chapter 4, Proposition 9.1] that D(Q7) is
dense in ®""(Q7) if » > 0. Moreover, we have ®*"(Q7) < I*(Q7) <

O (Qr) = D'(Qy).
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Finally, we arrive at the desired fundamental space. We define for » € R,
D N@r) = u e B Q) | Aw) € 07D i)
which becomes a Banach space endowed with the norm

fu | D) = [lu| Do) [ Au) ||q)—(r+1),—(r+1)(QT). 4)
The closure of C*(Q7) in D" ™(Q7) will be denoted by D" (Q7).
2. Traces on the Boundary of a Finite Cylinder Q

We begin studying the traces over transversal sections in a finite time.

We formulate our results on Qp but with a natural and elementary change of
temporal variable, they become true in sets of type Q x |7, T'[ with T < T’

in R. We need a previous lifting theorem:

Lemmal.Leterbesuchthatr+l— i+1y(r+l ¢Z,i=0,1
2 2 r+2

and let jy, ko be the greatest elements in N U {0} such that 0 < j, <

r +% and 0 < ky <r+ %, respectively. Given
1 r+l 3 r+l
i 1
g =(g0(x), g1(x)) e Hy *7"2(Q)x H, (Q),

define
1Yr+l
) kO V+1—(k+5)m
Glg) = (20(x). (¥, oo g1 () < [, Ho (@)
as
1
gi(x) = = - (X2 (x) = Agi1 (X)), k=2, ..., ko. ®)
Then there is a lifting
1 r+l 3 r+l

+ 12—
RigeHy, Z2r2(Q)xH, Z2r+2(Q)— H™"2(Qr)
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such that
* -1
A*(R(g)) < HI"(@r).
o*R(g) o*R(g)
V0 < k < ky, —k(x, 0) =0, —k(x, T)=g;(x) inQ
ot ot
and
||
vo<|al<jy K& =0 in (60),.
ox%

Proof. We begin checking that

r+l

r+1—(k+%j—2
VO <k <ky, gr(x)eH, Q)

(6)

(7

®)

©)

proceeding by induction. (9) is true for £ = 0, 1 by definition of g. Assume

(9) holds forevery 2 < j < k < ky —1. Then

1) r+l
r—l—( + +§) 3
X(gg-1) e H Q)

r+1—( +%j—2
and g, € H "2(Q). 1t follows that (9) holds for & + 1.

r+l

As a consequence of (9), we can apply [3, Chapter 4, Theorem 2.3] and
the proof of [3, Chapter 1, Trace Theorem 3.2 and Remark 3.3] and the

change ¢ =1—¢' to obtain a continuous lifting

1Y) r+l

ko r+1—(k+5j > Ly
L:szo H, "2Q) > H Q)

such that the lifting

syl 7l pylod Il
R:ge HO 2 r+2(Q)X HO 2 r+2(Q)

- (RrL(G(@)(x, T - 1) e H* M2 (Qp)
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verifies
VT >0, |[[R|<|L] (10)
(independent of 7),
k
VO<k<ky, O ;}Eg) (x, T) = g¢(x) inQ (11)
t
and

v1<|a|< jo, R(g)(x,z):%(x,z):oin(aQ)T. (12)
X

By [3, Chapter 1, Theorem 11.5], we obtain R(g) € Hg_l’r(QT) and

obviously,
2
R(g) (y )= 2RE) (4 1)~ 0in (@), (13)
ot ot?

Choosing a function ¢(¢) € C*([0, T]) such that ¢(t)=1 in some
neighbourhood of 7 = T and ¢(¢) = 0 in some neighbourhood of 7 = 0 and
switching to the new lifting ¢(z) R(g)(x, ¢), it can be assumed that the initial

R verifies, moreover,
k
V0 < k < ko, Gangg)(x, 0)=0 inQ. (14)
t

Furthermore, using [3, Chapter 4, Theorem 2.1] and the properties of
traces in the space H "*2(Q7), we obtain inductively for every 0 < k
< ky -2,

a"xue(g))}x _ im[a"m(g»j e lim [a"R(g)JX
[ otk 0= otk (0= m* otk 0

k
-2 ZER 0)| - 20
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1) r+l
r—l—(k+—j
in the space H 2)7+2(Q). Hence, by (5) and (11), we get V0 < k
<kg -2,

