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Abstract 

The expression for the mutual information measure for the 
multinomial distribution is derived; the resulting information measure 
( )XT  is the difference of two terms: a constant term, denoted by 

( )qNK ,  which is an expression solely in terms of N and q, where N is 

the trial size and q is the dimension of the random vector, and the 
other term is the square of the magnitude of the probability vector 

( )Tqppp ...,,, 21  of the multinomial distribution. Also, an unbiased 

estimator for the information measure and the derivation of its 
asymptotic distribution are presented. 
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1. Introduction 

For a 1×q  random vector ( )TqXXXX ...,,, 21=  with probability density 

function or probability mass function ( )Xf  a measure of dependence, 

denoted by ( ),XT  among the q component variates qXXX ...,,, 21  has been 

introduced in the statistical research literature, see for example, Guerrero [3]. 
It is defined as 

 ( ) ( ) ( ) ( ) ,ln 21
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the q-fold integration is over the entire qR  Euclidean space and is replaced 
by summation if X has a discrete distribution; ( )ii Xf  is the marginal density 

function of the ith component ;iX  ln is the natural logarithm base e. ( ),XT  

is non-negative [Kullback (1959, p. 14)] for any distribution; it assumes the 
value 0 when the component vectors are independent; it is a special case of 
the mean information for discrimination between two competing distributions 
( ),Xf  and ( ),Xg  defined in information theory [Kullback (1959, p. 6)] as 

 ( ) ( ) ( ) ( )( )∫ ∫= dxxgxfxfgfI ln:  (1.2) 

and is known as the Kullback-Leibler number. 

( )XT  may be considered as a function of the probability vector 

parameter ( )Tqppp ...,,, 21  of the distribution. In practical applications, this 

parameter vector will be estimated from the available data set, and there is a 
need to study its sampling distribution to make it useful in statistical 
inference. In this paper, we shall present the maximum likelihood estimator 

( )XT̂  for the multinomial distribution, and then present results on its 

sampling distribution for large sample size. This paper is organized into 6 
sections. 
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2. The Multinomial Distribution 

An experiment may consist of performing N identical and independent 
trials; each trial has q number of exhaustive and mutually exclusive outcomes 

qOOO ...,,, 21  with probability of occurrence ,10:...,,, 21 ≤≤ iq pppp  

∑
=

=
q

i
ip

1
;1  these probabilities remain constant from trial to trial. If iX  

denotes the frequency count of occurrences of outcome ,iO  ,...,,2,1 qi =  

then the vector ( )TqXXXX ...,,, 21=  with ∑
=

=
q

i
i Nx

1
,  has the multinomial 

distribution with probability mass function 
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It is well known that the marginal distribution of each iX  is Binomial 

with parameters N and ;ip  and the joint marginal distribution of any subset 

of component variates is again multinomial. 

When N is large, the distribution of the random vector X is (Cramer [2]) 
approximately multivariate singular normal ( ),, ΣμqN  where 

[ ] ( ),1,,, iiiijiijij pNpjipNp −=σ≠−=σσ=Σ  

( ) ( ) ( )....,,2,1,...,,,;1 21 qiNpqrank iiq ==μ′μμμ=μ−=Σ  

This information will be used to derive the asymptotic distribution of an 
unbiased estimator for ( ).XT  

3. Mutual Information Measure for the Multinomial Distribution 

The mutual information ( )XT  for the multinomial distribution will now 

be presented. The proof is provided in Appendix (6.1). 
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Theorem 1. The mutual information ( ),XT  for the multinomial 

distribution, is given by 

 ( ) ( ) ∑
=

−=
q

i
ipqNKXT

1

2,,  (3.1) 

where 
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NqqNK
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( ) ( ) .112
1ln +−+−+ qNNq  (3.2) 

Remark (R3.1). As can be seen in the derivation of the expressions in 
(3.1) and (3.2) in Appendix (6.1), the equality in (3.1) is derived from the 
application of two approximations: Stirling’s factorial approximation and the 
linearization of the natural logarithm function near the origin. 

