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Abstract 

This paper aims to suggest a statistical model to estimate the number 
of crimes and to determine the most important variables and factors 
that have positive impact on increasing number of drug and theft 
crimes. These crimes are the most frequent in the Egyptian society. 
The study covers the period from 2000 to 2010 monthly data. The 
dependent variable is the number of offenses for which the judgment 
was issued for each crime. The independent variables were formed in 
five groups, each group contains several independent variables. These 
groups are (1) crime type, (2) offender career, (3) offender gender, (4) 
offender age and (5) offender educational level. Four statistical models 
were applied: multiple linear regression, multilayer perceptron neural 



M. G. Moustafa, M. M. A. Abdelaal and M. M. Eisa 94 

network, regression support vector machine and general regression 
neural network for each independent variables group via the dependent 
variable for each crime. Also, the factor analysis has been applied for 
each independent group, then these factors used as independent 
variables via the dependent variable using the four models. The results 
showed that the recommended model for the drug crime was RSVM 
using the factors and GRNN for theft crime using the factors. 

1. Introduction 

This paper aims to suggest a statistical model to estimate the number of 
crimes and to determine the most important variables and factors that have 
positive impact on increasing number of drug and theft crimes. The problem 
of the research is to identify the key variables and factors causing crime rates 
increase, where the results of this study can be used as an aid to the security 
bodies to prevent crime before it happens. The study data is the number of 
cases of drug and theft crimes because these two crimes are the most frequent 
and danger crimes in the Egyptian society. 

The source of data is the monthly reports of public security in Arab 
Republic of Egypt, which issued by the Department of Public Security, 
Ministry of the Interior. These data are monthly time series of number of 
drug and theft crimes at the level of Arab Republic of Egypt from 2000 to 
2010 for drug crimes, but for theft data crime the monthly time series data 
from 2001 to 2010. 

Drug crime definition 

Drug crime is the umbrella term used to describe different offenses 
involving controlled substances. Each state and the federal government have 
enacted laws against unlawful possession, use, distribution, or production of 
certain drugs. These include cocaine, heroin, marijuana and amphetamines. 
Such legislations aim to reduce illegal drug use, and reduce drug related 
crimes. 

Theft crime definition 

A criminal act in which property belonging to another is taken without 



Suggested Statistical Model to Determine the Important Variables ... 95 

that person’s consent. The term theft is sometimes used synonymously with 
larceny. Theft, however, is actually a broader term, encompassing many 
forms of deceitful taking of property, including swindling, embezzlement, 
and false pretenses. Some states categorize all these offenses under a single 
statutory crime of theft. 

2. Study Techniques 

Two types of techniques have been investigated, parametric analysis 
such as multiple linear regression (MLR) and non-parametric analysis such 
as multilayer perceptron neural network (MLP), regression support vector 
machine (RSVM) and generalized regression neural networks (GRNN). 

2.1. Neural network 

Artificial neural networks (ANN) are collections of mathematical models 
that emulate some of the observed properties of biological nervous systems 
and draw on the analogies of adaptive biological learning. The key element 
of the ANN paradigm is the novel structure of the information processing 
system. It is composed of a large number of highly interconnected processing 
elements that are analogous to neurons and are tied together with weighted 
connections that are analogous to synapses. 

When the network is executed (used), the input variable values are 
placed in the input units, and then the hidden and output layer units are 
progressively executed. Each of them calculates its activation value by taking 
the weighted sum of the outputs of the units in the preceding layer, and 
subtracting the threshold. The activation value is passed through the 
activation function to produce the output of the neuron. When the entire 
network has been executed, the outputs of the output layer act as the output 
of the entire network [7]. 

2.1.1. Multilayer perceptron 

The multilayer perceptron (MLP) is one of the most widely implemented 
neural network topologies. Generally speaking, for multiple regression 
model, the MLP with two hidden layers is a universal pattern. When the 
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weights are properly normalized and the output classes are normalized, the 
MLP achieves the performance of the maximum a posteriori receiver, which 
is optimal from a regression model. In terms of mapping abilities, the MLP is 
believed to be capable of approximating arbitrary functions. This has been 
important in the study of nonlinear dynamics, and other function mapping 
problems. MLPs are normally trained with the BP algorithm [14]. In fact the 
renewed interest in ANN was in part triggered by the existence of BP. The 
BP rule propagates the errors through the network and allows adaptation of 
the hidden processing elements (PE). 

