HYPERCYCLICITY AND SUPERCYCLICITY ON BANACH SEQUENCE SPACES

B. YOUSEFI and A. FARROKHINIA

(Received February 1, 2005)

Submitted by K. K. Azad

Abstract

We investigate sufficient conditions for Hypercyclicity and Supercyclicity Criterion on Banach spaces $L^p(\beta)$.

Introduction

Let $\{\beta(n)\}_{n=-\infty}^{\infty}$ be a sequence of positive numbers with $\beta(0)=1$ and $1 \leq p < \infty$. We consider the space of sequences $f=\{\hat{f}(n)\}_{n=-\infty}^{\infty}$ such that $\|f\|^p=\|f\|^p_{\beta}=\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^p\beta(n)^p<\infty$.

The notation $f(z) = \sum_{n=-\infty}^{\infty} \hat{f}(n)z^n$ shall be used whether or not the series converges for any value of z. These are called *formal Laurent series*. Let $L^p(\beta)$ denote the space of such formal Laurent series. These are reflexive Banach spaces with the norm $\|\cdot\|_{\beta}$. Let $\hat{f}_k(n) = \delta_k(n)$. So $f_k(z) = z^k$ and then $\{f_k\}_{k \in \mathbb{Z}}$ is a basis for $L^p(\beta)$ such that $\|f_k\| = \beta(k)$. $\frac{1}{2000 \text{ Mathematics Subject Classification: 47B37, 47A16.}$

Key words and phrases: Banach space of Laurent series associated with a sequence β , hypercyclic and supercyclic vector, shift operator.

@2005 Pushpa Publishing House

Now consider M_z , the operator of multiplication by z on $L^p(\beta)$. Clearly M_z shifts the basis $\{f_k\}_k$. The operator M_z is bounded if and only if $\{\beta(k+1)/\beta(k)\}_k$ is bounded. By the same method used in [8] we can see

that $L^p(\beta)^* = L^q(\beta^{\frac{p}{q}})$, where $\frac{1}{p} + \frac{1}{q} = 1$. Sources on formal power series include [7-11].

Let X be a complex Banach space and B(X) be the set of bounded linear operators from X into itself. If $T \in B(X)$, then the orbit of a vector $x \in X$ is the set $Orb(T, x) = \{T^n x : n \in \mathbb{N} \cup \{0\}\}$. A vector $x \in X$ is called a *supercyclic vector* for an operator $T \in B(X)$ if the set $\{\lambda y : y \in Orb(T, x), \lambda \in \mathbb{C}\}$ is dense in X. An operator $T \in B(X)$ is supercyclic if it has a supercyclic vector. For several works see [1-6, 12-14].

Main Results

In this section we characterize some conditions under which the multiplication operator M_z holds in the hypothesis of the Hypercyclicity and Supercyclicity Criterion.

From now on we suppose that M_z is bounded on $L^p(\beta)$.

For the benefit of the reader, first we give a variation of the Hypercyclicity Criterion due independently to Kitai [4] and Gethner and Shapiro [3], and a version of the Supercyclicity Criterion due to Feldman et al. [2].

Hypercyclicity Criterion. Suppose that $T \in B(X)$. If there exist two dense sets Y and Z in X and a sequence $n_k \to \infty$ such that

(i) for every $x \in Y$, $T^{n_k}x \to 0$, and

then T is hypercyclic.

(ii) there exists a function $S:Z\to Z$ such that TSx=x for every $x\in Z$ and $S^{n_k}x\to 0$ for every $x\in Z$,

Supercyclicity Criterion. Suppose that $T \in B(X)$. If there exist two dense sets Y and Z in X and a sequence $n_k \to \infty$ such that

(i) there exists a function $S:Z\to Z$ such that TSx=x for every $x\in Z$, and

(ii)
$$||T^{n_k}y|| ||S^{n_k}x|| \to 0$$
 for all $y \in Y$ and $x \in Z$,

then T is supercyclic.

