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Abstract

Idempotents in the group algebra defined over an extra special p-group

2r+1

of order p provide useful information to determine the minimum

distance for this family of group algebra code. Our primary task is to
identify all such idempotents and thus construct a family of MDS
group algebra code by choosing a suitable set consisting of certain
idempotents in order to maximize the minimum distance.

1. Introduction

Coding theory is important in modern digital communication; however,
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noises might occur during the transmission of digital data across a
communication channel. This may cause the received data to differ from the
transmitted data. Therefore, error correcting and detecting codes are used in
modern digital communication system. The study of group codes as an ideal
in a group algebra FG has been developed long time ago, refer [5] and [6].

Let Fq denote a finite field with g elements such that g is a prime.

Given a finite group G of order n, the group algebra F4G is a vector space

over fq, with basis G and so, is isomorphic to ]—"(T as a vector space. A
group algebra code is defined as an ideal of the group algebra F,G. In
particular, if G is a cyclic group, then the ideal in F,G is a cyclic code, and

if G is an abelian group, then the ideal in 7, G is an abelian code.

It is well known that if g { n, then Maschke’s Theorem (Theorem 1.9 in

[2]) stated that the group algebra F,G is semisimple and hence FG is
a direct sum of minimal ideals, 7,G =1, ® 1, ®---® I, where |; =

FqGej is the principal ideal of F,G generated by e;, where e; is an

idempotent in G for j=1,2, .., Let M = {ej}sj:1 be the set of all

pairwise orthogonal idempotents.

Every ideal | of F(G isadirect sum I =1; @1, ®--- D I, where
t <s. Now, writt F(G =1@ J, where J =1; @1, ®---® 1 isthe
s—t
direct sum of minimal ideals such that Ij = 1 forall 1<l <t and 1<
m<s-—t.
Lemma 1.1. Let u = {eh’ €jyr - ejsft}. Then | = L where Iy =

{ue FGluej =0, Ve epf.

Proof. If uel, then u = Ze_eM\“aiei, aj € FyG. For all ej ey,
1

uej = ZeieM\uai(eiej)ZO' Thus, u e l,,andso I c I,
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Conversely, for any u e ]—"qG, u =Zei€M aje. Ifue 'u' then uej = 0

for all e; e p. Thus, (zeieM aieijej =0 for all ej e p if and only if
ajej =0 for all ej e if and only if a; =0 for all j. Therefore, u =

ZeieM\uaieiel,andso l, <1 ]

Since 1, is an ideal of F,G, 1, is a subspace of 7,G which implies

il
that 'u is a linear code over }'q. It is well known that a linear code can be

defined by using a parity check matrix. In this paper, the usage of
idempotents in F4G as parity checks is equivalent to the definition of a
linear code by its parity check matrix. As a parity check matrix of a linear
code can tell us the minimum distance of the code, thus the set of
idempotents p should also provide some information to determine the
minimum distance of 1,,.

In [1], we study the group algebra codes defined over extra special

p-group of order p3 by constructing two families of group algebra codes
generated by linear idempotents and nonlinear idempotents separately. In this

paper, we generalized our study to any extra special p-group of order pz”l.

We now give some basic definitions. Let I, as defined in Lemma 1.1.

The element in 1, is called a codeword and N =dim(F4G) = length

of codeword in | Furthermore, define the weight of u as wt(u) =

"
| {ag lag # 0} | and the minimum distance of 1,

d(I,) = min{wt(u)[0 = u e I,}.

Therefore, 1, with parameters N, K = dim(l,,) and d = d(l,,) is called an

[N, K, d]-group algebra code. In this paper, our main task is to determine

the parameters N, K'and d for 1,,. The length and dimension of a code can be



50 Denis C. K. Wong and Ang Miin Huey

derived directly from the construction. However, to determine the minimum
distance of a code, it may be a difficult task. The following lemma is needed
later.

Lemma 1.2. Let pg, upp be the sets consisting of idempotents in 4G

such that py < pp. Then d(l,,) 2 d(I,).

