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Abstract 

The Poisson distribution and mean dual distributions have the same 
canonical parameter θ. We wonder the following question: which one 
of the used distributions allows to better estimate this parameter. By 
doing so, in this paper, we will examine the different estimators mean 
squared error of this parameter issued from each of these distributions 
to compare their performances. The mean squared errors of different 
estimators of the canonical parameter are functions of θ, we will 
proceed by a graphic resolution for comparison through some 
illustrative examples. Quality criteria estimators of θ through the 
amount of Fisher information of each random variable relative to the 
notion of mean duality between one variable overdispersed and 
underdispersed are proposed. 
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1. Introduction 

Consider Y is a Poisson random variable with mass function 

 ( ) ,,,!
∗
+

θ−
θ ∈θ∈θ= RNyeyyf

y
 (1) 

depending on the canonical parameter θ. When the Poisson model is not 
appropriate because the results from the processing of data do not allow to 
validate it, the question is to find an alternative model to describe the 
variations in the data studied. 

Let Z be a positive integer random variable, it is convenient to look for 
alternative families of Poisson distribution by referring to the dispersion 
Fisher index, which is the ratio of variance to the mean 

 ( ) ( )
( ) ,var
ZE
ZzI =  (2) 

relatively to 1. 

When ( ) ( )( ),11 <> ZIZI  we say that the variable Z is overdispersion 

(underdispersion) (see Mizère et al. [10]). For the Poisson distribution 
( ) ;1=ZI  we say that in this case, Poisson is equidispersed. One of the 

alternative families is the weighted Poisson distribution (WPD) with 
probability mass function (pmf): 

 ( ) ( )
( )[ ] ,,0,!, N∈>θθ= θ−

θ
θ yeyywE

ywyf
y

w  (3) 

where ( )yw  is called the weight function, a positive function and ( )[ ]YwEθ  

denotes the mean value depending on θ such that ( )[ ] ∞<< θ YwE0  (see 

Mizère et al. [9]). The weight function ( ) ( )φ= ,ywyw  can depend on a 

parameter φ representing the data recording mechanism, and it may also be 
connected to the canonical Poisson parameter θ. When the weight function 
( )yw  is a constant, we find the Poisson distribution. 

For observed count data, it is of interest to use a statistical test for 
detecting the overdispersion or underdispersion (see Mizère et al. [9]), and it 
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is therefore useful to have a family of count distributions possessing both 
overdispersion and underdispersion properties with respect to the parameter. 
In this case, the parameter estimation would lead to an appropriate model 
within the family for overdispersion or underdispersion count data. Such a 
process would automatically lead to an appropriate model depending on the 
type of observed data (see Shmueli et al. [16]). 

For that in this paper, we use the notion of “duality” proposed by Mizère 
(see Mizère [8]) for such a family of WPD, which will be related to the 
combination of overdispersion and underdispersion, however, we only use 
the notion of mean duality. A practical meaning of mean duality for WPD is 
that this distribution provides the opposite dispersion (i.e., overdispersion 
from underdispersion and conversely). 

Estimators of the parameter θ that we determine here generally are 
unbiased for the Poisson distribution and biased with respect to θ for the 
mean dual distributions. In other words, they do not have the same mean; so 
we cannot compare them through their variances. Otherwise, to make this 
comparison, we use the mean squared error of different estimators of the 
parameter θ with respect to θ, however, it is useful to compare several 
estimators, especially when one of them is biased or when both are biased 
with respect to θ. 

If the estimators of θ estimate the same quantity, then this comparison is 
also possible when the difference in quantities of Fisher information on each 
variable is positive or negative for an equal number of observations. This 
means that the results of inference on the population parameter θ are more 
reliable when the amount of Fisher information contained in the sample on 
the parameter θ is sufficient. Subsequently, we link this comparison with the 
mean dual distributions. 

The motivations for this work are those of Alavi [14] who considers a 
general exponential family having the same canonical parameter such as a 
weighted exponential family; he compares their quantities Fisher information 
to determine, which two families will be more informative for this parameter. 
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In this paper, we first consider, in particular, the mean dual distributions 
having the same Poisson canonical parameter, and we assume that these laws 
belong to the exponential family. Then we compare the different estimators 
for this parameter by using the mean square error method accompanied by 
illustrative examples and Fisher information method in order to assess their 
qualities. 