Two important characteristics of the MLP are: its nonlinear PEs which 
have a nonlinearity that must be smooth (the logistic function and the 
hyperbolic tangent are the most widely used); and their massive 
interconnectivity, such as any element of a given layer feeds all the elements 
of the next layer [9]. 

The MLP is trained with error correction learning, which means that the 
desired response for the system must be known. Error correction learning 
works in the following way: from the system response at ith PE at nth 
iteration, ( )nYi  and the desired response ( )ndi  for a given input pattern an 

instantaneous error ( )nei  can be expressed as follows: 

 ( ) ( ) ( ).nYndne iii −=  (1) 

Using the theory of gradient descent learning, each weight in the network 
can be adapted by correcting the present value of the weight with a term that 
is proportional to the present input and error at the weight, which can be 
expressed as follows: 

 ( ) ( ) ( ) ( ).1 nxnnwnw jiijij ηδ+=+  (2) 

The local error ( )niδ  can be directly computed from ( )nei  at the output 

PE or can be computed as a weighted sum of errors at the internal PEs. The 
constant η is called the step size. This procedure is called the BP algorithm. 
BP computes the sensitivity of a cost functional with respect to each weight 
in the network, and updates each weight proportional to the sensitivity. The 
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beauty of the procedure is that it can be implemented with local information 
and requires just a few multiplications per weight, which is very efficient. 
Because this is a gradient descent procedure, it only uses the local 
information so can be caught in local minima. Moreover, the procedure is 
essentially noisy since we are using a poor estimate of the gradient, causing 
slow convergence. 

Momentum learning is an improvement to the straight gradient descent in 
the sense that a memory term (the past increment to the weight) is used to 
speed up and stabilize convergence. In momentum learning the equation to 
update the weights becomes as follows: 

 ( ) ( ) ( ) ( ) ( ( ) ( )),11 −−α+ηδ+=+ nwnwnxnnwnw ijijjiijij  (3) 

where α is the momentum factor. Normally α should be set between 0.1 and 
0.9. Training can be implemented in two ways: either we present a pattern 
and adapt the weights (on-line training), or present all the patterns in the 
input file (an epoch), accumulate the weight updates, and then update the 
weights with the average weight update. This is called batch learning. They 
are theoretically equivalent, but the former sometimes has advantages in 
tough problems. 

2.1.2. Back-propagation 

To start BP, load an initial value for each weight (normally a small 
random value), and proceed until some stopping criterion is met. The three 
most common are: to cap the number of iterations, to threshold the output 
mean square error and checking the progress of learning is fundamental in 
any iterative training procedure. The learning curve illustrates how the mean 
square error changes with the training iteration. When the learning curve is 
flat, the step size should be increased to speed up learning. On the other 
hand, when the learning curve fluctuates up and down the step size should be 
decreased. In the extreme, the error can go little by little up, showing that 
learning is unstable. At this point the network should be reset. When the 
learning curve stabilizes after many iterations at an error level that is not 
acceptable, more hidden PEs or more hidden layers can be trained [14]. 
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The MLP model using the BP algorithm is one of the well-known neural 
network; which consist of sets of nodes arranged in multiple layers with 
connections only between nodes in the adjacent layers by weights. The layer 
where the inputs information is presented is known as the input layer. The 
layer where the processed information is retrieved is called the output layer. 
All layers between the input and output layers are known hidden layers. For 
all nodes in the network, except the input layer nodes, the total input of each 
node is the sum of weighted outputs of the nodes in the previous layer. Each 
node is activated with the input to the node and the activation function of the 
node (equation (4)). The input and output of the ith node (except for the input 
layer) in a MLP mode, according to the BP algorithm computations can be 
expressed as follows: 

Input: ,∑ += ijiji BOWX  (4) 

Output: ( ),ii XFO =  (5) 

where 

ijW  : the weight of the connection from node i to node j, 

iB  : the numerical value called bias, 

F  : the activation function. 

The sum in equation (4) is over all nodes j in the previous layer. The 
output function is a nonlinear function which allows a network to solve 
problems that a linear network cannot solve. In this study the sigmoid 
function given in equation (6) is used to determine the output state: 

 ( ) ( ) .exp1
1

i
i XXF

−+
=  (6) 

BP learning algorithm is designed to reduce an error between the actual 
output and the desired output of the network in a gradient descent manner. 
The summed squared error (SSE) is defined as: 

 ,2
1

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑∑

p i
pipi tOSSE  (7) 
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where p indexes the all training patterns and i indexes the output nodes of the 
network. piO  and piT  denote the actual output and the desired output of 

node, respectively when the input vector p is applied to the network [7]. A 
set of representative input and output patterns is selected to train the network. 
The connection weight ijW  is adjusted when each input pattern is presented. 