Proof. For all uel,,, ue=0 for all ecp, and so ue=0 for

all e e py. Thus, u e lul' Therefore, IILl2 c IP-l' Next, let u e IlLll with
minimum weight, that is, ue = 0 forall e € uy. If ue = 0 forall e € puy\py,

then u ¢ | so d(l,,)>d(l, ). On the other hand, if ue =0 for all

M2’

e € pp\py, then u e I, and so the inequality holds. ]

2
2. Extra Special p-group and Characters

In this section, we will follow those notations used in [1] and [2]. Let
p be a prime (distinct from q). A p-group G is called extra special if
G'=Z(G), |G'|=p and G/G’ is elementary abelian. From Theorem 2.17

2r+1

in [4], there is an integer r >1 such that |G| = p and G has normal

subgroups Nq, Nj, ..., N, such that

(@) N;j is a nonabelian group of order p3 foralli,1<i<r.

(b) G = NyN,...N,.

(© [Nj, Nj]=1forall i = j.

(d) Nj M Np...Nj_1Nj;q1...N, = Z(G) forall i.

Lemma 2.1. Let G be the extra special p-group of order p2r+1. Then
each N; is also an extra special p-group of order p3 fori=12 ..,r.

Proof. Since each N; is a p-group, Z(N;j) > 1. Thus, | Nj/Z(N;)| < p2.
As N;j is nonabelian, then N;/Z(N;j) is not cyclic and so | N;/Z(N;)| = p?
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which then implies |Z(N;)|=p and N;/Z(N;j) =Z, x Z,. Finally, as
N/ < Z(N;), then Z(N;) = N{. ]

Since |G'| =|Z(G)| = p, we may write G’ = (g|gP =1). As |G| =

p?*1 then |G/G'| = p?". Let T ={tg =1 t;, t,, ..., tp2r_1} be the set

of all right transversal of G’ in G. Then, the p2r right cosets of G" in G
are G't; = {t;, gt, 9°t;, .., gPt;} for i =0,1,2, .., p> —1 and so G =

p2r_1
U 61
i=0

Proposition 2.1. Let G be an extra special p-group of order pz”l. Then

the following hold:

(@) G has p2Ir + p —1 conjugacy classes; p of these has size 1 and the

other p2r —1 conjugacy classes has size p, which is exactly the right cosets
XG', x € G\G'.

(b) The number of linear characters of G is | G/G'| = p2".

(c) The total number of irreducible characters of G is equal to the

number of conjugacy classes of G, that is, | Irr(G)| = p?" +p-1.

(d) The total number of non-principal characters of G is equal to
|Irr(G)|~| G/G'| = p-1.

Proof. Part () is a general result obtained from Section 2 in [1]. Part (b)
follows from Corollary 2.23 in [2]. Part (c) follows from Corollary 2.7 in [2]
together with part (a). Finally, part (d) is just a direct consequence from (b)

and (c). ]

Proposition 2.2. Let G be an extra special p-group of order pz”l. Ify

is a linear character of G, then the following hold:
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(@) Forall g € G, %(g) = 0.
(b) Forall g € G', %(g) =1. In particular, %(1) = 1, that is, deg(y) = 1.

(c) Forany x, y € gG', %(x) = x(¥)-

Proof. Part (a) directly follows from the fact that y is a homomorphism.
For part (b), consider any g € G', x(g) = x([x y]) = X(x_ly_lxy) =1 for
some X, y € G. Finally, part (c) follows directly from (b). ]

2r+1

Proposition 2.3. Let G be an extra special p-group of order p Y

is a nonlinear character of G, then the following hold:

(@) x(@) =p".

(b) Forall g € G', %(g) = 0.

(c)Forall g # G, x(g)=0.

(d) Fix a generator, g, of G', and let  be a primitive pth root of unity in
F. Then x;(g) = p"¢' forsome i e fl, 2, .., p—1}.

Proof. To prove part (a), from Corollary 3.11 in [3], as y is nonlinear,
then G’ ¢ ker(y) and so G' (N ker(y) = {1}. As |G'| = p, then ker(y) =1
and together with part (e) of Lemma 2.27 in [2], we see that Z(y) = Z(G).
Forall z € Z(G), | x(z)| = x(1). Since y is irreducible, from Corollary 2.17
in[2],

1=y ]

- 157 2 oD

zeZ(G)

1 2
= D @)

z2eZ(G)
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. p21r+1|Z(G)|x(1)2

which implies %(1) = p".
For part (b), as G’ = Z(G) = Z(y), then part (c) of Lemma 2.27 in [2]
implies yg' = x(1)A, where X is some linear character of G'. Therefore,
16(9) = xMMg) # 0, Vg eG'.