A (R@)) T):X(ak;e}gg)(x, ’)J a“lR(g)( 7
t

atk k+1

ak+2R(g)

ok +2 (x, 7)=0

+

0/R(g) :
But, from (12), we have too X o) (x, 1) =0 in (6Q); for every
n

0<j<jy—2 and from proposition [3, Chapter 4, Proposition 2.2] and
(13), we obtain consecutively

oR(g) (8 3*R(g) 0> *R(g) B
a—f(x,t)-(g s (x,z)] (82 —E r)j—o

Ja*
in (6Q);. Hence %(f(g))(x, t)=0 in (0Q); for every 0< j<

Jjo — 2, and now, by [3, Chapter 4, Footnote to Lemma 10.1], we have
A*(R(g)) € HS_OI’F(QT). Then, from (14) and [3, Chapter 1, Theorem 11.5],
the lemma follows. L

Theorem 2. Traces over transversal sections. Let T >0 and r 21
verifying the conditions of Lemma 1. Then the map Z: f € C*(Qr) —
(f(x, T), a—j;(x, T)j e C*(Q)x C*(Q) can be extended to a continuous

linear map (again denoted by 7)

( )3r+1 ( )1r+1

2.0 o) »H T T xH 22 (),
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1 r+l 3 r+l

. r+l— —— r+l-—= —
Proof. Given h = (hy(x), ij(x))e F=H, 27*2(Q)xH, 2"*2(Q),
define

g0(x) = Thg(x),  £1(x) =+ (n(x) - Mg(x) (15)

and {gk(x)}i():2 by (5). Writing g := g(h) = (g¢(x), g;(x)) as above, by the
argumentation of Lemma 1 and using the same numbers j, and k there are
liftings

1 r+l 3 r+l

+ -2 o+l
R:Hy 272(Q)xHy 2 72(Q) - Hy ()

such that the equalities (6), (7) and (8) hold. We define a map

1 r+l1
Z:U eC®(@r) - (o) ox) e H I
3 r+l
w1 ") (16)

such that (Z(U), h) = —(U, A*(R(g(h)))) + (A(U), R(g(h))) if h e D(Q)
x D(Q)). We check that Z is independent of the chosen lifting R. If we use
another lifting R; verifying (6), (7) and (8), for W¥(g) = R(g) — Ri(g) we

would have

Ye)(x )= TE8 (. 0) = 0 in (002 (1)
VO <k<ky, Plg)(x 0)= %(x, 0) = W(g)(x, T)
t

k
0 a]:’gg) (x, T)=0inQ (18)

and A*(¥(g)) e HS_OI *"(Qy). Then, by [3, Chapter 4, Footnote of Lemma

10.1], we would have
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o]

2
V0 <|al< jo, (X(‘P(g)) 2 8‘I;§g) +12 ;’gg)j(x, =0

ox%

in (6Q);. (19)

2
But, from (17), one has a\l;—gg)(x, t) = aL2(g)(x, t)=0 in (6Q); and
ot

hence, using (19) in the case |a|=0, we obtain X(¥(g)(x,))=0 in

(6Q)7. From (17), since X is elliptic in Q, we deduce necessarily

2
&gg)(x, t) =0 in (6Q); for every 1<i < n. Proceeding inductively in
X

J
the same way, we obtain &fg)(x, t) =0 in (6Q); for every 1<i<n

Ox;

and 0< ;< j,. Again by the quoted footnote in [3], from (18), we
have ¥(g) e ngér(QT). Then Green’s formula gives (U, A*(¥(g))) -

(AU), ¥(g)) = 0 which shows the independence of R.
On the other hand, as U € D;l(r_l)(QT), we have
[{Z(U), )|
<|u ”H*(V*l)rr(QT)" A*(R(g)) ”H&*O”(QT)

AW o0~y | 1 1T R@) 7717420

r+l 3 r+l

1
< (LA DIRIIY ol i 2 F e ) 0)

