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Abstract 

Idempotents in the group algebra defined over an extra special p-group 

of order 12 +rp  provide useful information to determine the minimum 

distance for this family of group algebra code. Our primary task is to 
identify all such idempotents and thus construct a family of MDS 
group algebra code by choosing a suitable set consisting of certain 
idempotents in order to maximize the minimum distance. 

1. Introduction 

Coding theory is important in modern digital communication; however, 



Denis C. K. Wong and Ang Miin Huey 

 

48 

noises might occur during the transmission of digital data across a 
communication channel. This may cause the received data to differ from the 
transmitted data. Therefore, error correcting and detecting codes are used in 
modern digital communication system. The study of group codes as an ideal 
in a group algebra FG has been developed long time ago, refer [5] and [6]. 

Let qF  denote a finite field with q elements such that q is a prime. 

Given a finite group G of order n, the group algebra GqF  is a vector space 

over ,qF  with basis G and so, is isomorphic to n
qF  as a vector space. A 

group algebra code is defined as an ideal of the group algebra .GqF  In 

particular, if G is a cyclic group, then the ideal in GqF  is a cyclic code, and 

if G is an abelian group, then the ideal in GqF  is an abelian code. 

It is well known that if ,nq  then Maschke’s Theorem (Theorem 1.9 in 

[2]) stated that the group algebra GqF  is semisimple and hence GqF  is      

a direct sum of minimal ideals, ,21 sq IIIG ⊕⊕⊕=F  where =jI  

jqGeF  is the principal ideal of GqF  generated by ,je  where je  is an 

idempotent in GqF  for ....,,2,1 sj =  Let { }s
jjeM 1==  be the set of all 

pairwise orthogonal idempotents. 

Every ideal I of GqF  is a direct sum ,21 tiii IIII ⊕⊕⊕=  where 

.st ≤  Now, write ,JIGq ⊕=F  where tsjjj IIIJ
−

⊕⊕⊕= 21  is the 

direct sum of minimal ideals such that ml ji II ≠  for all tl ≤≤1  and ≤1  

.tsm −≤  

Lemma 1.1. Let { }....,,, 21 tsjjj eee
−

=μ  Then ,μ= II  where =μI  

{ }.,0 μ∈∀=|∈ mm jjq eueGu F  

Proof. If ,Iu ∈  then ∑ μ∈= \ ,Me iii
eau  .Ga qi F∈  For all ,μ∈je  

( )∑ μ∈ == \ .0Me jiij i
eeaue  Thus, ,μ∈ Iu  and so .μ⊆ II  
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Conversely, for any ,Gu qF∈  ∑ ∈= Me iii
eau .  If ,μ∈ Iu  then 0=jue  

for all .μ∈je  Thus, 0=⎟
⎠
⎞⎜

⎝
⎛∑ ∈ jMe ii eea

i
 for all μ∈je  if and only if 

0=jjea  for all μ∈je  if and only if 0=ja  for all j. Therefore, =u  

∑ μ∈ ∈\ ,Me iii
Iea  and so .II ⊆μ   

Since μI  is an ideal of ,GqF  μI  is a subspace of GqF  which implies 

that μI  is a linear code over .qF  It is well known that a linear code can be 

defined by using a parity check matrix. In this paper, the usage of 
idempotents in GqF  as parity checks is equivalent to the definition of a 

linear code by its parity check matrix. As a parity check matrix of a linear 
code can tell us the minimum distance of the code, thus the set of 
idempotents μ should also provide some information to determine the 
minimum distance of .μI  

In [1], we study the group algebra codes defined over extra special 

p-group of order 3p  by constructing two families of group algebra codes 

generated by linear idempotents and nonlinear idempotents separately. In this 

paper, we generalized our study to any extra special p-group of order .12 +rp  

We now give some basic definitions. Let μI  as defined in Lemma 1.1. 

The element in μI  is called a codeword and ( ) == GdimN qF  length         

of codeword in .μI  Furthermore, define the weight of u as ( ) =uwt  

{ }0≠| gg aa  and the minimum distance of ,μI  

( ) { ( ) }.0 μμ ∈≠|= IuuwtminId  

Therefore, μI  with parameters ( )μ= IdimKN ,  and ( )μ= Idd  is called an 

[ ]dKN ,, -group algebra code. In this paper, our main task is to determine 

the parameters N, K and d for .μI  The length and dimension of a code can be 
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derived directly from the construction. However, to determine the minimum 
distance of a code, it may be a difficult task. The following lemma is needed 
later. 