All the patterns are repeatedly presented to the network until the SSE 
function is minimized and the network learns the input patterns. The 
following iterative weight update rule can be used for the applications of the 
gradient: 

 ( ) ( ( )),1 nWOnW ijiiij Δα+δη=+Δ  (8) 

where 

Δ  : the learning factor, 

α  : the momentum factor, 

iδ  : the node error, for output node i is then given as 

 ( ) ( ).1 iiiii OOOt −−=δ  (9) 

The node error at an arbitrary hidden node is 

 ( ) .1 ∑δ−=δ
k

kikjii WOO  (10) 

2.2. Regression support vector machine technique 

One of the most useful applications of statistical analysis is the 
development of a model to explain the relationship between the variables. 
Many types of models have been developed, including regression support 
vector machines. Methods for analyzing and modeling data can be divided 
into two groups; “supervised learning” and “unsupervised learning”. 
Supervised learning requires input data that has both independent variables 
and a dependent variable (target) whose value is to be estimated. By various 
means, the process “learns” how to model predict the value of the target 
variable based on the predictor variables. Regression analysis is an example 
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of supervised learning. If the goal of an analysis is to predict the value of 
some variable, then supervised learning is recommended approach. 

Unsupervised learning does not identify a dependent variable (target), 
but rather treats all of the variables equally. In this case, the goal is not to 
predict the value of a variable but rather to look for patterns, groupings or 
other ways to characterize the data that may lead to understanding of the way 
the data relate. Cluster analysis, correlation, factor analysis (principle 
components analysis) and statistical measures are examples of unsupervised 
learning. Regression support vector machines (RSVM) is one of the best 
modeling methods. 

In the manner of speaking of RSVM literature, a predictor variable is 
called an attribute, and a transformed attribute that is used to define the 
hyperplane is called a feature. The task of choosing the most suitable 
representation is known as feature selection. A set of features that describes 
one case (i.e., a row of predictor values) is called a vector. So the goal of 
RSVM modeling is to find the optimal hyperplane that separates clusters of 
vector in such a way that cases with one category of the target variable are on 
one side of the plane and cases with the other category are on the other size 
of the plane. The vectors near the hyperplane are the support vectors. 

To illustrate RSVM, let us assume that there is a linear relationship with 
N observations. The independent variable is ix  and the dependent variable is 

iy  given that ....,,3,2,1 Ni =  The goal of RSVM is to produce a linear 

function which can make the best fit of the dependent variable .iy  The linear 

function can be expressed as follows: 

 ( ) ,axbxfy +•==  (11) 

where b and a are the regression parameters and xb •  is the dot product of 

b and x. 

The dot product is the result of multiplying all the components of two 
vectors together and adding the results. The dot product of two vectors =b  
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[ ]nbbb ...,,, 21  and [ ]nxxxx ...,,, 21=  is defined as: 

∑
=

+++==•
N

i
NNii xbxbxbxbxb

1
2211 .  

The optimum regression function can be found by minimizing the following 
function [4]: 

 ( ) ( ).5.0,
1

2 ∑
=

+− ++=
N

i
ii SSCbSbM  (12) 

The constraints can be as follows: 

,, iii Saxby +ε≤−−  

,, ∗+ε≤−+ iii Syaxb  

,0, ≥∗
ii SS  

where C is a constant greater than zero, and can be used to determine the 
trade off the smoothness of f and the amount up to which deviations larger 
than ε are accepted. 

−
iS  and +

iS  are two slack variables, which can be used to represent the 

upper and lower constraints of the regression function. 

b  is norm of b. The norm is the square root of the inner product of the 

vector and itself, which can be as follows: .22
2

2
1 Nbbbb +++=  

To find the optimum solution of M function, loss function must be 
determined. RSVM based on a loss function. Loss function is a function 
shows the maximum allowed deviation of the predicted values from the 
observed one. The most recommended loss functions are four. These four 
functions are: Huber, ε-insensitive, quadratic and Laplace. Figure 1 shows 
the difference between the four types of loss functions. 
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Figure 1. The four types of loss functions. 