2. Definitions 

Definition 1 (See Mizère et al. [10]). Let 1w  and 2w  be two positive 

weight functions generating two WPD. These two WPD are said to be 
(punctually) dual if their weight functions satisfy 

 ( ) ( ) N∈∀=× yywyw ,121  (4) 

with iw  nonconstant. 

Remark 1. (1) The positivity of ( ) 0>ii ww  implies that the support of 

the corresponding WPD is the entire nonnegative set .N  

(2) As the weight functions cannot be constant, the Poisson distribution 
cannot be a point dual distribution (see Mizère [8]). 

Definition 2 (See Mizère et al. [10]). Let 1w  and 2w  be two positive 

weight functions generating two WPD. These two WPD are said to be mean 
dual if we have 

 ( )[ ] ( )[ ] N∈∀=× θθ yYwEYwE ,121  (5) 

with iw  nonconstant. 

Remark 2. The Poisson distribution cannot be a mean dual distribution. 
Thus, the Poisson weighted whose support is not equal to the entire set N  
can be for the mean dual distributions. 

Theorem 1 (See Mizère et al. [10]). Let Y be the Poisson random 
variable with mean 0>θ  and let 

( ) ( )φ= ;ywyw  
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be a non-null weight function. Consider wY  is the corresponding weighted 
Poisson random variable. The two following assertions are equivalent: 

 (i) The function ( )[ ]YwEθθ  is logconvex (logconcave). 

(ii) wY  is overdispersed (underdispersed) with respect to Y. 

Theorem 2. Let ( )yf w,θ  be a WPD with weight function ( ) =yw  

( )φθ,,yw  depending on θ such that ( )[ ] ( ) ( ) +φθψ+θϕ=φθ ,,,ln yyw  

( )φη ,y  with ϕ, ψ, η functions. Then ( )yf w,θ  is an exponential family. 

Proof. We know that 

( ) ( )
( )[ ] ,,0,!, N∈>θθ= θ−

θ
θ yeyYwE

ywyf
y

w  

[ ( )] ( )[ ] ( )( )[ ] ( ) ( )!lnlnln,,lnln , yyYwEywyf w −θ−θ+−φθ= θθ  

( ) ( ) ( ) ( )( )[ ] ( ) ( )!lnlnln,, yyYwEyy −θ−θ+−φη+φθψ+θϕ= θ  

( ) ( )( ) ( ) ( )( )[ ] ( ) ( )!ln,ln,ln yyYwEy −φη+θ−−φθψ+θ+θϕ= θ  

( ) ( ) ( ) ( )ybya +θβ+θα=  

with ( ) ( ) ( ),ln θ+θϕ=θα  ( ) ,yya =  ( ) ( ) ( )( )[ ] θ−−φθψ=θβ θ YwEln,  and 

( ) ( ) ( ).!ln, yyyb −φη=  ~ 

Remark 3. Especially, when ( ) ( ) ,0, =φθψ=θϕ  ,θ∀  then ( )yw  being 

independent on θ, then the distribution remains the exponential family. 

3. Estimators Canonical Parameter 

Let ( )21 , ww YY  be a mean dual pair of weighted Poisson random 

variables, of respective mass functions ( )yf w1,θ  and ( ).2, yf wθ  These mean 

dual distributions and Poisson distribution depend on the same canonical 
parameter θ. In this section, we will determine the characteristics estimators 
of θ. 
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It is convenient also to note that the weight function that generates a 
Poisson weighted overdispersed (or underdispersed) used in this paper does 
not depend on θ. However, for a mean dual distribution, the weight function 
of a weighted Poisson distribution overdispersed (underdispersed) depends 
on θ (see Mizère et al. [10]). 

In other words, the weight function ( )yw1  does not depend on θ. 