Lemma 1.2. Let ,1μ  2μ  be the sets consisting of idempotents in GqF  

such that .21 μ⊆μ  Then ( ) ( ).12 μμ ≥ IdId  

Proof. For all ,2μ∈ Iu  0=ue  for all 2μ∈e  and so 0=ue  for            

all .1μ∈e  Thus, .1μ∈ Iu  Therefore, .12 μμ ⊆ II  Next, let 1μ∈ Iu  with 

minimum weight, that is, 0=ue  for all .1μ∈e  If 0≠ue  for all ,\ 12 μμ∈e  

then ,2μ∉ Iu  so ( ) ( ).12 μμ > IdId  On the other hand, if 0=ue  for all 

,\ 12 μμ∈e  then 2μ∈ Iu  and so the inequality holds.  

2. Extra Special p-group and Characters 

In this section, we will follow those notations used in [1] and [2]. Let      
p be a prime (distinct from q). A p-group G is called extra special if 

( ),GZG =′  pG =′  and GG ′  is elementary abelian. From Theorem 2.17 

in [4], there is an integer 1≥r  such that 12 += rpG  and G has normal 

subgroups rNNN ...,,, 21  such that 

(a) iN  is a nonabelian group of order 3p  for all i, .1 ri ≤≤  

(b) .21 rNNNG …=  

(c) [ ] 1, =ji NN  for all .ji ≠  

(d) ( )GZNNNNN riii =+− ……∩ 111  for all i. 

Lemma 2.1. Let G be the extra special p-group of order .12 +rp  Then 

each iN  is also an extra special p-group of order 3p  for ....,,2,1 ri =  

Proof. Since each iN  is a p-group, ( ) .1>iNZ  Thus, ( ) .2pNZN ii ≤  

As iN  is nonabelian, then ( )ii NZN  is not cyclic and so ( ) 2pNZN ii =  
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which then implies ( ) pNZ i =  and ( ) .~
ppii ZZNZN ×=  Finally, as 

( ),ii NZN ⊆′  then ( ) .ii NNZ ′=   

Since ( ) ,pGZG ==′  we may write .1=|=′ pggG  As =G  

,12 +rp  then .2rpGG =′  Let { }
1210 2...,,,,1
−

== rp
ttttT  be the set     

of all right transversal of G′  in G. Then, the rp2  right cosets of G′  in G        

are { }i
p

iiii tgtggtttG 12 ...,,,, −=′  for 1...,,2,1,0 2 −= rpi  and so =G  

∪
1

0

2

.
−

=
′

rp

i
itG  

Proposition 2.1. Let G be an extra special p-group of order .12 +rp  Then 

the following hold: 

(a) G has 12 −+ pp r  conjugacy classes; p of these has size 1 and the 

other 12 −rp  conjugacy classes has size p, which is exactly the right cosets 

,Gx ′  .\GGx ′∈  

(b) The number of linear characters of G is .2rpGG =′  

(c) The total number of irreducible characters of G is equal to the 

number of conjugacy classes of G, that is, ( ) .12 −+= ppGIrr r  

(d) The total number of non-principal characters of G is equal to 
( ) .1−=′− pGGGIrr  

Proof. Part (a) is a general result obtained from Section 2 in [1]. Part (b) 
follows from Corollary 2.23 in [2]. Part (c) follows from Corollary 2.7 in [2] 
together with part (a). Finally, part (d) is just a direct consequence from (b) 
and (c).  

Proposition 2.2. Let G be an extra special p-group of order .12 +rp  If χ 

is a linear character of G, then the following hold: 
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(a) For all ,Gg ∈  ( ) .0≠χ g  

(b) For all ,Gg ′∈  ( ) .1=χ g  In particular, ( ) ,11 =χ  that is, ( ) .1=χdeg  

(c) For any ,, Ggyx ′∈  ( ) ( ).yx χ=χ  

Proof. Part (a) directly follows from the fact that χ is a homomorphism. 

