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Abstract

The author presents sufficient conditions for the existence of
nonoscillatory solutions for the equation

A(@nA(xn = CnXn—k)) + F(n, X)) = g(N, Xq_m) = 0.

An example is given to illustrate the main results.
1. Introduction

In this paper, we consider the nonlinear neutral delay difference equation
of the form

A(anA(xy = CcpXn_k)) + F(n, Xn_g) = 9(n, Xp_m) =0, ne N(ny), (1.1)

where N(ng) ={ng, ng +1, ...}, ng is a nonnegative integer, {a,} is a
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. 1 .
positive real sequence such that Z;O_noa— =, {c,} is a real sequence,
B n

f,g:N(ng)xR — R are continuous and nondecreasing in the second
variable and uf(n, u) >0, ug(n,u)>0 for u=0, and k, ¢/ and m are
nonnegative integers.

Let 6 = max{k, 7, m}. By a solution of equation (1.1), we mean a real
sequence {x,} which is defined for n > ny — 6 and satisfies equation (1.1)
for all n € N(ng). A solution of equation (1.1) is said to be oscillatory if it
is neither eventually positive nor eventually negative, and nonoscillatory

otherwise.

The oscillatory and nonoscillatory behavior of solutions of particular
form of equation (1.1) has been investigated by several authors, see [1]. In
fact, most of the results established for equation (1.1) for the case either
¢, =0 or f(n,u)=0 or g(n, u)=0. Very few results are available in the

literature dealing with oscillatory properties of solutions of neutral difference
equations with positive and negative coefficients, see for example [2, 3, 4, 5]
and the references cited therein.

Motivated by the above observation in this paper we establish some
sufficient conditions for the existence of nonoscillatory solutions of equation
(1.1). The results obtained in this paper generalize those obtained in [5].

2. Main Results

In this section, we establish sufficient conditions for the existence of
nonoscillatory solution of equation (1.1) subject to the following condition:

(H) fand g satisfy the Lipschitz condition of the form
| f(n,u) = F(n, V)| < pylu-v|
[g(n, u) = g(n, V)| < aplu=v|. u,velab]

where {p,} and {q,} are nonnegative real sequences for all n € N(ny) and
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Zn ny PnPn <, and Zn ng Pntin < where A, = Zs 0a and

Jna

We begin with the following theorem.

Theorem 2.1. With respect to the difference equation (1.1), assume
condition (H) holds. If one of the following conditions holds:

(i)0<c,<c<y
(i)l<c<c,<d <o
(i) -1<-c<cy, <0
(iv) —o<—-c<c, <-d < -1
Then equation (1.1) has a bounded nonoscillatory solution.

Proof. The proof of the theorem will be divided into four cases,
depending on the four different conditions of {c,,}.

Case 1. 0 < c, <c <1 LetB be the set of all bounded real sequences
X = {Xn}, n € N(ng) with the supnorm || x | = supysp, | X, |- Set
S={xeB:Mj<x, <My, neN(ngy),

where My and M, are positive constants, and My < (1—c)M,, M, <b. It

is clear that S is a bounded, closed and convex subset of B. Choose a,
M > 0 such that My < o < (1-¢)M5, and

1-c OL—M]_ (1—C)M2—OL
T . @.1)

M = min{

Choose N e N(ng) sufficiently large so that

> Anpy <M, Z W <M 2.2)
n=N n=N
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Define a mapping T : S — B as follows:

a + ChXp—k

M) =1+ A MY Xsn) = F(S %)) =N,
(M) (N), ng <n<N.
Clearly, Tx is continuous. For every x € S and n € N(N), we have, in view
of (2.1) and (2.2),
(M)(n) = o — MM, > My,
and
(TX)(n) <o +cMy + MM, < Mo

Thus TS = S. Forany X, y € S and n > N, we have

[T () = (Ty) ()] < | c+ D A, n)ps + D As, n)ds || x =y

<(c+2M)] x-y.

1-c

Hence ||[Tx - Ty[[< (c+2M)|x - y|. In view of M < <l_TC, we

have 0 < ¢+ 2M <1, which implies that T is a contraction mapping. By
Banach contraction mapping principle, there exists a unique x € S, such that
Tx = x. Itis easy to see that {x,} is a bounded positive solution of equation
(1.2).

Case 2. 1<c<c,<d <o Let B be the set of all bounded real

sequences defined for all n € N(ny) with the supnorm. Set
SZ{XEB:M3SXn SM4,neN(n0)},

where M3 and M, are positive constants, and (d —1)M3 < (c —1)My,
My =b.
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Define a mapping T : S — B as follows:

o X 1 0
+ 2k Z A(s, n+k)
Cnik  Cnsk  Cngk “—s=n+k

(TX)(n) = [f(s, Xs—r) = 9(S, Xs-m)], N =N,

(TX)(N), np <n<N.

The remaining part of the proof is similar to that of Case 1 and hence the
details are omitted.

Case 3. -1 < —c < ¢, < 0. Let B be the set of all bounded real sequences

defined for all n e N(ng) with the supnorm. Set
S={xeB:D; <x, <Dy, neN(ng),
where D; and D, are positive constants, and D; < (1-c)D,, D, <b.

Define a mapping T : S — B as follows:
C+ CnXn_k + Z:n A(s, n)

(TX)(n) = [9(s, Xs—m) = f(s, Xs_0)l, n=N,

(M) (N), ng <n<N.

The remaining part of the proof is similar to that of Case 1 and hence the
details are omitted.

Case 4. —0 < —C < ¢, < —d < -1. Let B be the set of all bounded real

sequences defined for all n € N(ny) with the supnorm. Set

S ={xeB:D3 <X, <Dy, neN(ng),

where D3 and D, are positive constants, and (d —g) Dy > (C _%) D3,

D, <b.
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Define a mapping T : S — B as follows:

-0l X 1 0
+ 2ok g > A(s, n+ k)
Chik  Cn+k  Cnik “=s=n+k

(Tx)(n) = [T(s, Xs—r) = 9(S, Xs—m), N> N,

(TX)(N), ng <n<N.

The rest of the proof is similar to Case 1 and hence the details are omitted.
The proof of the theorem is complete. O

We conclude this paper with the following example.
Example 2.1. Consider the difference equation

o, 1 6(n-1)°x3_»
A (X” (n+1) X”‘l) T 2n—3P(n+1)(n+2)(n +3)

~ 6(n - 2)¥2 xX¥2 -0, n=3 (23

2n-3)¥2n(n +1)(n + 2)(n + 3)

It is easy to see that all conditions of Case 1 of Theorem 2.1 are satisfied.
Therefore equation (2.3) has bounded nonoscillatory solution. In fact, {x,}

= {2 - ﬁ} is one such solution of equation (2.3).

Remark 2.1. Similar to Example 2.1, one can construct examples for the
other cases and the details are left to the reader.
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