Then Z(U) is well defined and it turns out that, by density, Z can be

continuously extended to a continuous linear map from D;l(r_l)(QT) into

—(r+1)+l r+l —(r+1)+§ r+l
2 r+2(Q)X H 2 r+2 (Q)
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Finally, taking h € D(Q)x D(Q), by duality we have (Z(U), h) =
(9g, ) + (@1, hy) and by classical Green’s formula and the definition of Z,

VU e C*(Qr),

<Z(U)= h> = 7\‘<U(X’ T)a R(g) (X, T))Q

+ (@—7 (x. 7). R(g)(x, T)}Q - <U(x, r), R T>>Q]
— s 7). () + (5 7). )

and hence Z(U)= (U(x, T), aa—(tj(x, T)), h being arbitrary in D(Q)
x D(Q). ]

To study the traces over the lateral boundary (6€2);, we need another

lifting theorem:

Lemma 3. Let T >0. Let r>1 be such that r+%—(%)

. k+l g7, 0<k<r andlet g(x,t)=(go(x, ?), g1(X, t)). Then there
2 0 1
is a lifting
1 1) r+2 1 1Y) r+2
rt=, | r+s | — r——=,| r-=| —
R:g(x,t)e H ,° ( 2j (@eQ)p)x H 4* [ 2) 1 ((6Q);)
N Hr+1,r+2(QT)

such that A*(R(g)) € Hy o (Qr), R(g)(x, 1) = go(x, 1) and R 4 (R(g))(x, 1)
= g(x, 1) in (0Q); and
3 8kR(g)

< =
VO_k<r+2, v

k
x0)=TR& r_oma e
o
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Proof. Let jj, ky be as in Lemma 1. Given g(x, ¢) as announced, define
{g;(x, t)}?oz2 in (6Q); by the same rule used in (15). By [3, Chapter 1,
Theorem 3.2 and Remark 3.3] and [3, Chapter 4, Theorem 2.3], there is a

continuous linear map
rel (Hlj r+2 L (r_l) r+2
2’ 2 1 2’ 2 1
R:F=H, H(0Q)r)x H " (09)7)
N Hr+1, V+2(QT)

k
such that aR—lk(g)(x, 0)=0 in Q for each 0<k <ky, and Ri(g)=
ot

d/R o
20(s. 0 Ra(R(®) = er(x. 1) and B w0 g0, 2255 o
n

in (6Q); for every 0 < j < j,. Analogously, after the variable change ¢ =

T —t, using [3, Chapter 4, Theorems 2.1 and 2.3], there is another continuous

linear map R, : F — H™%"*2(Q7) such that

o*Ry(g) < T) = o*Ry(g) X
ok D= )

J
in Q for every 0 <k <kq and R 4(Ry(g)) =0, Rr(g)=0 and 5;;21(3):0
n

in (6Q), forevery 2 < j < jj.

Choosing a function ¢ eC®(Qy) such that o(x,7)=0 in a
neighbourhood of the section {(x,0),xeQ} and o(x,#)=1 in a
neighbourhood of the section {(x, 7), x € Q}, it turns out that R(x, ?):
= Ri(x, t) — o(x, t) Ry(x, ) verifies

k k
TRy, 0)= TRE) (x, 1) = 0
ot ot
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in Q for 0<k<ky and R(g)=go(x,?), R4(R() = g(x, ) and

o/R(g) L
—j(x, t)=g;(x,t), 2<j < jy in (6Q)y. From now on, the proof
on

follows as in Lemma 1. O

Theorem 4. Traces on the lateral boundary (0Q),. Let r >1 be as

in Lemma 3. Then the map Z : U € C*(Qr) — (U, aa—ll{) C”((0Q)7) x

C”((0Q)) can be continuously extended to a map (again denoted by Z)

z: 0 Q) - H_(r_%)’_(r_;j%((ag)ﬁ

D

Proof. It is the same as that in Theorem 2 but starting from h =

r+l,(r+l)r+2 r_l,(r_l)’"‘*z
(hO(X’ t)’ hl(x’ t)) € H’() 2 2)r+l ((GQ)T) X H,O 2 2)r+l ((GQ)T)