The first loss function is Huber loss function; it is a robust loss function 
that has optimal properties when the underlying distribution of the data is 
unknown. The second one is ε-insensitive loss function; it is an 
approximation to Huber’s loss function but it can reduce sensitivity to the 
outliers. The third one is quadratic loss function; it corresponds to the 
predictable least squares error measure. The fourth one is Laplace loss 
function; it is less sensitive to outliers than the quadratic loss function. 

In this paper, the ε-insensitive loss function was selected. For RSVM 
model which depends on the ε-insensitive loss function; the difference 
between the estimated values and the observed values of the dependent 
variable iy  can be calculated. If the difference is less than ε, the regression 

function is considered to be most popular and accurate [19]. The ε-insensitive 
loss function can be expressed as follows: 

 
⎩
⎨
⎧

ε−

ε<
=ε otherwise.,

,if,0
S

S
S  (13) 

Figure 2 shows that the difference between the RSVM and ordinary least 
square (OLS) estimation. In the left figure there are two bounds around the 
regression line and if the error between the prediction and the actual value is 
less than ε, the error is ignored geometrically, this can be thought of as fitting 
a tube of width 2ε to the data. The right figure shows traditional approach of 
OLS estimation which based on minimizing the squared error. 
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Figure 2. The loss function of RSVM and OLS. 

Most modeling techniques are trying to find the best fit between the 
observed and predicted values, however, RSVM’s ε-insensitive loss function 
focuses on optimizing a bound around the regression function, thus making it 
more strong against the outliers. 

To find the solution of equation (12), Lagrange optimization must be 
used, the solution to this optimization problem can be expressed as follows: 

Minimize the target function as follows: 

( ) ( ) ( ) ( ) ( ).5.0
1

1
1 1

∑ ∑ ∑
=

=
= =

∗∗∗∗ α−α+α−α−αα−α+α+αε
N

i

N

j
i

N

i
iiijijjiiii yx  

 (14) 

The constraints can be as follows: 

 ( ) ,,0,0
1
∑
=

∗∗ ≤αα≤=α−α
N

i
iiii C  (15) 

where iα  and ∗αi  are the Lagrange multipliers. 

RSVM models are built around a kernel function that transforms the 
input data into an n-dimensional space where a hyperplane can be constructed 
to partition the data. There are four kernel functions, linear, polynomial, 
radial basis function (RBF) and sigmoid (S-shaped). There is no way in 
advance to know which kernel function will be best for an application, but 
the RBF function has been found to do best job in the majority of cases. 
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The RBF kernel non-linearly maps samples into a higher dimensional 
space, so it can handle nonlinear relationships between target categories and 
predictor attributes; a linear basis function cannot do this. Furthermore, the 
linear kernel is a special case of the RBF. A sigmoid kernel behaves the same 
as a RBF kernel for certain parameters. The RBF function has fewer 
parameters to tune than a polynomial kernel, and the RBF kernel has less 
numerical difficulties. 

This is the case of linear regression, but to illustrate the regression case 
of non-linear the data must be firstly linearized by mapping it into a higher 
dimensional space, called “feature space”, by using kernel functions, that 
linear regression functions can be applied. The most recommended kernel 
function is the radial basis function (RBF) kernels [2]. The RBF kernel is 

defined as: ( ) ( ) ,,
2yxyyeyxK −−=  where γ is a kernel parameter. 

Insert kernel function in the previous model (14), this model can be 
adjusted as follows: 

Minimize: 

( ) ( ) ( ) ( ) ( )∑ ∑ ∑
=

=
= =

∗∗∗∗ α−α+•α−αα−α+α+αε
N

i

N

j
i

N

i
iiijijjiiii yxxK

1
1
1 1

.5.0  

 (16) 
The same constraints can be used. 

2.3. Generalized regression neural networks 

The general regression neural network (GRNN) is one of the most 
popular neural networks. They have a parallel structure where the learning is 
one fold that is input to structure to output there is no iterative learning 
present such as in the case of MLP making them fast to some extents. Also, 
they perform well on noisy data then say Back-propagation Neural Networks 
(BPNN) if the available data is large enough. GRNN is also very unswerving 
and as the size of the dataset increases the error approaches towards zero. 

The GRNN infrastructure consists of four layers input, hidden, 
summation and output layer. 
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• The input layer merely transports the data attributes to the next layer 
in a parallel archetype. 

• The second layer consists of all the training samples. 

• In the summation layer the summation units or neurons perform a dot 
product on the attributes of the weight vector of the second layer. 

• Then in the output layer the respective local outputs are divided to get 
the predictions. 

