A NOTE ON RIGHT SIMPLE ELEMENTS ORDERED SEMIGROUPS

Thawhat Changphas

Department of Mathematics Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand e-mail: thacha@kku.ac.th

Abstract

An element a of an ordered semigroup (S, \cdot, \leq) is said to be right simple if (aS] = S (x is an element of (aS] if $x \leq as$ for some $s \in S$). The purpose of this note is to study right simple element ordered semigroups: ordered semigroups containing right simple elements.

1. Preliminaries

An element a of a semigroup S is said to be a *right simple element* of S if aS = S. If every element of S is right simple, then S is called a *right simple semigroup*. A *right simple element semigroup* is defined as a semigroup S containing right simple elements.

In [3], Grimble (see also in [2, p. 40, Exercise 7]; and in [9]) proved the following theorem.

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: 06F05.

Keywords and phrases: semigroup, ordered semigroup, left ideal, right ideal, right simple, prime ideal, right simple element ordered semigroup, Green's relations.

Communicated by K. P. Shum

Received June 29, 2013

Theorem 1.1. Let S be a right simple element semigroup, and let R denote the set of all right simple elements of S. Then the following conditions hold:

- (i) R is a subsemigroup of S;
- (ii) $S \setminus R$, if it is nonempty, is the maximum right ideal of S and is prime.

The purpose of this note is to extend the result based on ordered semigroups.

A semigroup (S, \cdot) together with a partial order \leq (on S) that is *compatible* with the semigroup operation, meaning that for $x, y, z \in S$,

$$x \le y \Rightarrow zx \le zy, xz \le yz,$$

is called an ordered semigroup [1].

Let (S, \cdot, \leq) be an ordered semigroup. If A, B are nonempty subsets of S, we let

$$AB = \{ xy \mid x \in A, \ y \in B \}.$$

For $x \in S$, we write Ax and xA instead of $A\{x\}$ and $\{x\}A$, respectively. A nonempty subset A of S is called a *subsemigroup* of S if $AA \subseteq A$.

Let (S, \cdot, \leq) be an ordered semigroup. A nonempty subset A of S is called a *left* (respectively, *right*) *ideal* [8] of S if

- (i) $SA \subseteq A$ (respectively, $AS \subseteq A$);
- (ii) for $x \in A$ and $y \in S$, $y \le x$ implies $y \in A$.

If A is both a left and a right ideal of S, then A is called a (two-sided) *ideal* of S. The *maximum left* (respectively, *right, two-sided*) *ideal* of S is defined as the usual way.

A left (respectively, right, two-sided) ideal A of an ordered semigroup (S,\cdot,\leq) is said to be *prime* [4] if for $x, y \in A$, $xy \in A$ implies $x \in A$ or $y \in A$.

Let (S, \cdot, \leq) be an ordered semigroup. For a nonempty subset A of S, let

$$(A] = \{x \in S \mid x \le a \text{ for some } a \in A\}.$$

If $a \in S$, then we write $(\{a\}]$ as (a].

For nonempty subsets A, B of an ordered semigroup (S, \cdot, \leq) , the following conditions hold (see [8]):

- (1) $A \subseteq (A]$;
- (2) $A \subseteq B \Rightarrow (A] \subseteq (B]$;
- (3) $(A](B] \subseteq (AB]$;
- (4) ((A)(B)] = (AB);
- (5) $(A \cup B] = (A] \cup (B]$.

Let (S, \cdot, \leq) be an ordered semigroup. An element a of S is said to be right simple if (aS] = S. If every element of S is right simple, then S is called a right simple ordered semigroup [5]. We call S the right simple element ordered semigroup if S contains a right simple element.

2. Main Results

We begin with the following proposition considered the direct product of two right simple element ordered semigroups.

Proposition 2.1. If (S, \cdot, \leq) and (T, \circ, \preceq) are right simple element ordered semigroups, then $S \times T$ is a right simple element ordered semigroup. Moreover, if R and R' are the sets of all right simple elements of S and T, respectively, then $R \times R'$ is the set of all right simple elements of $S \times T$.

Proof. The proof is straightforward.

The next result has been done on semigroups by Grimble [3] and it is also appears in ([2, p. 40, Exercise 7]; and in [9]).

Theorem 2.2. Let (S, \cdot, \leq) be a right simple element ordered semigroup, and let R denote the set of all right simple elements of S. Then the following conditions hold:

- (i) R is a subsemigroup of S;
- (ii) $S \setminus R$, if it is nonempty, is the maximum right ideal of S and is prime.

