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Abstract 

J-divergence is widely used to describe the difference between two 
probability distributions. It is also called the Information value for the 
purpose of scoring models, e.g., credit scoring models used to predict a 
probability of clients default. The aim of the paper is to show formulas 
for frequently occurred situations when scores are normally, beta         
and gamma distributed. A simulation study showing performance of 
parametric estimates and an empirical estimate of J-divergence is 
included. 

1. Introduction 

J-divergence is widely used to describe the difference between two 
probability distributions. It is also called the Information value for the 
purpose of scoring models, e.g., credit scoring models used to predict a 
probability of clients default. 

Credit scoring models are used for the majority of credit decisions in the 
financial sector. Methodology of credit scoring models and some measures of 
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their quality were discussed in works like Hand and Henley [5] or Thomas 
[14] and books like Anderson [1], Siddiqi [13] and Thomas [15]. Further 
remarks connected to credit scoring issues can be found there as well. 

The paper deals with the J-divergence, which is one of the widely used 
indexes (beside Gini index and K-S statistic, see [18] for more details) for 
assessing credit scoring models. Commonly it is computed by discretization 
of data into bins using deciles with requirement on the nonzero number of 
cases for all bins. As an alternative method to the empirical estimates one can 
use the kernel smoothing theory, which allows to estimate unknown densities 
and consequently, using some numerical method for integration, to estimate 
value of the J-divergence. See Koláček and Řezáč [8] for more details. 
Another alternative is the empirical estimates with supervised interval 
selection (ESIS) proposed and discussed in Řezáč [11]. 

The main aim of the paper is to provide formulas for normally, beta and 
gamma distributed scores, which allow the parametric estimating of the             
J-divergence. Furthermore, they allow to assess the quality of nonparametric 
estimators of the J-divergence via MSE, bias and so forth. So far the 
formulas could not be found in the literature, especially not in the context of 
scoring models. 

The choice of mentioned distribution types is not random. When we used 
real credit scoring data (the data set is described in Řezáč [11]) and made 
common transformation, we can get these three types of distributions. 

Consider logistic regression model: ∑ = ⋅+=⎟
⎠
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i ii xbbp
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Consider score to be normally distributed random variable, which is 
quite common consideration. Then it can be shown that pgood is beta 
distributed and odds follows log-normal distribution. It is well known (see 
[6]) that both log-normal and gamma distributions can be used quite 
effectively to analyze positively skewed data sets. Furthermore, these two 
distributions are often interchangeable (see Wiens [17]). Nevertheless, 
Kundu and Manglick [9] proposed a test to discriminate between log-normal 
and gamma distribution. The test is based on ratio of likelihood functions 
(RML) of log-normal and gamma distributions. The natural logarithm of 
RML, denoted as T, plays the role of test statistic and the procedure of the 
test is quite simple. The log-normal distribution is recommended if ,0>T  

otherwise one should prefer the gamma distribution. Since 5193610.4−=T  

in case of our real credit scoring data, we prefer the gamma distribution. 

Tables 1 to 3 show results of goodness of fit tests. Figures 1 to 3 show 
histograms and fitted density functions for scores of good and bad clients. 
All of them were generated by SAS using Univariate procedure. 
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Table 1. Goodness of fit tests for score: (a) for bad, (b) for good clients 

(a) 

Goodness of fit tests for normal distribution 

Test Statistic p-value 

Kolmogorov-Smirnov D 0.0548 Pr > D > 0.150 

Cramer-von Mises W-Sq 0.0552 Pr > W-Sq > 0.250 

Anderson-Darling A-Sq 0.3353 Pr > A-Sq > 0.250 

(b) 

Goodness of fit tests for normal distribution 

Test Statistic p-value 

Kolmogorov-Smirnov D 0.0220 Pr > D > 0.150 

Cramer-von Mises W-Sq 0.1015 Pr > W-Sq  0.109 

Anderson-Darling A-Sq 0.6267 Pr > A-Sq  0.103 

 
 (a) (b) 

Figure 1. Fitted distribution of score: (a) for bad, (b) for good clients. 

It can be seen in Table 1 that p-values of all tests of normality were 
greater than 0.1. Also histograms and fitted densities show good match (see 
Figure 1). Hence both scores for bad and good clients could be considered as 
normally distributed. 
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Table 2. Goodness of fit tests for pgood: (a) for bad, (b) for good clients 

(a) 

Goodness of fit tests for beta distribution 

Test Statistic p-value 

Kolmogorov-Smirnov D 0.0737 Pr > D > 0.250 

Cramer-von Mises W-Sq 0.1301 Pr > W-Sq > 0.250 

Anderson-Darling A-Sq 1.0226 Pr > A-Sq > 0.250 

(b) 

Goodness of fit tests for beta distribution 

Test Statistic p-value 

Kolmogorov-Smirnov D 0.0475 Pr > D  0.036 

Cramer-von Mises W-Sq 0.5568 Pr > W-Sq  0.031 

Anderson-Darling A-Sq 4.6499 Pr > A-Sq  0.005 

 
 (a) (b) 

Figure 2. Fitted distribution of pgood: (a) for bad, (b) for good clients. 