Input layer 

There is one neuron in the input layer for each predictor variable. The 
input neurons (or processing before the input layer) standardize the range of 
the values by subtracting the median and dividing by the interquartile range. 
The input neurons then feed the values to each of the neurons in the hidden 
layer. 

Hidden layer 

This layer has one neuron for each case in the training data set. The 
neuron stores the values of the predictor variables for the case along with the 
target value. When presented with the x vector of input values from the input 
layer, a hidden neuron computes the Euclidean distance of the test case from 
the neuron’s center point and then applies the RBF kernel function using the 
sigma value(s). The resulting value is passed to the neurons in the pattern 
layer. 

Pattern layer (summation layer) 

There are only two neurons in the pattern layer. One neuron is the 
denominator summation unit and the other is the numerator summation unit. 
The denominator summation unit adds up the weight values coming from 
each of the hidden neurons. The numerator summation unit adds up the 
weight values multiplied by the actual target value for each hidden neuron. 

Output layer 

The decision layer divides the value accumulated in the numerator 
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summation unit by the value in the denominator summation unit and uses the 
result as the predicted target value. 

Basically, there are two types of ANN’s those that predict categorical 
output, and those that predict continuous output. The GRNN predicts 
continuous outputs. Two main functions are required of GRNN nodes. Those 
functions can be used to calculate the difference between all pairs of input 
pattern vectors, and to estimate the probability density function of the input 
variables. Calculation of the difference between input vectors is the simple 
Euclidean distance between data values in attribute space. Weighing the 
calculated distance of any point by the probability of other points occurring 
in that area yields a predicted output value. With those two tasks 
accomplished it is a rather straightforward process of predicting the output. 

Determining the joint probability density function ( )dyyxXYfPDF ,=  

of the variables is the main difficulty in utilizing equation: 

 ( )
( )

( )
.

,

,

∫
∫ ∗

=|
dyyxf

dyyxfy
XE

XY

XY
XY  (17) 

The new x value can be expressed as follows: 

 ( ) ,,
1

2

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ
−

=
p

j j

ijj
i

xx
xxD  (18) 

where x is the input vector, ix  is the ith case vector, jx  is the jth data value 

in the input vector, ijx  is the jth data value in the ith case vector, and jδ  is 

the smoothing factor (Parzen’s window) for the jth variable. 

The predicted y is reasonable because it is similar to the y values which 
have x values similar to the new x value. Weights, or levels of similarity, are 
assigned to each point as determined by their distance from the new x, little 
weight is given to those points that have x values very different from that of 
the new x value because it is not very probable that the predicted y is affected 
by the more distant points. Calculating all the y values for the entire range of 
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x values would yield a curve. No priori assumption was made about the 
shape of that curve, nor was one made about the distribution of the data. We 
did, however, visualize the joint probability of x and y values. 

With most Neural Networks, data are segregated into two classes: 
training data and validation data. The training data set are the data to which 
the weights or coefficients are initially applied. In regression, training data 
are equivalent to the data used for estimation. For neural nets to converge on 
a generalizable solution through iteration there must be a test set, against 
which prediction accuracy is compared. The test set may be randomly 
extracted from the larger sample or, in the case of time series, may consist of 
the most recent few events. 

The leave-one-out (LOO) method of evaluating sigma values during the 
optimization process. This measures the error by building the model with all 
training rows except for one and then evaluating the error with the excluded 
row. This is repeated for all rows, and the error is averaged. 

GRNN interpretation 

Interpretation of GRNN analysis takes on three main forms - comparison 
of each variable’s final smoothing factor (sigma), an overall model goodness 
of fit measure (R-squared), and visual analysis [21]. As stated earlier, the 
smoothing factor is a measure of each sample data point’s sphere of 
influence. When sample data points for one variable have greater spheres of 
influence than sample data points for a second variable, the first variable is 
said to be more important in predicting an outcome than the second variable. 
Examination of the relative ranking of sigma weights reveals which input 
variables are most important in determining the output. Such an examination 
is analogous to comparing the standardized beta values in OLS regression. 

When comparing GRNN results to OLS regression results, analyzing the 
visual relationship between predictions is also very useful. OLS regression 
assumes a linear relationship between data values - the GRNN does not. 
Likewise, other types of relationships can be modeled with regression 
techniques (i.e., exponential, logarithmic, polynomial), but the type of 
relationship must be assumed prior to running the regression. The GRNN, on 
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the other hand, fits the relationship between variables regardless of the form 
of their relationship because its predictions are a result of the joint 
probability density function between variables. No prior assumption about 
that relationship is made. Thus, plotting data points, regression lines, and 
GRNN lines makes possible a visual determination of which technique best 
fits the data. While in some cases the GRNN will not improve upon standard 
regression predictions, it nearly always will when the relationships are non-
linear. 