However, the weight function ( )yw2  depends on θ because of the mean 

duality in their mass functions ( )yf w1,θ  and ( ).2, yf wθ  The expressions of 

( )yf w1,θ  and ( )yf w2,θ  are obtained by subscripting the function ( )yw  of 

expression (3) by 1 or 2. 

Note by ,ˆ
0θ  1θ̂  and ,ˆ

2θ  the parameter estimators of θ obtained by the 

distributions ( ),yfθ  ( )yf w1,θ  and ( ).
2, yf wθ  

Let ( )nyyyy ...,,,~
21=  be a sample of size n of values for the Poisson 

random variable Y with parameter θ, the estimator by the method of 
maximum likelihood is equal to 

 ,1ˆ
1

0 ∑
=

=θ
n

i
iyn  (6) 

which is an unbiased estimator and efficient of θ, its variance is equal to 

 ( ) .ˆvar 0 n
θ=θ  (7) 

Proposition 1. Let ( )1111 ...,,,~
21

w
n

www yyyy =  be a sample of size n 

values of 1wY  a random variable. The domain of definition of the probability 
density ( )yf w1,θ  being independent of the parameter θ, the logarithm of the 

probability density is as follows: 

[ ( )] ( ) ( ) ( ) ( ).ln 1111, 1
ybyayf w +θβ+θα=θ  

Proof. Indeed, 

( ) ( )
( )[ ] .,0,!1

1
, 1

N∈>θθ= θ−

θ
θ yeyYwE

ywyf
y

w  
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Taking the logarithm, we obtain 

[ ( )] [ ( )] [ ( )( )] ( ) ( )!lnlnlnlnln 11, 1 yyywEywyf w −θ−θ+−= θθ  

( ) ( ) ( ) ( )ybya 1111 +θβ+θα=  

with 

( ) ( ) ( ) ( ) [ ( )( )]ywEyya 1111 ln;;ln θ−θ−=θβ=θ=θα  and 

( ) ( )[ ].ln 11 ywyb =  ~ 

The sufficient statistic (see Saporta [15]) 

 ( )∑ ∑
= =

==θ
n

i

n

i

w
i

w
i ynyan

1 1
11

11 11ˆ  (8) 

is an unbiased estimator and efficient of function 

 ( ) ( )
( ) ( )( )[ ]YwEd

dk 1
1
1

1 ln θθ
θ+θ=

θα′
θβ′

−=θ  (9) 

with ( )θβ′1  the derivative of ( )θβ1  with respect to θ. 

This leads to 

( ) ( ) ( )( )[ ].lnˆ
111 YwEd

dkE θθ θ
θ+θ=θ=θ  

We deduce that 1θ̂  is a biased estimator of θ and the bias is equal to 

 ( ) ( )( )[ ]YwEd
dBias 11 lnˆ

θθ
θ=θθ  (10) 

and variance 

( ) ( )
( ) ( )( )[ ] ( )( )[ ].lnlnˆvar 12

22
1

1
1

1 YwE
d
d

nYwEd
d

nnn
k

θθ
θ

θ+
θ

θ+θ=
θα′
θ′

=θ  (11) 

Proposition 2. Let ( )2222 ...,,,~
21

w
n

www yyyy =  be a sample of size n 

values of ,2wY  a mean dual random variable of 1wY  with ( ) =yw2  

( ).,2 θyw  The domain of definition of the probability density ( )yf w2,θ  being 
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independent of the parameter θ, the logarithm of the probability density is as 
follows: 

[ ( )] ( ) ( ) ( ) ( ).ln 2222, 2
ybyayf w +θβ+θα=θ  

Proof. Indeed, 

( ) ( )
( )[ ] .,0,!,
,

2
2

, 2
N∈>θθ

θ
θ

= θ−

θ
θ yeyYwE

ywyf
y

w  

Taking the logarithm, and taking into account Theorem 2, we obtain 

[ ( )] ( ) ( ) ( ) ( )ybyayf w 2222, 2
ln +θβ+θα=θ  

with ( ) ( ) ( ),ln2 θ+θϕ=θα  ( ) ,2 yya =  ( ) ( ) ( )( )[ ] θ−θ−θψ=θβ θ ,ln 22 YwE  

and ( ) ( ) ( ).!ln2 yyb −θη=  ~ 

The sufficient statistic 

 ( )∑ ∑
= =

==θ
n

i

n

i

w
i

w
i ynyan

1 1
22

22 11ˆ  (12) 

is an unbiased estimator and efficient of the function 

 ( ) ( )
( )

( )( )[ ] ( )
( )θϕ′θ+

θψ′θ−
θ

θ+θ
=

θα′
θβ′

−=θ
θ

1

ln 2

2
2

2
YwEd

d
k  (13) 

with ( )θβ′2  the derivative of ( )θβ2  with respect to θ. 

