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Abstract 

It is well-known that one of the major consequences of 
multicollinearity on the ordinary least (OLS) estimator is that the 
estimator produces large sampling variances, which in turn might 
inappropriately lead to exclusion of otherwise significant coefficients 
from the model. To circumvent this problem, two accepted estimation 
procedures which are often suggested are the James-Stein method and 
the ridge regression method. Both of the two methods ensure a smaller 
mean square error (MSE) value for the estimator in the presence of 
multicollinearity. In this paper, we have proposed a new estimator and 
it has been shown, view simulation, that this estimator is superior to 
both the James-Stein as well as the ordinary ridge regression 
estimators by the criterion of MSE of the estimator of the regression 
coefficients. 

1. Introduction 

The problem of multicollinearity and its statistical consequences on a 
linear regression model are very well-known in statistics. It is, for instance, 
known that one of the major consequences of multicollinearity on the OLS 
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method of estimation is that it produces large sampling variances for the 
estimation regression coefficients, which in turn gives rise to the possibility 
that otherwise significant coefficients may be excluded from the model 
improperly. Several suggestions have been made by researchers to contain 
this inflation of sampling variances so that meaningful inferences can be 
drawn for linear regression models having multicollinearity among two or 
more regressors. 

In this attempt towards improving the precision of the OLS estimator, 
two very standard and well-established procedures are the James-Stein 
method of estimation and the method of ridge regression. 

The James-Stein [4] estimator is a biased estimator but it can be shown 
that this estimator dominates the OLS approach, i.e., it have lower variances. 
An earlier version of this estimator was developed by Stein in 1956 and it is 
sometimes referred to as Stein’s estimator. 

As regards the method of ridge regression, it is one of the most widely-
used “ad-hoc” solutions to the problem of multicollinearity although the 
detailed sampling properties of this estimator are largely unknown, Hoerl and 
Kennard [2]. The principle result concerning the ordinary ridge regression is 
that; while it is always a biased estimator, it is superior to the OLS estimator 
by the criterion of sampling variance. However, the sampling variance being 
not the proper criterion for evaluating the performance of a biased estimator, 
Hoerl and Kennard [2] and Vinod [13] examined the performance of the 
ordinary ridge regression estimator by the MSE criterion and showed that 
there always exists an ordinary ridge regression estimator having smaller 
MSE value than the OLS estimator (see, for example, Judge et al. [5], Vinod 
and Ullah [14], Mason and Perreault [11], Grapentine [1], Mardikyan and 
Cetin [10], Khalaf and Shukur [8], Khalaf [6] and Khalaf et al. [7]). 

A consequence of the above discussion is the following counterintuitive 
result: when three or more related parameters are measured, their total MSE 
can be reduced by using a combined estimator such as the James-Stein and 
the ridge regression estimators. 
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In this paper, we have suggested a new estimator by combining in a 
particular way the two approaches followed in obtaining the James-Stein and 
the ordinary ridge regression estimators. In other words, we have here 
suggested a new estimator by grafting the ridge regression philosophy into 
the James-Stein estimator. Further, we have established the MSE superiority 
of the proposed estimator over both the James-Stein and the ordinary ridge 
regression estimators. 

The arrangements in the paper are as follows: the model as well as the 
James-Stein and the ordinary ridge regression estimators are described in 
Section 2. The proposed estimator is given in Section 3. The comparative 
performance of this estimator vis-à-vis the James-Stein and the ordinary 
ridge regression estimators are studied in Section 4. The paper ends with 
some concluding remarks in Section 5. 

2. The Model, James-Stein Estimator and the Ridge Regression 

Consider the standard p-variable linear regression model: 

 ,eXY +β=  (1) 

where Y is an ( )1×n  vector of observations on the dependent variable, X is 

an ( )pn ×  matrix of observations on p nonstochastic independent variables, 

β is the ( )1×p  vector of parameters associated with the p regressors and e is 

an ( )1×n  vector of disturbances having mean zero and variance-covariance 

matrix .2
nIσ  We assume that two or more regressors in X are closely related 

so that the model suffers from the problem of multicollinearity. 