The final method of analyzing output from the GRNN is to calculate the 
percent of the variance in the output variable that is explained by the input 
variables (R-squared). R-squared in the GRNN is the same as in OLS 
regression analysis - it is the coefficient of multiple determination. In many 
cases R-squared is the final measure of which model, the GRNN or OLS 
regression, is the better predictor of the output. Also, multiple GRNN 
analyses may be run in which the same variables are used, but their scale of 
analysis is varied. In that situation the model whose R-squared value is 
highest represents the model with the most appropriate combination of 
scales. 

GRNN limitations 

Even though the GRNN is in many cases a better predictor than OLS 
regression, numerous statistics that OLS regression calculates to aid model 
interpretation are not present in the GRNN. OLS regression produces 
unstandardized beta values that represent a unit change in the output, given a 
unit change in the input. Since GRNN function approximation can be highly 
non-linear, calculation of such a statistics is unreasonable if not impossible. 
To a certain point, however, visual analysis of predicted values substitutes 
for the linear mathematical understanding given in OLS regression. OLS 
regression also provides significance levels for all of its statistics, another 
descriptor absent from GRNN analysis. Possible smoothing factors range 
from 0 to infinity, depending on variable importance and sample size. 
Without such significance levels, or confidence intervals, it is not possible to 
know how a small change in the smoothing factors would affect the predicted 
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value. A standardized method of assessing confidence intervals associated 
with each variable would certainly make GRNN interpretation more robust. 

Generalized regression neural networks (GRNN) is a special case of 
radial basis networks (RBN). Compared with its competitor, e.g. standard 
feed forward neural network, GRNN has several advantages. First of all, the 
structure of a GRNN is relatively simple and static with 2 layers, namely 
pattern and summation layers. Once the input goes through each unit in the 
pattern layer, the relationship between the input and the response would be 
“memorized” and stored in the unit. As a result, # of units in the pattern layer 
is equal to # of observations in the training sample. In each pattern unit, a 
Gaussian PDF would be applied to the network input such that 

 [ ( ) ( ) ( )],5.0 2SigmauXuXEXPTheta −′−−=  (19) 

where Theta is the output from pattern units, X is the input, u is training 
vector stored in the unit, and Sigma is a positive constant known as “spread” 
or “smooth parameter”. Once Theta is computed, it is passed to the 
summation layer to calculate ( ) ( ),ThetaSUMThetaYSUMXY ∗=  where 

XY  is the prediction conditional on X and Y is the response in the training 

sample. In addition to the above, other benefits of GRNN are listed below 
[21]: 

(1) The network is able to learning from the training data by “1-pass” 
training in a fraction of the time it takes to train standard feed forward 
networks. 

(2) The spread, Sigma, is the only free parameter in the network, which 
often can be identified by the V-fold or split-sample cross validation. 

(3) Unlike standard feed forward networks, GRNN estimation is always 
able to converge to a global solution and will not be trapped by a local 
minimum. 

RBF networks are very similar to GRNN networks. The main difference 
is that GRNN networks have one neuron for each point in the training file, 
whereas RBF networks have a variable number of neurons that is usually 
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much less than the number of training points. For problems with small to 
medium size training sets, GRNN networks are usually more accurate than 
RBF networks, but GRNN networks are impractical for large training sets. 

GRNN networks have advantages and disadvantages compared to 
multilayer perceptron networks: 

 It is usually much faster to train a GRNN network than a MLP 
network. 

 GRNN networks often are more accurate than MLP networks. 

 GRNN networks are relatively insensitive to outliers (wild points). 

 GRNN networks are slower than MLP networks at classifying new 
cases. 

 GRNN networks require more memory space to store the model. 

 GRNN networks are very similar to RBF networks. 

3. Data 

The study variables of drugs and theft crimes were formed in five groups 
of independent variables. Each group contains several independent variables. 
These groups are (1) crime type, (2) offender career, (3) offender gender, (4), 
offender age and (5) offender educational level. The dependent variable is 
the number of offenses for which the judgment was issued for drug crimes 
(YD), and theft crimes (YT). 