We now consider the two terms in (3.1): 

(3.1) The term ( )qNK ,  

It is to be noted that the term ( )qNK ,  defined in (3.2) is independent         

of parameter probability vector ( ) ....,,, 21
T

qppp  It is linear in q with a 

verifiable negative slope ( );, qNKq∂
∂  hence for a fixed sample size N, at 

2=q  (a Binomial distribution), ( )XT  is largest, and decreases with larger 

q. For a fixed q, ( )qNK ,  increases with larger sample size N. These 

statements are supported by an empirical evidence provided by numerical 
values summarized by the following table: 
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Table 1. Values of ( )qNK ,  for 10,5,3,2=q  

For 32 == qq  

N ( )qNK ,  

  

2 1.724/1.682 

3 1.940/1.913 

5 2.207/2.190 

10 2.562/2.554 

15 2.767/2.762 

20 2.913/2.908 

25 3.025/3.022 

30 3.117/3.114 

45 3.320/3.319 

For 105 == qq  

N ( )qNK ,  

  

5 2.157/2.074 

10 2.537/2.495 

15 2.751/2.723 

20 2.900/2.879 

25 3.015/2.988 

30 3.108/3.094 
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The numerical values for ( )qNK ,  in Table 1 were computed by 

implementing (3.2) in a simple program in TI-83; this program is 
documented in Appendix (6.2). 

(3.2) Now the term ∑
=

q

i
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2  

By elementary vector algebra arguments, it can be shown that 
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2 ,11  and from (3.1), 

 ( ) ( ) ( ) .1,1, qqNKXTqNK −≤≤−  (3.2.1) 

We require that ( ) 1, ≥qNK  so that ( ) .0≥XT  For a fixed N, this will 

be achieved if ,2 ∗≤≤ qq  where ( )Nqq ∗∗ =  is the solution of the linear 

equation ( ) 1, =∗qNK  in the unknown .∗q  This requirement appears to be 

the restriction on the validity of the formula for ( )XT  as given in (3.1). 

Setting the right hand side of (3.2) to 1, we can easily solve for =∗q  

( )Nq∗  as 

( ) [ ( ) ][ ( ) ] .2ln!ln21!ln 1−∗∗ −π+−+== NNNNNNNNqq NN  (3.2.2) 

Not much of a restriction as the next table of numerical values suggests. 
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Table 2. Ceiling values ( )Nq∗  

N 5 10 15 20 25 30 35 40 45 

( )Nq∗  74 189 320 461 609 764 923 1087 1255 

4. Unbiased Maximum Likelihood Estimator for ( )XT  

In some situations the true proportions ,ip  qi ...,,2,1=  are not known; 

they are usually estimated by ,ˆ NXp ii =  their maximum likelihood 

estimates. Replacing ip  with ip̂  in the expression for ( )XT  gives its 

maximum likelihood estimator: 

( ) ( ) ( )∑
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−=
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i
ipqNKXT

1

2,ˆ,ˆ  

or equivalently, 

 ( ) ( ) ( ) ( )∑
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i
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1

22 ,1,ˆ  (4.1) 

where the iX ’s are the observed frequency counts. 

Taking the expectation of (4.1)’, with ( ),,~ ii pNBinoX  we have 
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This plainly shows that ( )XT̂  is asymptotically unbiased estimator for ( );XT  

furthermore, the last equation suggests the unbiased estimator 

 ( ) ( ) ∑
=

−
−+=
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i
iXN

N
NqNKXT

1

2.1
1,~  (4.2) 

5. Asymptotic Sampling Distribution for 

the Unbiased Estimator ( )XT~  

From Cramer [2], for large N, the multinomial random vector X follows 
approximate multivariate singular normal distribution ( );,~ ΣμqNX  where 

( ) ( ) ;1;...,,, 21 −=Σ=μ′ qrankpppN q  

[ ] jiijij pNp−=λλ=Σ ,  for ( ).1, iiii pNpji −=λ≠  (5.1) 

We shall follow Rao (1965, p. 528) in identifying the subspace where the 
random vector X has a non-zero density function; and we shall write its 
density function as adopted from the same source. 