We therefore have 

( ) ( )
( )( )[ ] ( )
( )θϕ′θ+

θψ′θ−
θ

θ+θ
=θ=θ

θ
θ 1

ln
ˆ 2

22
YwEd

d
kE  

( )( )[ ] ( )
( ) .1

ln 2

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
θ−

θϕ′θ+

θψ′θ−
θ

θ+θ
+θ=

θ YwEd
d

 

We deduce that 2θ̂  is a biased estimator of θ and the bias is equal to 
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 ( )
( )( )[ ] ( )
( ) θ−
θϕ′θ+

θψ′θ−
θ

θ+θ
=θθ

θ

1

ln
ˆ 2

2
YwEd

d
Bias  (14) 

and variance 

( ) ( )
( ) ,ˆvar

2
2

2 θα′
θ′

=θ n
k  

which gives 

( )
( )( )[ ] ( ) ( )

( )
3

22

2

2
1

1,ln
ˆvar

⎟
⎠
⎞⎜

⎝
⎛

θ
+θϕ′

⎟
⎠
⎞⎜

⎝
⎛

θ
+θϕ′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
φθψ ′′−

θ=θ
θ

n

YwE
d
d

 

 
( ) ( )( )[ ] ( )

( )
.

1

,ln11

3

22

⎟
⎠
⎞⎜

⎝
⎛

θ
+θϕ′

⎟
⎠
⎞⎜

⎝
⎛ φθψ′−

θ
+⎟

⎠
⎞

⎜
⎝
⎛

θ
−θϕ′′

−
θ

n

YwEd
d

 (15) 

4. Estimators Comparison of the Canonical Parameter 

4.1. Mean squared error method 

The estimators 1θ̂  and 2θ̂  functions of ( )θ1k  and ( ),2 θk  respectively, 

well being unbiased (see expressions (8) and (12)) do not feel the same 
function ( ) ( )( ),21 θ≠θ kk  so we cannot compare them through their 

variances. However, they are biased with respect to θ, which allows us to 
judge their quality by using the mean squared error as we note from MSE. 

Proposition 3 (See Fourdrinier [4]). We have 

 ( ) ( ) ( ).ˆvarˆˆ 2 θ+θθ=θθ BiasMSE  (16) 

Let ( ),ˆ
0 θθMSE  ( ),ˆ

1 θθMSE  ( )θθ2
ˆMSE  be the mean squared errors 

of the estimators ,ˆ
0θ  ,ˆ

1θ  ,ˆ
2θ  respectively, with respect to the parameter θ. 

The estimator with the value of the mean squared error is smallest is the 
best. 
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We have the following relationship (16): 

( ) ( ) ( ),ˆvarˆˆ
11

2
1 θ+θθ=θθ BiasMSE  

( ) ( )( )[ ] ( )( )[ ]YwEd
d

nnYwEd
dMSE 1

2
11 lnlnˆ

θθ θ
θ+θ+⎟

⎠
⎞⎜

⎝
⎛

θ
θ=θθ  

( )( )[ ]YwE
d
d

n 12

22
ln θ

θ

θ+  (17) 

and 

( ) ( ) ( ),ˆvarˆˆ
22

2
2 θ+θθ=θθ BiasMSE  

( ) ( ) .ˆvarˆ
00 nMSE θ=θ=θθ  (18) 

Remark 4. To calculate the mean squared errors, it would require that 
the expressions of normalization constants ( )[ ]YwE 1θ  and ( )[ ]YwE 2θ  are 

explicit. 