Independent variables 

The crime type of drug is different than the crime type of theft, while the 
rest of the four independent groups are same for both drug and theft. The 
independent variables of the first group are listed in the following table: 
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Table 1. The independent variables of the crime type group 
Symbol Drug Symbol Theft 

11XD  Several types of drugs 11XT  Steal homes 

12XD  Materials affecting the mental state 12XT  Auto theft 

13XD  Plantations crimes 13XT  Theft shops 

14XD  Cocaine crimes 14XT  Robbery 

15XD  Heroin offenses 15XT  Theft of public funds 

16XD  Opium crimes 16XT  Pickpocket crimes 

17XD  Cannabis offense   

The other four groups have the same definition of each variable and 
different symbol as listed below in the following table: 

Table 2. The independent variables groups and the variables of each group 
Groups Drug Theft Definition 

21XD  21XT  Different occupations 

22XD  22XT  Businessman 

23XD  23XT  Students 

24XD  24XT  Doctors and pharmacists 

25XD  25XT  Unskilled workers 

26XD  26XT  Skilled workers 

Offender career 

27XD  27XT  Unemployed 

31XD  31XT  Female 
Offender gender 

32XD  32XT  Male 

41XD  41XT  Without the date of birth 

42XD  42XT  Age greater than 30 years old 

43XD  43XT  Age between 30:25 

44XD  44XT  Age between 25:21 

45XD  45XT  Age between 21:18 

Offender age 

46XD  46XT  Age less than 18 years old 

51XD  51XT  Higher than average education 

52XD  52XT  Average education or less Offender’s level 
of education 

53XD  53XT  Illiterates 
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4. Analysis and Results 

Four techniques have been illustrated in the previous section, these 
techniques have been carried out for each crime, and for each group of 
independent variables via the dependent variable. Also the factor analysis 
was applied for each independent group separately to determine the most 
important variables for each factor and then the four techniques were applied 
for these factors. The following table shows the most important independent 
variables for each group of the drug crime and the coefficient of each 
variable. 

Table 3. The factors of each group for drug crime 
 Group 1 Group 2 Group 3 Group 4 Group 5 

Drug Fac1D Fac2D Fac3D Fac4D Fac5D Fac6D Fac7D 

11XD  0.766       

12XD   0.995      

13XD   0.651      

17XD  0.839       

23XD    0.829     

24XD    0.611     

25XD     0.891    

26XD     0.896    

27XD    0.886     

31XD      0.935   

32XD      0.935   

42XD       0.730  

43XD       0.952  

44XD       0.954  

45XD       0.727  

46XD       0.691  

51XD        0.041 

52XD        –0.216 

53XD        0.747 
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The following table shows the most important independent variables for 
each group of the theft crime and the coefficient of each variable: 

Table 4. The factors of each group for drug crime 

 Group 1 Group 2 Group 3 Group 4 Group 5 

Theft Fac1T Fac2T Fac3T Fac4T Fac5T 

11XT  0.719     

15XT  0.763     

16XT  0.835     

21XT   0.774    

25XT   0.710    

26XT   0.947    

27XT   0.608    

31XT    0.450   

32XT    0.450   

42XT     0.699  

43XT     0.714  

44XT     0.715  

53XT      1.003 

The four models MLR, MLP, RSVM and GRNN were applied to the 
data of drug crime and theft crime. These techniques used the independent 
variables of each group separately via the dependent variable. Also these 
techniques used the factors of factor analysis via the dependent variable. The 
following figure illustrates the steps of the analysis. 
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Figure 3. The sequences of the analysis. 

Each group of independent variables has been used each technique, so 
for each group there were four models for each group (the total number of 
models were 20 models). In addition to the 20 models there are four models 
for the four techniques using the results of the factor analysis. The results of 
the analysis can be presented in four measurers’ the variable importance, 

highest proportion of variance explained by model ( )2R  for each model and 

for each group, the mean sum of squares (MSE) and mean absolute error 
(MAE). 

Variable importance 

There are three methods for computing the importance of predictor 
variables: 

Use split information 

Calculate the importance of each variable by adding up the improvement 
in classification gained by each split that used the predictor. Generally, this 
method produces good results, and it can be calculated quickly. 
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Type 1 margins 

Firstly calculate the misclassification rate for the model using the actual 
data values for all predictors. Then for each predictor, it randomly permutes 
(rearranges) the values of the predictor and computes the misclassification 
rate for the model using the permuted values. The difference between the 
misclassification rate with the correctly ordered values and the 
misclassification rate for the permuted values is used as the measure of 
importance of the predictor. This method of calculating variable importance 
often is more accurate than calculating the importance from split information, 
but it takes much longer to compute because of the time required to permute 
the rows for each predictor. 