Theorem 1. The operator M_z is hypercyclic on $L^p(\beta)$ if and only if for all $\varepsilon > 0$ and $m \in \mathbb{N}$ there exists n large enough such that $\beta(j-n)\beta(j)^{-1} < \varepsilon$ and $\beta(j+n)\beta(j)^{-1} < \varepsilon$ for all $-m \le j \le m$.

Proof. See Theorems 1 and 3 in [13].

Theorem 2. The operator M_z is supercyclic on $L^p(\beta)$ if and only if for all $m \in \mathbb{N}$:

$$\liminf_{n\to\infty} \max \left\{ \frac{\beta(j-n)\beta(k+n)}{\beta(j)\beta(k)} : |j| \le m, |k| \le m \right\} = 0.$$

Proof. See Theorem 2 in [14].

In the following B is the operator defined by $Bf_j = f_{j-1}$ for all $j \in \mathbb{Z}$. Clearly B is bounded if and only if the sequence $\{\beta(k)/\beta(k+1)\}_k$ is bounded.

Theorem 3. Suppose that B is bounded on $L^p(\beta)$. Then

- (i) there exists a sequence of integers $n_k \to \infty$ such that $\lim_k \beta(n_k) = \lim_k \beta(-n_k) = 0$ if and only if M_z is hypercyclic on $L^p(\beta)$.
- (ii) there exists a sequence $n_k \to \infty$ such that $\lim_k \beta(n_k)\beta(-n_k) = 0$ if and only if M_z is supercyclic on $L^p(\beta)$.

Proof. (i) The necessity part follows easily from Theorem 1. So let $\lim_k \beta(n_k) = \lim_k \beta(-n_k) = 0$ for a sequence of integer $n_k \to \infty$. Let $\varepsilon > 0$

and $m \in \mathbb{N}$. By Theorem 1, it is sufficient to show that there exists k large enough such that $\beta(j \pm n_k)\beta(j)^{-1} < \varepsilon$ for all $|j| \le m$. Put

$$\alpha_0 = \max\{\|M_z^j\|\beta(j)^{-1}, \|B^{-i}\|\beta(i)^{-1}: 0 \le j \le m, -m \le i \le 0\}.$$

Let δ be such that $0 < \delta \alpha_0 < \epsilon$. Then for some natural number k, we have $\beta(n_k) < \delta$ and $\beta(-n_k) < \delta$. Note that

$$\frac{\beta(j\pm n_k)}{\beta(\pm n_{n_k})} \le c_j = \begin{cases} \parallel M_z^j \parallel & j \ge 0 \\ \parallel B^{-j} \parallel & j < 0 \end{cases},$$

thus for all $|j| \le m$ we get

$$\frac{\beta(j \pm n_k)}{\beta(j)} = \frac{\beta(j \pm n_k)}{\beta(\pm n_k)} \beta(j)^{-1} \beta(\pm n_k)$$

$$\leq \delta \alpha_0 < \varepsilon.$$

So M_z is hypercyclic on $L^p(\beta)$.

(ii) By Theorem 2 and the same method used in the proof of part (i), it is clear.

Theorem 4. Let M_z be invertible on $L^p(\beta)$ and suppose that there exists a sequence of integers $n_k \to \infty$. Then we have

- (i) if $\lim_k \beta(n_k) = \lim_k \beta(-n_k) = 0$, then M_z holds in the Hypercyclicity Criterion.
- (ii) if $\lim_k \beta(n_k)\beta(-n_k) = 0$, then M_z holds in the Supercyclicity Criterion.

Proof. Let Y = Z be the linear span of $\{f_j\}_{j \in \mathbb{Z}}$. Then Y and Z are dense in $L^p(\beta)$.