For part (b), consider any ,Gg ′∈  ( ) [ ]( ) ( ) 1, 11 =χ=χ=χ −− xyyxyxg  for 

some ., Gyx ∈  Finally, part (c) follows directly from (b).  

Proposition 2.3. Let G be an extra special p-group of order .12 +rp  If χ 

is a nonlinear character of G, then the following hold: 

(a) ( ) .1 rp=χ  

(b) For all ,Gg ′∈  ( ) .0≠χ g  

(c) For all ,Gg ′∉  ( ) .0=χ g  

(d) Fix a generator, g, of ,G′  and let ζ be a primitive pth root of unity in 

F. Then ( ) ir
i pg ζ=χ  for some { }.1...,,2,1 −∈ pi  

Proof. To prove part (a), from Corollary 3.11 in [3], as χ is nonlinear, 
then ( )χ⊆/′ kerG  and so ( ) { }.1=χ′ kerG ∩  As ,pG =′  then ( ) 1=χker  

and together with part (e) of Lemma 2.27 in [2], we see that ( ) ( ).GZZ =χ  

For all ( ),GZz ∈  ( ) ( ).1χ=χ z  Since χ is irreducible, from Corollary 2.17 

in [2], 

[ ]χχ= ,1  

( ) ( )
( )
∑
∈

χχ=
GZz

zzG
1  

( )
( )
∑
∈

+ χ=
GZz

r z
p

2
12

1  
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( ) ( )212 11 χ= + GZ
p r  

which implies ( ) .1 rp=χ  

For part (b), as ( ) ( ),χ==′ ZGZG  then part (c) of Lemma 2.27 in [2] 

implies ( ) ,1 λχ=χ ′G  where λ is some linear character of .G′  Therefore, 

( ) ( ) ( ) ,01 ≠λχ=χ ′ ggG   .Gg ′∈∀  

Next, since G has rp2  linear characters, which are, ,...,,, 221 rp
χχχ  

and let 121 ...,,, −βββ p  be those nonlinear characters of G. Thus, for all 

,Gg ′∈  

( )gCp G
r =2  

( ) ( )∑ ∑
=

−

=

β+χ=

rp

i

p

i
i gg

2

1

1

1

22  

( )∑
−

=

β+=
1

1

22
p

i
i

r gp  

implies ( )∑ −
= =β1

1
2 0p

i i g  and so ( ) 0=β gi  for all Gg ′∈  and =i  

.1...,,2,1 −p  

To prove part (d), note that from (b), ( ) .1 λχ=χ ′G  For all ,Gg ′∈  

( ).gpr
G λ=χ ′  Furthermore, ( ) ( )ggG χ=χ ′  for ∗∈χ G  and for all .Gg ′∈  

Since ,1=pg  ( ) ( ) ,1 rp pg =χ=χ  and so ( ) ( ) rppr pggp =χ=λ  implies 

( ) 1=λ pg  and so ( ) ,ζ=λ g  where ζ is a primitive pth root of unity and so 

(d) will follow directly.  
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3. Idempotents 

Since ( )μId  depends on those idempotents in μ. We start by deriving a 

formula for all idempotents in ,GqF  where G is the extra special p-group of 

order .12 +rp  From Theorem 2.12 in [2], any idempotent ie  in GqF  can be 

written uniquely as 

( ) ( )∑
∈

−χ
χ

=
Gg

i
i

i ggGe .1 1  

As 0
1

0
2

tGG
rp

i ′= −
=∪  and ,1=|=′ pggG  then 

( ) ( )∑ ∑
−

=

−

=

−−
+ χ

χ
=

1

0

1

0

1
12

2

.1
rp

j

p

i

i
jj

i
ir

i
i gttg

p
e  

If iχ  is the principal character of G, that is, ( ) 1=χ gi  for all ,Gg ∈  

then iχ  will define ie  the principal idempotent which is usually denoted by 

principale  and 

∑ ∑
−

=

−

=
+=

1

0

1

0
12

2
1

rp

j

p

i

i
jrprincipal gt

p
e  

.G
G=  

Note that for all ,Gg ∈  .principalprincipal eG
GgG

Gge ===  

Next, let LM  be the set consisting of all linear idempotents of ,GqF  

that is, all these idempotents correspond to the rp2  linear characters. Thus, 

.2r
L pM =  We know that from Proposition 2.2 for all ∗∈χ Gi  which is 

linear, we have ( ) 1=χ gi  for all .Gg ′∈  Therefore, 
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( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
χ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑∑

−

=

−
−

=
+

1

0

1
1

0
12

2
1

rp

j
jji

p

i

i
ri ttg

p
e  

( ) .
1

0

1
12

2

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
χ

′
= ∑

−

=

−
+

rp

j
jjir tt

p
G  

It can be shown that for all ,LMe ∈  ege =  for all .Gg ′∈  

Finally, let NM  be the set consisting of all nonlinear idempotents of 

,GqF  that is, all those idempotents corresponded to the nonlinear characters 

of G. Note that .1−= pM N  For all ,Ni Me ∈  since 

∪ ∪
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
′′=

−

=

1

1
0

2rp

i
itGtGG  

and from Proposition 2.3, we have ( ) ( ) ( ) ( ).1
0

2
∑ −

=
′χ=′χ+′χ=χ

rp
i i GtGGG  

Thus, 

( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
χ+χ= ∑ ∑

′∈ ′∈

−−
+

Gg GGg
iiri gggg

p
e

\

11
1

1  

( )gg
p Gg

ir ∑
′∈

−
+ χ= 1

1
1  

∑
−

=

−
+ ζ=

1

0
1

1
p

j

jijr
r gp

p
 

∑
−

=

−ζ=
1

0
.1

p

j

jij gp  

Clearly, for all ,Gg ′∈  ,ii ege ′=  where ., Nii Mee ∈′  We collect all 

facts above in the following proposition. 
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Proposition 3.1. Let G be an extra special p-group of order .12 +rp  

(a) The principal idempotent of GqF  is .G
Geprincipal =  

(b) 

{ } ( ) .1...,,2,1\ 21
0

1
12

2

⎭
⎬
⎫

⎩
⎨
⎧

−=|⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
χ

′
== ∑ −

=
−

+
rp

j jjiriprincipalL pitt
p

GeeM
r

 

(c) .1...,,2,11 1
0 ⎭⎬

⎫
⎩⎨
⎧ −=|ζ== ∑ −

=
− pigpeM p

j
jij

iN  

4. Dimension 

In this section, we will determine the dimension for .μI  We start by 

deriving two simple results. 

Lemma 4.1. For all ,LMe ∈  ( ) .1=Gedim qF  

Proof. For all ,Gh ∈  

( ) ( )∑
∈

−− χχ=
Gg

hghhgGhe 111  

( ) (( ) )∑
∈

−χχ=
Gg

hghgG
h 1  

( ) .ehχ=  

Next, for all ∑ ∈ ∈= Gh qh Ghau ,F  

( )∑
∈

=
Gh

h heaue  

( )( )∑
∈

χ=
Gh

h eha  

( ) .eeha
Gh

h ∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
χ= ∑

∈
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Therefore, for all ,Gu qF∈  eGeq =F  and so ( ) 1=Gedim qF  for all 

.LMe ∈   

Corollary 4.1. ( ) .2r
M pIdim N =  

Proof. From Lemma 1.1, we know that 

.\ iMeiMMeM FGeFGeI LiNiN ∈∈ ⊕⊕ ==  

Thus, ( ) ( )∑ ∈=
LiN Me iM FGedimIdim  and so the result will follow from 

Lemma 4.1.  

Lemma 4.2. For all ,NMe ∈  ( ) .2r
q pGedim =F  

Proof. Since each NMe ∈  corresponds to χ such that ( ) rpdeg =χ  and 

( )FMGe jnq =~F  (refer [2]) and so ( ) ,2
jjq nGedim =F  where == r

j pn  

( ).χdeg  Thus, ( ) .2r
q pGedim =F   

Corollary 4.2. ( ) ( ).12 −= ppIdim r
M L  

Proof. Follows from Lemma 1.1 and Lemma 4.2.  