Example 1. We consider ( ),
1, yf wθ  size-biased Poisson distribution, 

which is an underdispersed distribution (see Mizère et al. [10]) with weight 
function ( ) ,1 yyw =  N∈y  and with normalization constant ( )[ ] .1 θ=θ YwE  

Its mean dual distribution ( )yf w2,θ  (see Mizère et al. [10]) is the 

geometric distribution with success parameter ] [1,0∈θ  and with mass 
function 

 ( ) ( ) ,,1
2, N∈θ−θ=θ yyf y

w  (19) 

which is a family exponential distribution. The WPD corresponding is 
overdispersed with weight function 

( ) ( ) θ

θ

θ−= eyyw y

y
!1

2  

and with normalization constant 

( )[ ] .1
2 θ

=θ YwE  

From expressions (11), (14), (17), (18), we establish the following table 
of calculations: 
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Table 1 

( )yfθ  ( )yf w1,θ  ( )yf w2,θ  

( ) 0ˆ
0 =θθBias  ( ) 1ˆ

1 =θθBias  ( )
θ
θ−=θθ 1ˆ

2Bias  

( )
n
θ=θ0

ˆvar  ( )
n
θ=θ1

ˆvar  ( ) 22
1ˆvar
θ

θ−=θ
n

 

( )
n

MSE θ=θθ0
ˆ  ( )

n
MSE θ+=θθ 1ˆ

1  ( ) 2

2
2

11ˆ
θ

θ−+⎟
⎠
⎞⎜

⎝
⎛

θ
θ−=θθ

n
MSE  

We will proceed with a graphic resolution to compare the mean squared 
errors estimators of θ calculated in the table above. 

 
Figure 1. Graphical representation of ( ),ˆ

0 θθMSE  ( )θθ1
ˆMSE  and 

( ),ˆ
2 θθMSE  for ,5=n  ,10=n  20=n  and .30=n  
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In view of these graphs, we can conclude about the quality of the 

estimators: In the first graph, for ] [,7.0,0∈θ  0θ̂  is better than 1θ̂  and .ˆ
2θ  

For ] [,1,7.0∈θ  2θ̂  is better than 0θ̂  and .ˆ
1θ  

In the second graph, for ] [,8.0,0∈θ  0θ̂  is better than 1θ̂  and .ˆ
2θ  For 

] [,1,8.0∈θ  2θ̂  is better than 0θ̂  and .ˆ
1θ  

In the third and fourth graphs, for ] [,8.0,0∈θ  0θ̂  is better than 1θ̂  and 

.ˆ
2θ  For ] [,1,8.0∈θ  0θ̂  and 2θ̂  have the same quality, but both are better 

than .ˆ
1θ  

However, 0θ̂  is the best. 

Example 2. We consider ( )yf w1,θ  the binomial distribution, which is an 

underdispersed distribution (see Mizère et al. [10]) with weight function 

( ) ( )
⎪⎩

⎪
⎨
⎧

++=

=
−=

...,2,1,0

,...,,1,0,!
!

1
nny

nyyn
n

yw  

and with normalization constant 

( )[ ] ( ) ,11
θ−

θ θ+= eYwE n   ] [.1,0∈θ  

Its mean dual distribution constructed by using the method of model 
selection (cf. Mizère et al. [10]) is an overdispersed distribution with weight 
function 

( ) ( )
( )

( ) ,,1
1 2

2
∗
+

θ
φ

∈φ
θ+
θ−

φΓ
+φΓ= Reyyw  

and with normalization constant 

( )[ ]
( )

.
1

1
2 θ−θ

θ+
=

e
YwE n  
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The WPD corresponding is the negative binomial distribution with mass 
function 

 ( ) ( )
( ) ( ) ] [ ,,1,0,,1!2,

∗
+

φ
θ ∈φ∈θ∈θθ−

φΓ
+φΓ= RNyy

yyf y
w  (20) 

which is an exponential distribution. 