Next, since G has p2r linear characters, which are, x1, x2, ..., X p2r

and let B4, By, ..., Bp_l be those nonlinear characters of G. Thus, for all

geG,

p?" =[Cs(9)|

p2r p-1
= > 1@+ D IBi(9)f
i=1 i=1

p-1
= p* + ) |Bi(9) [
i=1

implies Zi'o:_11|Bi(g)|2 =0 and so Bij(g)=0 for all ge G’ and i=
12 .., p-1.

To prove part (d), note that from (b), xg = x(1)A. For all g € G/,
xa = P"A(g). Furthermore, xg(g) = %(g) for x € G* and for all g € G'.
Since gP =1, %(gP) =@ = p", andso p"A(gP)=x(gP) = p" implies
Mg)P =1 and so A(g) = ¢, where ¢ is a primitive pth root of unity and so
(d) will follow directly. ]
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3. Idempotents

Since d(I“) depends on those idempotents in p. We start by deriving a

formula for all idempotents in 7,G, where G is the extra special p-group of

order pz”l. From Theorem 2.12 in [2], any idempotent & in F,G can be

written uniquely as

)|(ICE|) Z Xl(g

geG

2
As G = Uip:(:_lG’to and G’ =(g|gP =1), then

2r 1pl

€ = ’%5131 Y. 2 nlehe!

j=0 i=0

If y; is the principal character of G, that is, %;(g)=1 for all g € G,

then y; will define g; the principal idempotent which is usually denoted by

€principal and

2|' -1 p— -1
©principal = 2r+1 Z thg
p j=0 =0
-G
|G
G G
Note that for all g € G, eyyrincipal 9 = ﬁg = G = €principal -

Next, let M_ be the set consisting of all linear idempotents of FG,

that is, all these idempotents correspond to the p2r linear characters. Thus,

M| | = p?". We know that from Proposition 2.2 for all 3; € G* which is

linear, we have y;(g) =1 forall g € G". Therefore,
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2r

1 p-1 \(p~ -1 L
& = Hl[zg'} D wth
i=0

2
p =

' pzr_l

G -1
2r+1 Z Xi(t] )tj '

p i=0

It can be shown that forall e e M, ge =e forall g € G".

Finally, let My be the set consisting of all nonlinear idempotents of

]—'qG, that is, all those idempotents corresponded to the nonlinear characters

of G. Note that |[ M | = p —1. Forall ¢ € My, since
p2r_l
G=6%[J| [J et
i=1

2r
and from Proposition 2.3, we have y(G) = x(G') + ip:0 _1X(G’ti) = x(G").

Thus,
1 _ _
6 =—— D %@ e+ > %@y
P gea geG\G'
1 -1
=——= > xilgHg
P geG’

1 & i
=2 e’
P70

18

_ LN gl
DZC g
j=0

Clearly, for all g € G', gej = e, where ¢j, ef € M. We collect all

facts above in the following proposition.
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Proposition 3.1. Let G be an extra special p-group of order pz”l.

(a) The principal idempotent of G is €principal = G

|G[
(b)

G’ p2r_1
M \{€principal } = {ei = —p2r+1 E i=0

xi(tj_l)thH =12, .. p¥' —1}.

(C) MN Z{ei :%ZE’;&'C—”gJ“ =1 2, .., p—l}

4. Dimension

In this section, we will determine the dimension for I,. We start by

deriving two simple results.

Lemma4.1l. Forall e e M, dim(F,Ge)=1.
Proof. Forall h € G,

Next, for all u = ZheG aph € F4G,

ue = Z ap(he)

heG

= > an(x(h)e)

heG

= {z ahX(h)Je € (e).

heG
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Therefore, for all u e 7,G, F,Ge= (e) and so dim(]—“qu) =1 for all
ee M L- |:|

Corollary 4.1. dim(ly ) = p°'.
Proof. From Lemma 1.1, we know that
Iy = Deemmy FGe = Dg e, FGe;.
Thus, dim(ly, )= ZeieML dim(FGe;) and so the result will follow from
Lemma 4.1. ]

Lemma 4.2. Forall e € My, dim(F,Ge) = p°".