A similar situation was also in testing the beta distribution for pgood for 
bad clients (p-values are greater than 0.25). Slightly worse results we had for 
pgood for good clients. Nevertheless, with significance level 0.03 or less and 
using Kolmogorov-Smirnov or Cramer-von Mises test we could accept 
hypothesis that pgood for good clients was beta distributed (see Table 2 and 
Figure 2). 
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Table 3. Goodness of fit tests for odds: (a) for bad, (b) for good clients 

(a) 

Goodness of fit tests for gamma distribution 

Test Statistic p-value 

Kolmogorov-Smirnov D 0.0761 Pr > D > 0.250 

Cramer-von Mises W-Sq 0.1387 Pr > W-Sq > 0.250 

Anderson-Darling A-Sq 1.3259 Pr > A-Sq  0.228 

(b) 

Goodness of fit Tests for gamma distribution 

Test Statistic p-value 

Kolmogorov-Smirnov D 0.0346 Pr > D  0.234 

Cramer-von Mises W-Sq 0.3111 Pr > W-Sq  0.129 

Anderson-Darling A-Sq 3.2605 Pr > A-Sq  0.021 

 
 (a) (b) 

Figure 3. Fitted distribution of odds: (a) for bad, (b) for good clients. 

In case of odds, we can see in Table 3 and Figure 3 that p-values are high 
enough and histograms and estimated densities are matched sufficiently to 
state that odds follow the gamma distribution. 

But let us go back to the merits of the paper. First of all we give the 
definition of J-divergence. 



Parametric Estimates of J-divergence for Credit Scoring Models 225 

Definition 1.1. Jeffreys divergence (called J-divergence) of random 
variables X and Y with probability density functions ( )xf  and ( )xg  is a 

symmetrized Kullback-Leibler divergence given by 

( ) ( ) ( )XYDYXDYXD KLKLJ ::, +=  

( ) ( )( ) ( )
( )∫

∞

∞−
⎟
⎠
⎞⎜

⎝
⎛−= ,ln dxxg

xfxgxf  (1.1) 

where the Kullback-Leibler divergence ( )YXDKL :  is given by 

 ( ) ( )( ) ( )
( ) .ln: ∫
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⎛= dxxg
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The connection to more general class of divergences, like general Alpha-
divergences, Alpha-Rényi or Jensen-Shannon divergence, can be found in 
the literature, e.g., Cichocki and Amari [2]. Important properties like 
convexity or strict positivity of JD  are direct consequences of Alpha-

divergence properties, which could be found there as well. 

2. Normally Distributed Scores 

Let X and Y be normally distributed random variables with density 
functions ( )xf0  and ( )xf1  given by 
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where 0,, 010 >σμμ  and 01 >σ  are real constants. 

Lemma 2.1. Consider X, Y to be random variables. Let ( )xf0  and ( )xf1  

be density functions given by (2.1) and (2.2), respectively. Then it holds 
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Using this lemma, we can get a formula for the J-divergence. It is 
provided in the following Theorem 2.1. 

Theorem 2.1. Consider X, Y to be random variables. Let ( )xf0  and 

( )xf1  be density functions given by (2.1) and (2.2), respectively. Then it 

holds 
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Proof. Following Definition 1.1 and the previous Lemma 2.1, we have 
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For parametric estimation of ,JD  one can use (2.4) with MLE estimates 

of the parameters. Consider ( ),,~...,,1 jj
j

n
j NXX

j
σμ  1,0=j  is a random 

sample of scores. MLE estimates (see [6]) are given by 
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3. Beta Distributed Scores 

Let X and Y be beta distributed random variables with density functions 
( )xf0  and ( )xf1  given by 
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where ,00 >α  ,01 >α  00 >β  and 01 >β  are real constants. 

Lemma 3.1. For real constants ,00 >α  and 00 >β  holds 
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where ( )xψ  is the digamma function given by ( ) ( )
( ) .x
xx

Γ

′Γ=ψ  
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Proof. Using the formula 
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which holds for all real constants ,0>μ  0>ν  and 0>r  (see [3, p. 570, 

eq. 4.253.1]), the statement of the lemma follows considering ,0α=μ  1=r  

and .0β=ν  ~ 

More details about the digamma function can be found for instance in 
Gradshtein and Ryzhik [3] or Medina and Moll [10]. Using the previous 
lemma, we can get a formula for .KLD  

Lemma 3.2. Consider X, Y to be random variables. Let ( )xf0  and ( )xf1  

be density functions given by (3.1) and (3.2), respectively. Then it holds 
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The formula for J-divergence is the direct consequence of the previous 
lemma. 