From expressions (11), (14), (17), (18), we have the results of the 
following calculations: 

Table 2 

( )yf w1,θ  ( )yf w2,θ  

( ) ⎟
⎠
⎞⎜

⎝
⎛ −

+θ
θ=θθ 11

ˆ
1

nBias  ( ) ⎟
⎠
⎞⎜

⎝
⎛

θ−
φ+

+θ
−θ=θθ 11

1ˆ
2

nBias  

( )
( )2

1
1

ˆvar
+θ

θ=θ  ( )
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

θ−

φ+
θ+

−θ=θ 222
11

1ˆvar n
n  

( )
2

2
1 11

ˆ ⎟
⎠
⎞⎜

⎝
⎛ −

+θ
θ=θθ nMSE  

( )21+θ
θ+  

( )
2

2
2 11

1ˆ ⎟
⎠
⎞⎜

⎝
⎛

θ−
φ+

+θ
−θ=θθ nMSE  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θ−

φ+
θ+

−θ+ 22 11
1 n

n  
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By graphically representing those mean squared errors estimators of θ, 
we obtain 

 

Figure 2. Graphical representation of ( ),ˆ
0 θθMSE  ( )θθ1

ˆMSE  and 

( ).ˆ
2 θθMSE  

In view of these graphs, we conclude the order of performance of each 

estimator: In the first graph, for ] [,1,0∈θ  0θ̂  is better than 1θ̂  and .ˆ
2θ  

And for ] [,8.0,0∈θ  2θ̂  is better than 1θ̂  and for ] [,1,8.0∈θ  1θ̂  is better 

than .ˆ
2θ  
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In the second and fourth graphs, for ] [,1,0∈θ  0θ̂  is better than ,ˆ
2θ  

which is better than .ˆ
1θ  

In the third graph, for ] [,1,0∈θ  0θ̂  is better than 1θ̂  and .ˆ
2θ  However, 

for ] [,7.0,0∈θ  2θ̂  is better than 1θ̂  and for ] [,1,7.0∈θ  1θ̂  is better than 

.ˆ
2θ  

However, 0θ̂  is the best. 

4.2. Fisher information method 

In this subsection, we assume that ( ) ( ) ( ).21 θ=θ=θ kkk  This allows us 

to compare the estimators of θ defined in Section 3 through their variances 
and therefore also through their quantities of Fisher information. And we 
conclude that the variable, which has a much larger Fisher information in 
terms of θ will be more informative about the true value of θ. 

Moreover, since we work with the distributions of the exponential 
family, the variances of different estimators of θ defined in Section 3 will be 
redefined as follows (Monfort [11]): 

 ( ) ( )θ=θ
YnI
1ˆvar 0   and  ( ) ( )( )

( )
( )2,1ˆvar

2
=

θ
θ′

=θ i
nI

k

iwY
i  (21) 

with 

 ( ) ( )[ ]
θ

=
⎭
⎬
⎫

⎩
⎨
⎧

θ
−=θ θθ

1ln2

2
yf

d
dEIY  (22) 

is the quantity of Fisher information of the Poisson random variable Y. 

And 

 ( ) [ ( )]
⎭
⎬
⎫

⎩
⎨
⎧

θ
−=θ θθ yf

d
dEI

iiw wY ,2

2
ln  (23) 

are quantities of Fisher information of ( ),2,1=iY iw  of weighted Poisson 

random variables. 
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Theorem 3. Let ( )2,1=iY iw  be the weighted versions of the Poisson 

random variable Y with parameter θ and ( ) ( ),2,1=iywi  the weight 

functions. We get the following relations: 

( ) ( ) ( )( )[ ],ln2

2
YwE

d
dII iYY iw θ
θ

+θ=θ  if ( )ywi  do not depend on θ, (24) 

( ) ( ) ( )( )[ ] ( )[ ] ,,lnln 2

2

2

2

⎭
⎬
⎫

⎩
⎨
⎧

θ
θ

−
θ

+θ=θ θθ Yw
d
dEYwE

d
dII iiYY iw  

if ( )ywi  depend on θ. (25) 

Proof. Indeed, if weight functions ( )ywi  do not depend on θ, we have 

( ) ( )
( )[ ] ( ) ,,0,, N∈>θ= θ

θ
θ yyfYwE

ywyf
i

i
wi

 

then 

[ ( )] ( )[ ] ( )[ ] ( )[ ].lnlnlnln , YwEywyfyf iiwi θθθ −+=  

Differentiating this expression twice, we obtain 

[ ( )] ( )[ ] ( )( )[ ].lnlnln 2

2

2

2
,2

2
ywE

d
dyf

d
dyf

d
d

iwi θθθ
θ

−
θ

=
θ

 

However, from expressions (22) and (23), we have the result. 