Our main result on dimension of .μI  

Theorem 4.1. Let ,NL μμ=μ ∪  where LL M⊆μ  and .NN M⊆μ  

Then ( ) .212 r
NL

r ppIdim μ−μ−= +
μ  

Proof. By the property of semisimple, as ,iqiq GeG FF ⊕=  then =G  

( ) ( )∑= i iq FGedimGdim .F  Thus, 

( ) ( )iq
Me

GedimIdim
i

F
μ∈

μ ⊕=
\

 

( ) ( ) ( ) ( )GfdimMGedimM qNNqLL FF μ−+μ−=  
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( ) ( ) r
NNLL pMM 2μ−+μ−=  

( ) ( ) r
NL

r ppp 22 1 μ−−+μ−=  

,212 r
NL

r pp μ−μ−= +  

where LMe ∈  and .NMf ∈   

5. Minimum Distance 

Theorem 5.1. ( ) .2=principaleId  

Proof. We first note that for all ,Gu qF∈  ∑ ∑−
=

−
= λ= 1

0
1

0

2
.

rp
j

p
i j

i
ji tgu  

Then .1
0

1
0

2
principal

p
j

p
i jiprincipal eue

r
⎟
⎠
⎞

⎜
⎝
⎛ λ= ∑ ∑−

=
−
=  For all Gu qF∈  with 

( ) ,1=uwt  that is, gu λ=  for some Gg ∈  and .0≠λ  Then =principalue  

0≠λ principale  and so ,principaleIu ∉  that is, ( ) .2≥principaleId  Next, for 

some Ghg ∈,  such that ,hg ≠  clearly, ( ) principaleIhgu ∈λ−+λ=  as 

( ) .0=λ−λ= principalprincipal eue  Therefore, ( ) .2=principaleId   

From Theorem 4.1 and Theorem 5.1, we see that principaleI  is a 

[ ]2,1, 1212 −++ rr pp -group algebra code which is an MDS code. Recall 

from Section 2, any extra special p-group G of order 12 +rp  has the form 

,21 rNNNG …=  where iN  is a normal subgroup of G. 

Lemma 5.1. Let e be an idempotent in .iqNF  Then .Ge qF∈  

Proof. Let principalef =  be the principal idempotent of GqF  and let 

∗∈χ iN  be the character defined e. Then 
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( ) ( ) G
GggNef

iNgi ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
χχ= ∑

∈

−11  

( ) ( ).1 1∑
∈

−χχ=
iNgi

gGNG  

If e is the principal idempotent of ,iq NF  then ∈== fNGNGef i
i

1  

GqF  and so .Ge qF∈  If e is a linear idempotent of ,iq NF  then =ef  

( ) GfNGNGNGNG qi
i

i
i

F∈==χ 11  and so .Ge qF∈  Finally, 

if e is a nonlinear idempotent of ,iq NF  then 

( ) ( )∑ ∈
− ∈χχ=

iNgi
FGgGNGef 11  

and so GGe qq FF ⊆  implies .Ge qF∈   

Theorem 5.2. Let .M⊆μ  

(a) If ,Lμ=μ  then μI  is a [ ]2,, 1212
L

rr pp μ−++ -group algebra 

code. 

(b) If Nμ=μ  and q is a primitive root modulo p, then μI  is a 

[ ]1,, 21212 +ρμ−++
N

r
N

rr ppp -group algebra code, where Nρ  is the 

set of all nonlinear idempotents in .iN  

Proof. The dimension of μI  follows directly from Theorem 4.1. Let Lρ  

be all linear idempotents in .iq NF  From Lemma 5.1, since ,LL μ⊆ρ  by 

Lemma 1.1, ( ) ( )LL IdId ρμ ≥  and also ( ) 2=ρLId  follows from Theorem 4 

in [1]. Finally, since ,μ⊂μL  by Lemma 1.1 against, ( ) ( ) .2≥≥ μμ LIdId  

Next, let Nρ  be the set of all nonlinear idempotents in .iq NF  From 

Theorem 13 in [1], since we assume q is a primitive root modulo p, 
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( ) .1+ρ=ρ NNId  From Lemma 5.1, since ,NN μ⊆ρ  by Lemma 1.1, 

( ) ( ) .1+ρ=≥ ρμ NNN IdId  Also, since ,μ⊂μN  by Lemma 1.1, ( ) ≥μId  

( ) .1+ρ≥μ NNId   
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