_hy(x, 1)
fa(x) ’

using Lemma 3 and defining in (6Q); functions go(x,t) =

g1(x, ) = Iy(x, t) and {g.(x, t)}i():2 according to rule (5). By Green’s

formula, if (hy(x, t), hy(x, 1)) € C*((0Q);) x C*((6Q);), then we have

ou
(2), (m(x, 1), ho(x, ) = U, h(x, D)oy + <ﬁ’ £o(x. ’)>(aQ>T "

the result follows. O

3. Traces on the Boundary of an Infinite Cylinder Q

Our goal in this section is to obtain the corresponding versions of

Theorems 2 and 4 in the case of domains of type Q.. We need to define
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suitable spaces D;l(r _1)(900) since previous definitions do not directly apply

to define spaces @' (Q,,).
Consider a strictly increasing and unbounded sequence {7, }2:0 such
T . . .
that 0 <7 < 71 Fixed 0 <r, with the help of the functions oz 7

defined in Section 1, we can define spaces ®""(Qr , o7, 7 ), (which will

be denoted in the sequel by ®""(Qr ) to simplify notation) for every
m € N. Let R, be the map sending every measurable function in Q,, to

its restriction to Q7 and let R,y , : @ (Qr ) > ®""(Qf ) be the
restriction map to Qp . Clearly, R, (®""(Qr ))c®@""(Qr). We
define

"' (Qy) = {f 1 2x]0, o[ 5> R[] f lgrr(qr, ) :

= sup | Ry(Dlor-r o, ) <

Remark that the continuous inclusion R, (H((Q)) € ®""(Q7 ) and
(3) imply that the inclusion I, : Hy 5(Qy) = ®"(Q,,) holds and hence
®"*(Q, ) # {0} becomes a nontrivial Banach space endowed with the norm

| fllpr-rq,) (see [2]). Of course, we put ®™"7"(Qy) = (@7 (Q)).

Finally, we define for r € R,
D UQ,) =10 e BT T(Q,) | A@) e 07U g, )
endowed with the topology derived from the norm

” @ "D—(r—])(QOO) = ” @ ”H—(V—l),—r(Qoo) + ” A(@) ||q)—(r+1),—(r+1)(Qw).
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In order to obtain a theorem of transversal traces “at o0”, we need an

adequate subspace of D;l(r _1)(900) which allows the application of classical
Green’s formula at the side 7 — 0. We define W _1)(000) as the

subspace of D;t(r _1)(900) of those functions U € C*(Q,,) N D;t(r_l)(Qoo)
such that there exists

2(U)(x. 1) = lim (U(x, 0. Y t)) in

3 r+l B
2 r+2 (Q)x H

1 r+l

—(r+1)+ (r+1)+§ ) ©) (22)

Clearly, D(Q,)cW U @Q,) and W(Q,) = {0}. We define

W;‘(F_I)(QOO) as the closure of W_(r_l)(Qoo) in D;t(r_l)(Qw).
Theorem 5. Let » > 1. Then the map
WU ew Q) > lim (U(x, 0, Y x, t))
10 ot

can be extended to a continuous linear map (again denoted by W)

—(r+1) 3 r+l (r+1) 1 r+l

wow Q) H 2@kl 2 Q).

Proof. By Lemma 1, there is a continuous lifting

1 r+l 3 r+l
S S
L:g=(g(x), gi(x)) e Hy 2 72(Q)x H, (@)

N Hr+1, r+2(Ql)

verifying (6), (7) and (8). Then
1 r+l 3 r+l

rleo 2 rel-2 t
ige @A, 2 72(Q) > v 0= 1gx )

o]
is a H™"2(Q,)-valued lifting verifying (7), 6—‘1;(g)(x’ t)=0 in
0x
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(0Q),, forevery 0<|a|<r +% and moreover, by [3, Chapter 5, Theorem
11.5], there exists W (\P(g)).