The linear transformation qq RRL →:  with matrix Σ has a null     
space of dimension one and has its corresponding orthogonal subspace of 
dimension ( ).1−q  Let B be the ( )( )1−× qq  matrix whose columns are the 

unit basis vectors for the orthogonal subspace of .: qq RRL →  Then the 
asymptotic density function of X is 

 ( ) ( ) {( ) ( ) ( ) },2exp2
21

2
μ′−′Σ′′μ′−′

λλλ
π= −

−
BXBBBBXBXf

k

k
 (5.2) 

whenever X lies on the subspace orthogonal to the hyperplane ;μ′=′ AXA  

zero otherwise kλλλ ...,,, 21  are the non-zero eigenvalues of ;Σ  .1−= qk  

Note that ( )−Σ′ BB  is a ( ) ( )11 −×− qq  non-singular matrix, and therefore 

the above density function is a non-singular multivariate density function 
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restricted on the indicated subspace which is orthogonal to the hyperplane 
;μ′=′ AXA  the density function is zero on that hyperplane. 

We now can focus on the random term ( )∑
=

q

i
iX

1

2  of the expression for 

( )XT~  in (4.2) and indicate the steps needed to write its density function. We 

recognize this as a quadratic form of a singular multivariate normal 
distribution. The relevant known result for a non-singular multivariate 
normal distribution is from Anderson [1, p. 77]. We quote and list as: 

Theorem 2. If V is a random vector of p components and is distributed 
as ( ),, IN Λ  then VV ′  has density function 
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where ΛΛ′=τ2  is the non-centrality parameter. 

(5.3) gives the density of a non-central chi-square distribution with non-

centrality parameter .2 ΛΛ′=τ  

An appropriate non-singular linear transformation of the multinomial 
random vector X, of the form ,XBC ′  would achieve the transformation of the 

variance-covariance matrix Σ in (5.2) into the identity matrix I. The matrix B 
is as defined in (5.2); it maps the random vector into the subspace orthogonal 
to the linear subspace .μ′=′ AXA  This would enable us to apply the above 

quoted result from Anderson; then, employing the back transformation 

( ) ( )XBCBCX ′′= −1  should give us the desired density function for the 

quadratic form ∑
−

=
=′

1

1

2
q

i
iXXX  and thus that of ( )XT~  of equation (4.2). This 

program of derivation can be carried out, if desired, as outlined in this 
paragraph. 
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We would thus be able to write the sampling distribution of ( )XT~  for 

large N, correct to within a constant factor, as the density of a non-central 
chi-square distribution. 

For statistical inference applications, the estimate for unknown mean 

vector ( )Tq
T pppN ~...,,~,~

21=μ  will be used to compute the non-centrality 

parameter ΛΛ′=τ2  in equation (5.3). 

6. Appendix 

(6.1) 

The validity of Theorem 1 will now be shown. 

Re-write the right side of equation (1.1) as an expectation 
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From the multinomial distribution with probability mass function (2.1), 
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Simplifying (6.1.2), we have 
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Using Stirling’s factorial approximation ( ) nnennn −π≈ 2!  and ( ) uu −≈−1ln  

for ;10 << u  then summing up with respect to i, we have for the last term 
on the right hand side of (6.1.3), 
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Using (6.1.4) in (6.1.3) and taking expectation gives 
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Simplifying, we have 

( ) ( ) ( ) ( ) ( )( ) 21ln12ln2!ln1 −−+π+−= NNqqNqXT  
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This is the expression (3.1) in Theorem 1. 

(6.2) 

Program MULTI 

: prompt N, Q 

: prod ( )( )( ) RNxxNxseq store⎯⎯⎯ →⎯−−+ 1,1,0,,1  

( ) ( ) ( )( ) SNQq store⎯⎯⎯ →⎯−+π 21ln2ln2:  

( ) TQN store⎯⎯⎯ →⎯+− 11:  

( ) UTSRQ store⎯⎯⎯ →⎯++− ln1:  

: display U 

:  

Remarks 

(R6.2.1) The second line in this program can compute !NN N  for any 

inputted positive integer up to 230=N  in the hand held scientific calculator 
TI-83. 

(R6.2.2) This program can be modified to include the computation of ∗q  

of equation (3.2.2); this was done to generate Table 2. 
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