Type 1 + 2 margins 

Firstly calculate the importance using type 1 margins as described above. 
It then examines each data row and determines how many trees in the forest 
correctly voted for the row with the original data minus the number of trees 
that correctly voted for the row using the permuted data. The two measures 
of importance are then averaged. This is usually the most accurate measure 
of importance, but it is also the slowest to compute. In the case of a 
regression, this method is the same as the “Type 1 margins” method. 

The third method is the most recommended one and it has been used in 
this research. 

Proportion of variance explained by model 

This is the proportion of the initial variance in the training data that is 
explained by the genetic expression programming (GEP) model. Where 
initial variance is the variance for the training data set using the mean value 
of the target variable as the predicted value for all rows: 

.VarianceInitial
VarianceVarianceInitial%Var −

=  

Variance is computed as shown in the next section. 
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Mean squared error (MSE) 

This is the mean value of the squared difference between the actual target 
value and the predicted target value which can be expressed as follows: 

( ) ,Variance
1

2∑
=

−=
n

i
ii TP  

,Variance1

1Fitness

n+
=  

where iP  is the predicted value for row I and iT  is the actual target value; n 

is the number of rows in the training data set. 

Mean absolute error 

The MAE measures the average magnitude of the errors in a set of 
forecasts, without considering their direction. It measures accuracy for 
continuous variables. The equation is given in the library references. 
Expressed in words, the MAE is the average over the verification sample of 
the absolute values of the differences between forecast and the corresponding 
observation. The MAE is a linear score which means that all the individual 
differences are weighted equally in the average. 

4.1. The results of drug crime data 

The following table shows the variable importance, highest proportion of 

variance explained by model ( )2R  for each model and for each group, the 

mean sum of squares (MSE) and mean absolute error (MAE). 
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Table 5. The results of drug data using four techniques 

Model Variable 
importance 

Var% MSE MAE Group 

RSVM Fac1D, Fac2D 90.681 484.287 10.019 Factor analysis factors 

MLR 17XD  89.856 1039.276 17.512 Crime type 

RSVM 2627 XD,XD  89.367 24839.122 124.996 Career 

RSVM 32XD  82.454 24554.177 125.967 Gender 

GRNN 41XD  82.924 23026.663 118.212 Age 

GRNN 5352 XD,XD  83.190 22126.663 115.048 Level of education 

The importance score for the most important predictor is scaled to a 
value of 100. Other predictors will have lower scores. The most important 
variables for each model and for each group of independent variables are 
listed in the above table. The independent variables with score less than 40% 
could be ignored in the analysis [22]. 

The highest values of proportion of variance explained by model, the 
smallest MSE and MAE were corresponding to SVM model for the factors of 
drug crime. 

4.2. The results of theft crime data 

The following table shows the variable importance, highest proportion of 

variance explained by model ( )2R  for each model and for each group, the 

mean sum of squares (MSE) and mean absolute error (MAE). 
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Table 6. The results of theft data using four techniques 

Model Variables R-squared% MSE MAE Group 

GRNN Fac1T, Fac4T 89.888 0.258 0.377 Factor analysis factors 

GRNN 16XT  89.420 1.339 0.874 Crime type 

GRNN 41XT  88.750 2.870 1.291 Age 

GRNN 2627 XT,XT  88.727 2.924 1.106 Career 

GRNN 5352 XT,XT  88.599 3.218 1.316 Level of education 

GRNN 32XT  88.389 3.701 1.398 Gender 

The highest values of proportion of variance explained by model, the 
smallest MSE and MAE were corresponding to GRNN model for the factors 
of theft crime. 

Conclusion and Future Work 

For drug crime, it is recommended to use the factor analysis of the 
original data and then use RSVM model. The reasons of this recommendation 
are that the factors included most important independent variables for each 
group and then RSVM model can be used to determining the most important 
factors that affect the dependent variable. 

For theft crime, it is recommended to use the factor analysis of the 
original data and then use GRNN model. The reasons of this recommendation 
are that the factors included most important independent variables for each 
group and then GRNN model can be used to determining the most important 
factors that affect the dependent variable. 

These techniques can be applied for other types of crimes and can give a 
technical support for the security bodies to prevent the crimes before it 
happens. 
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