(i) For all $j \in \mathbb{Z}$, we have

$$\| M_z^{n_k} f_j \| = \| M_z^j M_z^{n_k} f_0 \| \le \| M_z^j \| \| M_z^{n_k} f_0 \|$$

$$= \| M_z^j \| \| f_{n_k} \| = \| M_z^j \| \beta(n_k)$$

and

$$\| M_z^{-n_k} f_j \| = \| M_z^j M_z^{-n_k} f_0 \| \le \| M_z^j \| \| M_z^{-n_k} f_0 \|$$

$$= \| M_z^j \| \| f_{-k_n} \| = \| M_z^j \| \beta (-n_k).$$

So we get $\lim_k M_z^{n_k} f_j = \lim_k M_z^{-n_k} f_j = 0$ for all $j \in \mathbb{Z}$ and this implies that $\lim_k M_z^{-n_k} f = \lim_k M_z^{n_k} f = 0$ for all f in Y and Z. Thus M_z holds in the hypothesis of the Hypercyclicity Criterion.

(ii) For all i and j in \mathbb{Z} we have

$$||M_z^{-n_k} f_i|| ||M_z^{n_k} f_i|| \le ||M_z^i|| ||M_z^j|| \beta(-n_k) \beta(n_k).$$

Therefore $\lim_k \|M_z^{n_k}f\|\|M_z^{-n_k}g\|=0$ for all f in Y and g in Z. Now we can see that M_z holds in the hypothesis of the Supercyclicity Criterion.

Corollary 5. Let M_z be invertible. Then M_z is hypercyclic (supercyclic) if and only if M_z satisfies the hypothesis of the Hypercyclicity (Supercyclicity) Criterion.

Proof. Note that by our convention, M_z is bounded on $L^p(\beta)$. So, in Theorem 3, the boundedness of B on $L^p(\beta)$ implies that indeed M_z is invertible on $L^p(\beta)$. Now by Theorems 1, 2, 3 and 4, the proof is clear.

Note that in the following theorem, M_z is not necessarily invertible.

Theorem 6. Suppose that there exist an $\alpha > 0$ and a sequence of integers $n_k \to \infty$ such that $\beta(n_k) \ge \alpha^r \beta(n_k - r)$ for all positive integers k and r. Then we have

- (i) if $\lim_{k} \beta(n_k) = \lim_{k} \beta(-n_k) = 0$, then M_z is hypercyclic on $L^p(\beta)$.
- (ii) if $\lim_{k} \beta(n_k)\beta(-n_k) = 0$, then M_z is supercyclic on $L^p(\beta)$.

Proof. Let $\varepsilon > 0$ and $m \in \mathbb{N}$. Put

$$\alpha_0 = \max\{\alpha^{j-m}\beta(j)^{-1}, \|M_z^{i+m}\|\beta(i)^{-1}: |i| \le m, |j| \le m\}.$$

(i) By Theorem 1, it is sufficient to show that $\beta(j+n)\beta(j)^{-1} < \varepsilon$ and $\beta(j-n)\beta(j)^{-1} < \varepsilon$ for all $|j| \le m$ and n sufficiently large. Suppose that $0 < \delta < \frac{\varepsilon}{\alpha_0}$. Then there exists k large enough such that $\beta(n_k) < \delta$ and $\beta(-n_k) < \delta$. For $j \in \mathbb{Z}$ with $|j| \le m$ and $n = n_k - m$ we have

$$\frac{\beta(j+n)}{\beta(j)} = \frac{\beta(j-m+n_k)}{\beta(n_k)} \beta(j)^{-1} \beta(n_k)$$
$$\leq \alpha^{j-m} \beta(j)^{-1} \beta(n_k) \leq \alpha_0 \delta < \varepsilon.$$

Also, with the same choice of n and for $|i| \le m$ we get

$$\frac{\beta(i-n)}{\beta(i)} = \frac{\beta(i+m-n_k)}{\beta(-n_k)} \beta(i)^{-1} \beta(-n_k)$$

$$\leq \|M_z^{i+m}\| \beta(i)^{-1} \delta$$

$$\leq \alpha_0 \delta < \varepsilon.$$

So M_z is hypercyclic on $L^p(\beta)$.