If weight functions ( )ywi  depend on θ, then its first and second 

derivatives with respect to θ are nonzero. Therefore, we obtain the result by 
analogy to the foregoing. ~ 

Corollary 1. When the variables ( )2,1=iY iw  are overdispersed (resp. 

underdispersed) and iw  does not depend on θ, then we have 

 ( ) ( ) ( ( ) ( )).. θ<θθ>θ YYYY IIrespII iwiw  (26) 

In other words, the weighted Poisson overdispersed is more informative 
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about the true value of the Poisson parameter θ (resp. Poisson is more 
informative about the true value of the WPD underdispersed parameter θ). 

Proof. Indeed, when the variables iwY  are overdispersed (resp. 
underdispersed), by Theorem 1, the logconvexity (resp. logconcave) of the 

functions ( )[ ]YwE iθθ  leads to ( )( )[ ] ( ).00ln2

2
<>

θ
θ YwE

d
d

i  From 

expression (24), we deduce the result. CQFD. ~ 

Corollary 2. Let ( ) ( )θ= ,22 ywyw  be the weight function of a random 

variable 2wY  mean dual of 1wY  with weight function ( )yw1  not depending 

on θ. When 1wY  is overdispersed and that the function ( )θθ ,2 yw  is 

logconvex, then ( ) ( ).21 θ>θ ww YY II  

Proof. Indeed, 

 ( ) ( ) ( )( )[ ]YwE
d
dII YY w 12

2
ln1 θ

θ
+θ=θ  (27) 

and 

 ( ) ( ) ( )( )[ ] ( )[ ] .,ln,ln 22

2
22

2
2

⎭
⎬
⎫

⎩
⎨
⎧

θ
θ

−θ
θ

+θ=θ θθ Yw
d
dEYwE

d
dII YY w  (28) 

The difference member to member of expressions (27) and (28) gives 

( ) ( ) ( )( )[ ] ( )( )[ ]θ
θ

−θ
θ

=θ−θ θθ ,ln,ln 22

2
12

2

21 YwE
d
dYwE

d
dII ww YY  

( )[ ] .,ln 22

2

⎭
⎬
⎫

⎩
⎨
⎧

θ
θ

+ θ Yw
d
dE  (29) 

As the variable 1wY  is overdispersed; then 2wY  is underdispersed. Moreover, 
as the function ( )θθ ,2 yw  is logconvex, we have 

( )( )[ ] ( )( )[ ] 0,ln,0ln 22

2
12

2
<θ

θ
>

θ
θθ YwE

d
dYwE

d
d  
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and 

( )( )[ ] .0,ln 22

2
>θ

θ
Yw

d
d  

And therefore, we obtain 

 ( ) ( ) .021 >θ−θ ww YY II  (30) 

Thus 

 ( ) ( )θ>θ 21 ww YY
II  CQFD. (31) 

 ~ 

Proposition 4. Let 1wY  be an overdispersed variable, and 2wY  be its 

mean dual version. Then 1θ̂  is better than .ˆ
2θ  

Proof. By Theorem 3, we have 

( ) ( ),21 θ>θ ww YY II  

which implies 

( ) ( ) .11
21 θ

<
θ ww YY II  

Taking into account expressions (21), we obtain 

( ) ( ).ˆvarˆvar 21 θ<θ  

Therefore, 1θ̂  is better than 2θ̂  CQFD. ~ 

4.3. Conclusion 

In sum, when the estimators of θ do not estimate the same function, the 
estimators obtained by the Poisson distribution are better than those obtained 
by the mean dual distributions. But when these estimators estimate the same 
function, the choice is focused on the overdispersed mean dual distributions 
to estimate θ. 
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