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Abstract

An element a of an ordered semigroup (S, -, <) is said to be right
simple if (aS] = S (x is an element of (aS] if x < as for some s € S).

The purpose of this note is to study right simple element ordered
semigroups: ordered semigroups containing right simple elements.

1. Preliminaries

An element a of a semigroup S is said to be a right simple element of S if
aS = S. If every element of S is right simple, then S is called a right simple
semigroup. A right simple element semigroup is defined as a semigroup S
containing right simple elements.

In [3], Grimble (see also in [2, p. 40, Exercise 7]; and in [9]) proved the
following theorem.
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Theorem 1.1. Let S be a right simple element semigroup, and let R
denote the set of all right simple elements of S. Then the following conditions
hold:

(i) R is a subsemigroup of S;

(if) S\R, if it is nonempty, is the maximum right ideal of S and is prime.

The purpose of this note is to extend the result based on ordered
semigroups.

A semigroup (S, -) together with a partial order < (on S) that is
compatible with the semigroup operation, meaning that for x, y, z € S,

X<y= zx<zy, xz<yz,
is called an ordered semigroup [1].

Let (S, -, <) be an ordered semigroup. If A, B are nonempty subsets of

S, we let
AB = {xy|x € A y € B}.

For x € S, we write Ax and XA instead of A{x} and {x}A, respectively. A
nonempty subset A of S is called a subsemigroup of S if AA < A

Let (S, - <) be an ordered semigroup. A nonempty subset A of S is
called a left (respectively, right) ideal [8] of S if

(i) SA c A (respectively, AS c A);

(iifor xe Aand y e S, y < x implies y € A

If A is both a left and a right ideal of S, then A is called a (two-sided) ideal of
S. The maximum left (respectively, right, two-sided) ideal of S is defined as
the usual way.

A left (respectively, right, two-sided) ideal A of an ordered semigroup
(S, -, <) is said to be prime [4] if for x, y € A, xy € A implies x € A or
yeA
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Let (S, -, <) be an ordered semigroup. For a nonempty subset A of S, let
(A] = {x € S|x < a for some a € A}.
If a e S, then we write ({a}] as (a].

For nonempty subsets A, B of an ordered semigroup (S, -, <), the

following conditions hold (see [8]):
(1) Ac (A
(2) AcB=(Alc (B];
(3) (Al(B] = (AB];
(4) ((AI(B]] = (AB];
(5) (AUB] = (AJU(B].
Let (S, -, <) be an ordered semigroup. An element a of S is said to be

right simple if (aS] = S. If every element of S is right simple, then S is called

a right simple ordered semigroup [5]. We call S the right simple element
ordered semigroup if S contains a right simple element.

2. Main Results

We begin with the following proposition considered the direct product of
two right simple element ordered semigroups.

Proposition 2.1. If (S, - <) and (T, o, <) are right simple element
ordered semigroups, then S x T is a right simple element ordered semigroup.
Moreover, if R and R’ are the sets of all right simple elements of S and T,
respectively, then R x R’ is the set of all right simple elements of S x T.

Proof. The proof is straightforward. O

The next result has been done on semigroups by Grimble [3] and it is
also appears in ([2, p. 40, Exercise 7]; and in [9]).
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Theorem 2.2. Let (S, -, <) be a right simple element ordered semigroup,

and let R denote the set of all right simple elements of S. Then the following
conditions hold:

(i) R is a subsemigroup of S;

(ii) S\R, ifitis nonempty, is the maximum right ideal of S and is prime.

Proof. If S is right simple, then the claim is clear. We suppose that S is
not right simple.

(i) If a, b eR, then (aS]= S and (bS] =S, and hence

S = (aS] = (a(bS]] c ((a](bS]] = (abs].
Thus ab € R.

(ii) Assume that S\R is nonempty. Let x € S and a € S\R. If ax € R,
then S = (axS] < (aS], and so a € R. This is a contradiction. Hence ax e
S\R. Let xe S and a e S\R such that x <a. If xe R, then S =(xS]
c (aS], and so a € R. This is a contradiction. Thus x € S\R. This proves
that S\R is aright ideal of S.

To show that S\R is the maximum right ideal of S, let | be a right ideal

of S such that (S\R) < I. Then there is a € I\(S\R). Since S = (aS]c I,
so S =1.

It follows by (i) that S\R is prime and the proof is complete. O
The converse of Theorem 2.2 is as follows:

Theorem 2.3. If an ordered semigroup (S, -, <) has the unique proper
maximal right ideal A such that S\A = (b] for all b € S\A, then the set of
right simple elements of S is S\A.

Proof. Let R denote the set of all right simple elements of S. Since A is a
proper right ideal of S, every elements of A is not right simple. Otherwise,
if a e A is right simple, then S = (aS] < A This is a contradiction. Thus
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R < S\A. Let b e S\A. We have (bS] is a right ideal of S. Suppose that
(bS] = S. By assumption, (bS] < A. Thus, (AU b] is aright ideal of S such
that A = (AUDb], and thus (AU b] = S. This implies that S\A = (b] which

is a contradiction. Hence (bS] = S. O

Let (S, -, <) be an ordered semigroup. For a, b € S, the Green’s relation
R [6] on S is defined by

aRb ifand only if (a U aS] = (b U aS].

An element a of S is said to be right regular [7] if a (aZS].

Theorem 2.4. Let (S, -, <) be a right simple element ordered semigroup.
Then the set of right simple elements of S, denoted by R, is an R -class of S.
Moreover, each right simple element is right regular.

Proof. Let a,b e R. Then (aS]=S and (bS]=S. We have (aU aS]
= (b UbS], and hence aRb. Let x € S be such that xRa for some a € R.

This means that
(xUxS]=(aUaS]=Ss.

If N=¢, then xeR. If N and xe N, then S =N. This is a
contradiction. Therefore, x ¢ N, thatis, x € R.

If a e R, then a e (aS] = (a(aS]] < (a®S], and thus a is right regular.
0
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