For every T > 0, let Z7 be the function defined on C*(Qy) as in (16)
with the help of the lifting Rz (V). Consider the continuous linear map

1 r+l

pAS Q)

(r+1 NENL —(r
2 r+2 (Q)x H

Wp=Uew "D )s>F=H
such that Wp(U) = Zy(U)(x, T) and denote Wy again its continuous

extension to W;l(r_l)(Qoo). By [3, Chapter 5, Theorem 11.5], we have

lim W7 (U) = WpU)|p =0,

T—o00,T"' >0

and so there exists (Z(U), g) = limy_,,(Z7(U), g). From Banach-
Steinhaus’s theorem, we obtain that there exists Z(U) = limy_, o, Z7(U)

in F. The end of the proof can be accomplished noting that if U e
W@, and Z(U) = (eo(x), @i(x)) € F, given h = (hy(x). Iy(x)) <
D(Q) x D(Q), with the same argumentation of Theorem 2 and the same

definition for g and {g; }2‘):0, by duality and by Green’s formula, using (22)
and (10) we have

<Z(U)’ h)QxQ
= (g5 ho) + (o1, hy)

= lim AU (x, 7). ¥(g) (x, T)g

+ lim T(@—lt] (x,7), ¥(g)(x, T )>Q - <U (x, T), awa_gg)(x, T)>Qj

T—o

_ < lim U(x, 7). hl(x)> ; < Tliinw%_lzj(x’ 7). ho(x)>. 0
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Finally, we consider the traces over a boundary of type (6Q),. As
above, we need a suitable subspace of D;t(r_l)(Qoo). By Theorem 5, we can

consider the set V" ""1(Q,,) of the functions U € C*(Q,,) D;l(r_l)(Qoo)
. T oUu _ —(r-1)

such that limy_,, U(x,T)= hmT_mE(x, T)=0. We define V' /(Q,)

as the closure of V_(r_l)(Qoo) in D;l(’"_l)(Qoo). We obtain

Theorem 6. Traces over (0Q),. Let r>1. Then the map Z :U e

C*(Q,) N V_(r_l)(Qoo) - (U, %—g) € Cw((m) X Cw((ﬂ) can be

continuously extended to a map (again denoted by Z)

v Q,) > G, = H_(r_%j’_(r_%) e ((69),,)

1)r+2

« H_(H%)’_(Hfjm((ag)w).

Proof. The proof is based on a combination of the ideas applied in
Theorems 5 and 4. For this reason, we only will mention the main details.
Given

1 ( 1)r+2
U2 )
g=(go(x. 1), gi(x, 1)) e E:=H ((@Q),)
1 1\r+2
r=—,\r-5|—~
% H,O 2 ( 2) r+l ((aQ)l)a

by Lemma 3, there is a continuous lifting L:ge E — H' V" 2(Q)
verifying (6), (21) and R(g)(x, 7) = go(x, #) and R 4(R(g))(x, 1) = g1(x, 1)
in (8Q);. Now choose a function @ € C*(Q;) such that ¢(x, ) =1 in

a neighbourhood of the section {(x,0),xe Q} and o¢(x,¢)=0 in a
neighbourhood of the section {(x, 1), x € Q}. If h = (h((x, 7)), I((x, 1))

€ E, then we choose



84 J. A. Lopez Molina and M. Trujillo

go(x, 1) = #(lx)ho(xa %— 1) g(x, 1) = hl(x, %— 1).

Forevery T > 0, put

1 1\r+2 1 1\r+2
—|r—= |- r—= - r+= |, r+5
pr = D2 gy T
and consider the map Z; defined as in Theorem 4 with the help of the

H™b72(Q ) -valued lifting

Y:geE > Y(E)(x )= (p(x, ﬁ)L(g(x, l_itD

Denote by Oys(f) the restrictions to M < (6Q),, of a distribution /' defined
in (6Q),. Given T <T', we have Q) 7[(Z7") = Zy because D(0Q); <
(0Q);+. On the other hand, there is K > 0 independent of 7 such that

sup | Zz (U) |, = sup | Zr (Rp(U)) ||, < K[| L][sup || Rz (U)]| < K| L[ U]
>0 T>0 7>0