(ii) We will see that the condition of Theorem 2 is satisfied. Let δ be such that $0 < \delta \alpha_0^2 < \epsilon$. By the hypothesis, there exists an integer k large enough such that $\beta(n_k)\beta(-n_k) < \delta$. Now for $n = n_k - m$, $|i| \leq m$ and $|j| \leq m$ we have

$$\frac{\beta(j+n)\beta(i-n)}{\beta(j)\beta(i)} = \left(\frac{\beta(j-m+n_k)}{\beta(n_k)}\beta(j)^{-1}\right)\beta(n_k)\left(\frac{\beta(i+m-n_k)}{\beta(-n_k)}\beta(i)^{-1}\right)\beta(-n_k)$$

$$\leq (\alpha^{j-m}\beta(j)^{-1})(\|M_z^{i+m}\|\beta(i)^{-1})\delta \leq \alpha_0^2\delta < \varepsilon.$$

Hence M_z is supercyclic on $L^p(\beta)$.

Remark 7. (i) Theorem 4 is an immediate consequence of the above theorem. Because if M_z is invertible, then it is bounded below, i.e., there

exists an $\alpha > 0$ such that $\|M_z f\| \ge \alpha \|f\|$ for all f in $L^p(\beta)$. This implies that $\beta(i+1) = \|f_{i+1}\| \ge \alpha \|f_i\| = \alpha \beta(i)$ for all $i \in \mathbb{Z}$ and so $\beta(i) \ge \alpha^k \beta(i-k)$ for all $i \in \mathbb{Z}$ and for all $k \in \mathbb{Z}^+$.

(ii) By Theorems 1 and 2, clearly the converse of Theorem 6 is also true.

Acknowledgement

The author, hereby, extends his heartful appreciations to the office Chancellor for Research of Shiraz Islamic Azad University for the research project based on which this article is written.

References

- J. Bes and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167(1) (1999), 94-112.
- [2] N. S. Feldman, T. L. Miller and V. G. Miller, Hypercyclic and supercyclic cohyponormal operators, Acta Sci. Math. (Szeged) 68 (2002), 303-328.
- [3] R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288.
- [4] C. Kitai, Invariant closed sets for linear operators, Dissertation, University of Toronto, 1982.
- [5] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 993-1004.
- [6] H. N. Salas, Supercyclicity and weighted shifts, Studia Math. 135 (1999), 55-74.
- [7] A. L. Shields, Weighted shift operators and analytic functions theory, Math. Surveys, Amer. Math. Soc. Providence 13 (1974), 49-128.
- [8] B. Yousefi, On the space $\ell^p(\beta)$, Rend. Circ. Mat. Palermo 49 (2000), 115-120.
- [9] B. Yousefi, Strictly cyclic algebra of operators acting on Banach spaces $H^p(\beta)$, Czechoslovak Math. J. 54(129) (2004), 261-266.
- [10] B. Yousefi, On the eighteenth question of Allen Shields, Internat. J. Math. 16(1) (2005), 37-42.
- [11] B. Yousefi and A. I. Kashkuli, Cyclicity and unicellularity of the differentiation operator on Banach spaces of formal power series, Mathematical Proceeding of the Royal Irish Academy 105A(1) (2005), 1-7.

- [12] B. Yousefi and H. Rezaei, Hypercyclicity on the algebra of Hilbert-Schmidt operators, J. Results Math. 46 (2004), 174-180.
- [13] B. Yousefi and R. Soltani, Hypercyclicity on the Banach space of formal Laurent series, Internat. J. Appl. Math. 12 (2003), 251-256.
- [14] B. Yousefi, M. Alimohammadi and F. Mansuri, Supercyclicity of the multiplication operator on $L^p(\beta)$, Institute of Mathematics and Computer Sciences, to appear.

Department of Mathematics College of Science, Shiraz University Shiraz 71454, Iran e-mail: byousefi@hafez.shirazu.ac.ir

Department of Mathematics Tarbiat Modares University, Iran e-mail: afarokha@modares.ac.ir