Theorem 3.1. Consider X, Y to be random variables. Let ( )xf0  and 

( )xf1  be density functions given by (3.1) and (3.2), respectively. Then it 

holds 
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Proof. Follows from Definition 1.1 and the previous Lemma 3.2: 
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If we do not like to use the digamma function, we can use its 
approximation. Then the formula for the J-divergence can be expressed in the 
following way. 

Corollary 3.1.1. Following assumptions of Theorem 3.1 and 
approximation of digamma function ( ) ( )5.0ln −≈ψ xx  (can be found in [7, 
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When the beta distribution is considered, one can use (3.5) or (3.6) for 
parametric estimation of JD  with moment or MLE estimates of the 

parameters. Consider ( ),,~...,,1 jj
j

n
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sample of scores. MLE estimates of jα  and jβ  (see [7]) can be computed 
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As an initial approximation one can take the moment estimates (see [7] for 
more details). 

4. Gamma Distributed Scores 

Let X and Y be gamma distributed random variables with density 
functions ( )xf0  and ( )xf1  given by 
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where ,00 >α  ,01 >α  00 >λ  and 01 >λ  are real constants. 

Lemma 4.1. For real constants ,00 >α  and 00 >λ  holds 
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Proof. Follows from formula 
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which holds for all real constants 0>μ  and 0>ν  (can be found in [3, p. 

604, eq. 4.352.1]), if we choose 0λ=μ  and .0α=ν  ~ 

Provided the previous lemma, we can get a formula for KLD  for the case 

of gamma distributed random variables, such as odds. 

Lemma 4.2. Consider X, Y to be random variables. Let ( )xf0  and ( )xf1  

be density functions given by (4.1) and (4.2), respectively. Then it holds 
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Proof. One can find this result in Gupta and Kundu [4]. However, it is 
easy to show that using the relation ( ) ( )xxx Γ=+Γ 1  and Lemma 4.1, we 

obtain (4.4). ~ 

Now, when we know the formula for ,KLD  it is easy to get formula for 

.JD  
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Theorem 4.1. Consider X, Y to be random variables. Let ( )xf0  and 

( )xf1  be density functions given by (4.1) and (4.2), respectively. Then it 

holds 
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Proof. Following Definition 1.1 and the previous Lemma 4.2, we have 
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When the gamma distribution is considered, one can use (4.5) for 
parametric estimation of JD  with moment or MLE estimates of the 

parameters. Consider ( ),,~...,,1 jj
j

n
j GammaXX

j
λα  1,0=j  is a random 

sample of scores. MLE estimates of jα  and jλ  (see [6, pp. 360-367]) can be 

computed by 
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which leads to solving 
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where jx  is the arithmetic mean and jx~  is the geometric mean of appropriate 

realizations of ,...,,1
j

n
j

j
XX  .1,0=j  If we use the approximation ( ) ≈ψ x  

( ),5.0ln −x  then we can get 
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Further approximation can be found in [6]: 
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5. Empirical Estimates of J-divergence 

It is natural to ask what is the performance of parametric estimates of            
J-divergence compared to some standard estimate from practice. Empirical 
estimate using deciles of scores, i.e., discretization of data into bins using 
deciles with requirement on the nonzero number of cases for all bins, is the 
classical way how to compute the J-divergence (Information value) for credit 
scoring models. 

The main idea of the empirical estimate approach is to replace unknown 
densities by their empirical estimates. Let us have n score values, of which 

0n  score values ,0is  0...,,1 ni =  for bad clients and 1n  score values ,1 js  

1...,,1 nj =  for good clients and denote L (resp. H) as the minimum (resp. 
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maximum) of all values. Let us divide the interval [ ]HL,  up to r equal 

subintervals [ ] ( ] ( ],,...,,,,, 12110 rr qqqqqq −  where ,0 Lq =  .Hqr =  Set 

( ( ]),,
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observed counts of bad or good clients in each interval. Then the empirical 
estimate of the J-divergence is calculated by 
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However, in practice, there could occur computational problems. The            
J-divergence becomes infinite in cases when some of in0  or in1  are equal to 

0. When this arises there are numerous practical procedures for preserving 
finite results. For example we replace the zero entry of numbers of goods or 
bads by a minimum constant of say 0.0001. Choosing of the number of bins 
is also very important. In the literature and also in many applications in credit 
scoring, the value 10=r  is preferred. 