It turns out that the distribution Z(U)e D'((6Q2),) -coinciding with

Zr(Rp(U)) forevery T > 0 actually lies in G,. O

4. An Application to Green’s Formula

Previous results can be applied to obtain a generalization of classical

Green’s formula. To do this, we begin noting that with the same
argumentation used in [5] to represent the dual space (H k (Qr ))/, keN, it
can be easily shown that every f € I’ (Q7) defines in a natural way two
continuous linear forms @, € H 7% (Q7) and @, e (H"*(Qr ))’ such

that

losl=l®s ] (23)
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Assume that r >1, r+l— iryr+l gZ, i=0,1, and u €
2 2 r+2

p _1)(QT). By Theorem 2, we have

3 r+l 3 r+l

(r+1)+§ m(Q) _ (H(:H_E m(Q)),‘

{u(x, 0), u(x, T)} < H

Both the elements u(x, 0), u(x, T) can be extended to specific elements in

! 3r+1
s > ——
(H?(Q)) for every s>r+1 373

in the following way: choose a
sequence {u;}7_, = C*(Qr) such that u = lim;_,, u; in D;l(r_l)(QT).

Then {u(x, 0)};_; < C*(Q) and by Theorem 2, we have limy_, ., uz(x, 0)

(r+1) 3 r+l

-_— +_ —
=u(x, 0) in H 2 r+2(Q). By (23), we obtain

3 r+l
rel-2 I
Vk, m e N, (Duk(x,O)—um(x,O) = cDuk(x,O) - (Dum(x,O) € {H 2 r+2 (Q)} >

. 3 r+l
and since [ @, (x,0) = Pu,, (x,0) | = [ #x(x, 0) = 1, (x, 0) [, 3753 ),

3 r+l

+
{®y, (x, 0)}5=1 is a Cauchy sequence in {H IS (Q)} and there exists

0 . . re1-3 4L . .
Gy =limg_oo @, (x0) in |H  272(Q)|. The desired extension is

el IHL —(r+1)+é rl
¢). In fact, if Q:|H 27+2(Q)| > H 2 r+2(Q) is the
canonical continuous quotient map, then we have

0 . . .
O(¢y) = Jim O(D,, (x,0) = Jim ur(x, 0) = u(x, 0) in

—(r+1)+E r+l

272 (Q) (24)
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and it is clear that this value is independent of the chosen sequence {u }?:1.

It is also clear that (pg is an extension of u(x, 0). If s >r+1- %%,
then the restriction to H°(Q) of (pg shows our assertion. In the same way,

the extension ¢, of u(x, T) can be obtained.

Under the same hypothesis and after the analogous argumentation,

the traces %(X, 0) and (g—b;(x, T) of ue p{ _1)(QT) can be considered

as elements of (H S(Q))' for every s >r+1- % :: ; Analogously, it
. 3 r+2 1

can be shown that if » += — k+—=|¢Z, 0<k<r and u e
2 r+1 2

D_(r_l)(QT), then the traces u(x, t) (resp. g_z("’ t)) on (6Q)r can be

considered as elements of (H S’W((aQ)T)), for every s> r—%, w>

(r —l) r+2 (resp. s>r +%, w > (r +l) ’;+ 2). In the sequel, all the

2)r+1 2 +1

considered extensions will be denoted by the same symbols representing the

functional to be extended.
Now we can state
Proposition 7. A generalization of Green’s formula. Let » > 1 verifying
1 i+1\r+1 . 3 r+2 1
F+§—(T)[r+2)§ Z, 1 —0,1 and I’+§—(r+1j(k+§) QZ

for every 0 <k <r. Let ve C”(Qr) be such that A*(v) e Hg’_ol’r(QT).

Let u e D;l(r_l)(QT). There are a boundary operator R 4 and a function

f4 such that
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(v(x, 1), (Au)(x, t))QT — (u(x, t), (A™)(x, t))QT

ou
= (u(x, 1), R4 Doy, - <f,4(X)v(x, 1), 35 (% t)>(aQ)T

+ M(v(x, 1), u(x, )10

t=T

; TRV(X, 0. 2, t)>Q _ <u(x, 0.2 (x, z)>gj , 25)

t=0

where every bracket is understood as the duality in the corresponding dual

pair.

Proof. If we choose a sequence {uy};_; C*(Qr) such that u =

limy, . uy in D;t(r_l)(QT), as A*(v) e HS_OI’F(QT), by classical Green’s

formula, (25) holds for v and every u;, k € N. Then, taking limits when

k — oo, the conclusion follows from the introduction to this section. |

(1]
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