The usual OLS estimator of β denoted by ,β̂  which is obtained by 

minimizing ( ) ( ),β−′β− XYXY  can be written as: 

 ( ) .ˆ 1 YXXX ′′=β −  (2) 

It is found that among all linear, unbiased estimates, the OLS estimator 
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produces the smallest variances. But in the presence of multicollinearity, 
both the least squares estimator and its variance are inflated. That is why we 
relaxed the condition of unbiasedness and considered MSE as criterion for 
comparing estimators by introducing a new kind of estimate that acts by 
shrinking the OLS coefficients and studied its MSE. 

James and Stein [4] showed that the estimator: 

 ( ) β⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

β′β′
σ−−=β ˆ
ˆˆ

21ˆ
2

XX
p

JS  (3) 

dominates the OLS estimator β̂  when ,IXX ≠′  for any ,2>p  meaning that 

the James-Stein estimator always achieves lower MSE than the OLS. By 
definition, this makes the least square estimator inadmissible when .2>p  

We will henceforth refer to this estimator as JS. 

The family of ordinary ridge regression estimators is defined by: 

 ( ) ( ) .0,ˆ 1 >′+′=β − kYXkIXXk p  (4) 

Obviously, the OLS estimator refers to the case where .0=k  It may be 
noted here that the ordinary ridge regression estimator can be obtained by 

minimizing ββ′  subject to ( ) ( ) ,ˆˆ QXX =β−β′′β−β  where Q is fixed, Hoerl 

and Kennard [2]. It is easily seen from (4) that ( )kβ̂  is always a biased 

estimator of β, and the bias equals ( ) .1−+′− pkIXXk  Since the ridge 

regression method always yields a biased estimator, Hoerl and Kennard [2] 
studied its MSE property and showed that there always exists a 0>k  such 

that ( )kβ̂  has a smaller MSE value than ,β̂  and that a sufficient condition for 

this to hold is that 

 ,2
max

2

α

σ<k  (5) 

where 2
maxα  is the squared value of the largest element of the vector 
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,β′=α Q  Q being the matrix of orthogonal characteristic vectors of .XX ′  In 

principle, with the right choice of k, we can get an estimator with a better 
MSE. The estimate is not unbiased, but what we pay for in bias, we make up 

for in variance, since the MSE of ( )kβ̂  is given by: 

 ( ( )) [( ( ) ) ( ( ) )]β−β′β−β=β kkEkMSE ˆˆˆ  

( ) ( )∑ ∑
= = +λ

β
+

+λ

λ
σ=

p

i

p

i i

i

i

i

k
k

k1 1
2

2
2

2
2  

( ( )) ( ( )),ˆˆ 2 kBiaskVar β+β=  (6) 

where iλ  is the eigenvalue of the matrix .XX ′  Hoerl et al. [3] argued that a 

reasonable choice of k is: 

 ,
2

αα′
σ= pk  (7) 

if these quantities were known. They suggested using; 

 ,ˆˆ
ˆˆ

2

αα′
σ= pkHKB  (8) 

as an estimate of k in (7). This estimator will be denoted by HKB. 

3. The Proposed Estimator 

In this section, we suggest a new estimator by combining in a particular 
way the two approaches underlying the James-Stein and the ordinary ridge 
regression estimators and study its performance using simulation techniques. 
Specifically, we propose modifying the James-Stein estimator in the ordinary 
ridge regression philosophy so as to obtain a new estimator for β, which may 

be designated as modified ridge-Stein estimator, denoted by ( ),k∗β  and given 

by: 

 ( ) ( ) ,0,ˆ >β=β∗ kkck  (9) 
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where ( )kβ̂  is the ordinary ridge regression estimator, given by (4), and 

 ( ) .1−∗β−= JSp kIc  (10) 

Obviously, ( ) ( )kk β=β∗ ˆ  when ,0=k  where ∗βJS  is a modified estimator of 

James and Stein [4] suggested by Khalaf and Iguernane [13], given by: 

 ,ˆˆβ=β∗ cJS  (11) 

and 

 ( ) ,ˆˆ
ˆ21ˆ

2
minmax

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

β′β′
σ−

−⎥⎦
⎤

⎢⎣
⎡ λ+λ

=
XX

p
pc  (12) 

where maxλ  and minλ  are the largest and the smallest eigenvalues of the 

matrix ,XX ′  p is the number of the explanatory variables and 2σ̂  is the 

unbiased estimator of ,2σ  defined by: 

 ,2
ˆ 2

−−
=σ pn

RSS  (13) 

and RSS is the residual sum of squares. For our proposed estimator, defined 
by (9), we use the acronym GK. 