Proof. Since each e € My corresponds to y such that deg(y) = p" and
FqGe = Mnj(F) (refer [2]) and so dim(F,Ge;) = nJZ, where n; = p' =
deg(x). Thus, dim(F,Ge) = Gl ]

Corollary 4.2. dim(ly; ) = p?"(p - 1).

Proof. Follows from Lemma 1.1 and Lemma 4.2. []

Our main result on dimension of I ,.

Theorem 4.1. Let p=p; Upy, where p < M and py < My.
Then dim(1,) = p*™** = u [~ u [p?".

Proof. By the property of semisimple, as FG = ®; FGe;, then |G| =

dim(F4G) = >, dim(FGe;). Thus,

dim(1,,) = olim(Ei ga\u F4Gei)

= (IML[=]p [)dim(FoGe) + (| My |- [un ) dim(FqGF)
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=(IM_|=|u D+ (IMy = [un ) p*

= (p%" —u )+ (p-1—|un ) p*

2r+1
p

—|ML|—|MN|D2r,

where e e M| and f e M. []

5. Minimum Distance

Theorem 5.1. d(leprincipal )

2r :
. NP AIep-l, iy
Proof. We first note that for all u e 74G, u = j=0 E i_o M9t

2r
P 1o p-1 .
Then  ueprincipal =( i=0 Ei:o kjijeprincipm. For all ue F,G with

wt(u) =1, thatis, u = Ag for some g € G and A # 0. Then ueprincipal =

A€ principal # 0 and so u ¢ | that is, d(l ) > 2. Next, for

€principal ’ €principal

some ¢, he G such that g # h, clearly, u=ig +(-A)h e |

€principal

= 2. [

U principal = (A = A)€principal = 0. Therefore, d(leprmcipal)

From Theorem 4.1 and Theorem 5.1, we see that | s a

€principal

[pz”l, p2Ir+1 —1, 2]-group algebra code which is an MDS code. Recall

from Section 2, any extra special p-group G of order p2r+1 has the form

G = NyN,...N,, where N; is a normal subgroup of G.

Lemma 5.1. Let e be an idempotent in 7 N;. Then e € F4G.

Proof. Let f = eprincipar b€ the principal idempotent of F,G and let

x € N;* be the character defined e. Then
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{ () > x(gl)g}ﬁ
gGNl
1
- e 2 1o

1
|GIINi|

FqG and so e e F(G. If e is a linear idempotent of 7¢N;, then ef =

If e is the principal idempotent of FN;, then ef = GINj|="fe

1 1 ]
——Gy(N;)=———G|N;|=f € F,G and so e € F,G. Finally,
[T q q Y

if e is a nonlinear idempotent of 7 N;, then
pacy 1
ef_|G||N | deNix(g ) e FG

and so e}“qG c ]—"qG implies e ]—"qG. L]

Theorem 5.2. Let p < M.

2r+1 2r+1

@ If w=pp, then I, isa [p —|np |, 2]-group algebra

code.
is a

(b) If w=pyN and g is a primitive root modulo p, then 1,

2r+l 2r+1

[p —|pn |p .| pn | +1]-group algebra code, where py is the

set of all nonlinear idempotents in N;.
Proof. The dimension of I, follows directly from Theorem 4.1. Let p|_
be all linear idempotents in F¢N;. From Lemma 5.1, since p < p, by

Lemma 1.1, d(l,, )= d(l, ) andalso d(l 2 follows from Theorem 4

p) =
in [1]. Finally, since u; < u, by Lemma 1.1 against, d(1,,) > d(IP-L) > 2.

Next, let py be the set of all nonlinear idempotents in F4N;. From

Theorem 13 in [1], since we assume ¢ is a primitive root modulo p,
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d(l,,
d(l,,
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y) =|pn[+1. From Lemma 5.1, since py < py, by Lemma 1.1,

y) 2 Ao )=lpn [+1. Also, since py < p, by Lemmal.l, d(l,) >

d(1y, )= pn | +1. ]

(1]

(2]

(3]

(4]

(5]

(6]
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