Proof. If S is right simple, then the claim is clear. We suppose that S is not right simple.

(i) If
$$a, b \in R$$
, then $(aS] = S$ and $(bS] = S$, and hence
$$S = (aS] = (a(bS)] \subseteq ((a](bS)] = (abS).$$

Thus $ab \in R$.

(ii) Assume that $S \setminus R$ is nonempty. Let $x \in S$ and $a \in S \setminus R$. If $ax \in R$, then $S = (axS] \subseteq (aS]$, and so $a \in R$. This is a contradiction. Hence $ax \in S \setminus R$. Let $x \in S$ and $a \in S \setminus R$ such that $x \leq a$. If $x \in R$, then $S = (xS] \subset (aS]$, and so $a \in R$. This is a contradiction. Thus $x \in S \setminus R$. This proves that $S \setminus R$ is a right ideal of S.

To show that $S \setminus R$ is the maximum right ideal of S, let I be a right ideal of S such that $(S \setminus R) \subset I$. Then there is $a \in I \setminus (S \setminus R)$. Since $S = (aS] \subseteq I$, so S = I.

It follows by (i) that $S \setminus R$ is prime and the proof is complete. \Box

The converse of Theorem 2.2 is as follows:

Theorem 2.3. If an ordered semigroup (S, \cdot, \leq) has the unique proper maximal right ideal A such that $S \setminus A \neq (b]$ for all $b \in S \setminus A$, then the set of right simple elements of S is $S \setminus A$.

Proof. Let R denote the set of all right simple elements of S. Since A is a proper right ideal of S, every elements of A is not right simple. Otherwise, if $a \in A$ is right simple, then $S = (aS] \subseteq A$. This is a contradiction. Thus

 $R \subseteq S \setminus A$. Let $b \in S \setminus A$. We have (bS] is a right ideal of S. Suppose that $(bS] \subset S$. By assumption, $(bS] \subseteq A$. Thus, $(A \cup b]$ is a right ideal of S such that $A \subset (A \cup b]$, and thus $(A \cup b] = S$. This implies that $S \setminus A = (b]$ which is a contradiction. Hence (bS] = S.

Let (S, \cdot, \leq) be an ordered semigroup. For $a, b \in S$, the Green's relation \mathcal{R} [6] on S is defined by

$$a\mathcal{R}b$$
 if and only if $(a \cup aS] = (b \cup aS]$.

An element a of S is said to be right regular [7] if $a \in (a^2S]$.

Theorem 2.4. Let (S, \cdot, \leq) be a right simple element ordered semigroup. Then the set of right simple elements of S, denoted by R, is an \mathcal{R} -class of S. Moreover, each right simple element is right regular.

Proof. Let $a, b \in R$. Then (aS] = S and (bS] = S. We have $(a \cup aS] = (b \cup bS]$, and hence $a\mathcal{R}b$. Let $x \in S$ be such that $x\mathcal{R}a$ for some $a \in \mathcal{R}$. This means that

$$(x \cup xS] = (a \cup aS] = S.$$

If $N = \emptyset$, then $x \in R$. If $N \neq \emptyset$ and $x \in N$, then S = N. This is a contradiction. Therefore, $x \notin N$, that is, $x \in R$.

If $a \in R$, then $a \in (aS] \subseteq (a(aS)] \subseteq (a^2S]$, and thus a is right regular.

References

- [1] G. Birkhoff, Lattice Theory, 3rd ed., Amer. Math. Soc. Coll. Publ., Vol. 25, Providence, Rhode Island, 1969.
- [2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Mathematical Survey, No. 7, Amer. Math. Soc., Providence, R. I., 1961.
- [3] H. B. Grimble, Prime ideals in semigroups, M. A. Thesis, University of Tennessee, 1950.

- [4] N. Kehayopulu, On prime, weakly prime ideals in ordered semigroups, Semigroup Forum 44 (1992), 341-346.
- [5] N. Kehayopulu, On regular duo ordered semigroups, Math. Japon. 37(3) (1992), 535-540.
- [6] N. Kehayopulu, Note on Green's relations in ordered semigroups, Math. Japon. 36(2) (1991), 211-214.
- [7] N. Kehayopulu, On completely regular poe-semigroups, Math. Japon. 37(1) (1992), 123-130.
- [8] N. Kehayopulu and M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math. 25 (2002), 609-615.
- [9] F. E. Masat, A generalization of right simple semigroups, Fund. Math. 101(2) (1978), 159-170.