4. The Performance of the Proposed Estimator 

Since the proposed estimator is always a biased estimator of β unless 
,0=k  and hence the appropriate criterion for gauging the performance of 

our suggested estimator is the MSE of the estimator of the coefficients by 
using the simulation technique. 

4.1. Simulations and results 

A simulation study was conducted in order to draw conclusions about the 
performance of our suggested estimator relative to HKB, JS and the OLS 
estimators depending on the MSE for individual estimators and the predictive 
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accuracy of model based on the coefficient of determination 2R  for each 
method. In this paper, we simulate a set of data using SAS package, where 
the correlation coefficients between the predictor variables (the X ′ s) are 
large. The data consist of 50 observations on six regressors and a response. 
This sample of size 50 observations is simulated for 10000 iterations. The 
corresponding summary with XX ′  in correlation form based on a set of the 
simulated data is reproduced in Table 1. 

Table 1. Correlation coefficients for the 6-variables, 50=n  

 1X  2X  3X  4X  5X  6X  

1X  1      

2X  0.965 1     

3X  0.978 0.969 1    

4X  0.970 0.994 0.967 1   

5X  0.993 0.980 0.994 0.984 1  

6X  0.957 0.982 0.958 0.945 0.990 1 

The eigenvalues of the correlation matrix, ordered by their magnitudes, 
were: 6.6081, 0.0798, 0.0608, 0.0257, 0.0143, 0.0105. It is clear that the last 
five eigenvalues are fairly small. Thus, for our 6-factor data, the data are 

multicollinear because the condition number is large, 
6
1

min
max..

λ
λ

=
λ
λ

=NC  

.629=  

From the previous indicators, it is obvious that there is a serious 
multicollinearity problem because there is more than one of the eigenvalues 
close to zero and the condition number is more than 5. 

By using the OLS and the methods of HKB, JS and our proposed method 
to analyze the simulated data set, we get the following results, shown in Table 
2. 
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Table 2. The estimated regression coefficients and its MSE 

OLS HKB JS GK 

Coeff. MSE Coeff. MSE Coeff. MSE Coeff. MSE 

1.1115 0.1761 1.0021 0.1744 1.0522 0.1831 0.3232 0.0060 

-0.3806 0.2061 -0.3147 0.1753 0.3304 0.1841 0.4087 0.1359 

-0.1087 0.1872 -0.0321 0.1573 -0.0337 0.1652 0.6746 0.1804 

0.4831 0.1736 0.4326 0.1462 0.4542 0.1535 0.2762 0.1377 

-0.6747 0.3411 -0.5226 0.2309 -0.5487 0.2424 0.7772 0.3240 

0.2642 0.3052 0.1539 0.1736 0.1616 0.1823 0.4172 0.2659 

Table 3 shows the computation of the coefficient of determination ( )2R  

for each model. 

Table 3. 2R  for the OLS estimator and the other shrunken estimators 

OLS HKB JS GK 

0.763 0.802 0.773 0.931 

From the previous results, it is noticed that the shrunken regression 

models have smaller MSE and large 2R  than the OLS estimator when 
multicollinearity problem exists in the data. 

5. Conclusions 

The estimates of the OLS are great, but we can improve on them. We 
then considered shrinkage estimates and showed that if we were willing to 
give up a little in terms of bias, we could do better in terms of MSE. 

In this paper, we have combined the criteria underlying the James-Stein 
estimator and the ordinary ridge regression estimator to obtain a new 
estimator for the regression coefficients of a linear regression model which 
suffers from the problem of multicollinearity. The performance of the 
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proposed estimator, designated as modified ridge-Stein estimator, as 
compared to those of the James-Stein and ordinary ridge regression 
estimators has been studied by the criterion of MSE of the estimator of the 
regression coefficients. We have established that our new estimator has a 
small MSE value than the ordinary ridge regression estimator, and that there 
exists a value for 0>k  such that the new estimator is dominated over the 
James-Stein estimator. 
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