Considering ,10=r  i.e., the J-divergence (Information value) is 

computed using deciles of the score, we denote the estimate by .ˆ , DECJD  

6. Simulation Study 

To compare all listed estimates of the J-divergence, a simulation study 
was done. Consider n clients, Bnp  of bad clients ( )Bpn −1  of good clients, 

1.0,05.0,02.0=Bp  and 0.2. Further consider scores that are normally, beta 

and gamma distributed with parameters that lead to 1,25.0=JD  and 2.25. 

These choices represent models that have weak to very high performance and 
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portfolios with very low risk (2% bad rate ( ),02.0=Bp  e.g., mortgages 

before current crisis) to very high risk, e.g., subprime cash loans. The number 
of clients was set from 1000=n  to ,100000=n  which represents a very 
small to a large data set. Given the choice of distributions of the scores and 
the choice of parameters we know the exact value of ,JD  thus we can assess 

quality of the J-divergence estimates. Very common way how to do it is to 
compute bias and mean square error (MSE). For this purpose, the simulation 
was done in the following way. First, scores of bad and good clients were 
generated according to given distribution and its parameters. Second, all 
mentioned estimates were computed. Third, square error for all estimates was 
computed. These three steps were repeated one thousand times. Finally, MSE 
was computed as average of appropriate square errors and the bias was 
computed as average of appropriate estimate minus the theoretical value of 
the J-divergence. The results are presented in the following Figures 4 to 9. 

 
 (a) (b) (c) 

Figure 4. Bias for parametric and decile estimate for normally distributed 
scores: (a) ,25.0=JD  (b) ,0.1=JD  (c) .25.2=JD  

 
 (a) (b) (c) 

Figure 5. MSE for parametric and decile estimate for normally distributed 
scores: (a) ,25.0=JD  (b) ,0.1=JD  (c) .25.2=JD  
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It can be seen from Figures 4 and 5 that the parametric estimate was 

significantly better than DECJD ,ˆ  in case of strong models JD(  greater or 

equal to 1). The parametric estimate and DECJD ,ˆ  were comparable according 

to MSE, but the parametric estimate was much more stable according to bias. 

 
 (a) (b) (c) 

Figure 6. Bias for parametric and decile estimate for beta distributed scores: 
(a) ,25.0=JD  (b) ,0.1=JD  (c) .25.2=JD  

 
 (a) (b) (c) 

Figure 7. MSE for parametric and decile estimate for beta distributed scores: 
(a) ,25.0=JD  (b) ,0.1=JD  (c) .25.2=JD  

We can see in Figures 6 and 7 that it holds the same statement as for 
normally distributed data. The only difference is in the fact that the 

parametric estimate is much more better than DECJD ,ˆ  for stronger models 

( ).1≥JD  
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 (a) (b) (c) 

Figure 8. Bias for parametric and decile estimate for gamma distributed 
scores: (a) ,25.0=JD  (b) ,0.1=JD  (c) .25.2=JD  

 
 (a) (b) (c) 

Figure 9. MSE for parametric and decile estimate for gamma distributed 
scores: (a) ,25.0=JD  (b) ,0.1=JD  (c) .25.2=JD  

Again, we can see, now in Figures 8 and 9 that DECJD ,ˆ  had comparable 

performance for weak models and low sample size. But once it was the case 
that a model was stronger or the sample size was bigger, the parametric 

estimate significantly outperformed .ˆ , DECJD  

7. Conclusions 

We considered three classes of distributions which typically occur in 
credit scoring. Namely, it was normal, beta and gamma distribution. We 
showed on the real data how these distributions can be achieved. Then the        
J-divergence, which is one of the widely used indexes for assessing credit 
scoring models, was introduced. Methods of estimation of the J-divergence 
were discussed. 

The main aim of the paper was to provide formulas for normally, beta 
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and gamma distributed scores. This allows the parametric estimating of the  
J-divergence. Furthermore they allow to asses the quality of nonparametric 
estimators of the J-divergence via MSE, bias and so forth. 

We made a simulation study to compare parametric estimates with the 
empirical estimator using deciles, which is a nonparametric estimator widely 
used in practice. As was expected, parametric estimates had much more 
better performance than the nonparametric one for strong credit scoring 
models or for large data sizes. However, the performance depended on data 
size in case of weak models - in some small range of data size had parametric 
and nonparametric estimates comparable performance. All these statements 
were valid for all three considered distribution classes. Overall, we can state 
that the parametric estimates are, according to MSE and bias, better to use for 
all sizes of data and all considered distribution classes. 
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