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Abstract

We investigate sufficient conditions for Hypercyclicity and Supercyclicity

Criterion on Banach spaces ( ).βpL

Introduction

Let ( ){ }∞ −∞=β nn  be a sequence of positive numbers with ( ) 10 =β  and

.1 ∞<≤ p  We consider the space of sequences { ( )}∞ −∞== nnff ˆ  such that

( ) ( )∑∞
−∞=β ∞<β==

n
pppp nnfff .ˆ

The notation ( ) ( )∑
∞

−∞=
=

n

nznfzf ˆ  shall be used whether or not the

series converges for any value of z. These are called formal Laurent

series. Let ( )βpL  denote the space of such formal Laurent series. These

are reflexive Banach spaces with the norm .β⋅  Let ( ) ( ).ˆ nnf kk δ=  So

( ) k
k zzf =  and then { } Z∈kkf  is a basis for ( )βpL  such that ( ).kfk β=
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Now consider ,zM  the operator of multiplication by z on ( ).βpL  Clearly

zM  shifts the basis { } .kkf  The operator zM  is bounded if and only if

( ) ( ){ }kkk β+β 1  is bounded. By the same method used in [8] we can see

that ( ) ( ),q
p

qp LL β=β ∗  where .1
11

=+
qp

 Sources on formal power series

include [7-11].

Let X be a complex Banach space and ( )XB  be the set of bounded

linear operators from X into itself. If ( ),XBT ∈  then the orbit of a vector

Xx ∈  is the set ( ) { { }}.0:, ∪N∈= nxTxTOrb n  A vector Xx ∈  is called

a supercyclic vector for an operator ( )XBT ∈  if the set { ( ),,: xTOrbyy ∈λ

}C∈λ  is dense in X. An operator ( )XBT ∈  is supercyclic if it has a

supercyclic vector. For several works see [1-6, 12-14].

Main Results

In this section we characterize some conditions under which the

multiplication operator zM  holds in the hypothesis of the Hypercyclicity

and Supercyclicity Criterion.

From now on we suppose that zM  is bounded on ( ).βpL

For the benefit of the reader, first we give a variation of the

Hypercyclicity Criterion due independently to Kitai [4] and Gethner and

Shapiro [3], and a version of the Supercyclicity Criterion due to Feldman

et al. [2].

Hypercyclicity Criterion. Suppose that ( ).XBT ∈  If there exist

two dense sets Y and Z in X and a sequence ∞→kn  such that

 (i) for every ,0, →∈ xTYx kn  and

(ii) there exists a function ZZS →:  such that xTSx =  for every

Zx ∈  and 0→xS kn  for every ,Zx ∈

then T is hypercyclic.
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Supercyclicity Criterion. Suppose that ( ).XBT ∈  If there exist

two dense sets Y and Z in X and a sequence ∞→kn  such that

 (i) there exists a function ZZS →:  such that xTSx =  for every

,Zx ∈  and

(ii) 0→xSyT kk nn  for all Yy ∈  and ,Zx ∈

then T is supercyclic.

Theorem 1. The operator zM  is hypercyclic on ( )βpL  if and only

if for all 0>ε  and N∈m  there exists n large enough such that

( ) ( ) ε<β−β −1jnj  and ( ) ( ) ε<β+β −1jnj  for all .mjm ≤≤−

Proof. See Theorems 1 and 3 in [13].

Theorem 2. The operator zM  is supercyclic on ( )βpL  if and only if

for all :N∈m

( ) ( )
( ) ( ) .0,:maxinflim =







 ≤≤

ββ
+β−β

∞→
mkmj

kj
nknj

n

Proof. See Theorem 2 in [14].

In the following B is the operator defined by 1−= jj fBf  for all .Z∈j

Clearly B is bounded if and only if the sequence ( ) ( ){ }kkk 1+ββ  is

bounded.

Theorem 3. Suppose that B is bounded on ( ).βpL  Then

 (i) there exists a sequence of integers ∞→kn  such that ( ) =β k
k

nlim

( ) 0lim =−β k
k

n  if and only if zM  is hypercyclic on ( ).βpL

(ii) there exists a sequence ∞→kn  such that ( ) ( ) 0lim =−ββ kk
k

nn  if

and only if zM  is supercyclic on ( ).βpL

Proof. (i) The necessity part follows easily from Theorem 1. So let
( ) ( ) 0limlim =−β=β k

k
k

k
nn  for a sequence of integer .∞→kn  Let 0>ε



w
w

w
.p

ph
m

j.c
om

B. YOUSEFI and A. FARROKHINIA68

and .N∈m  By Theorem 1, it is sufficient to show that there exists k

large enough such that ( ) ( ) ε<β±β −1jnj k  for all .mj ≤  Put

{ ( ) ( ) }.0,0:,max 11
0 ≤≤−≤≤ββ=α −−− immjiBjM ij

z

Let δ be such that .0 0 ε<δα<  Then for some natural number k, we

have ( ) δ<β kn  and ( ) .δ<−β kn  Note that

( )
( ) 




<
≥=≤

±β
±β

− ,
0

0

jB

jM
c

n
nj

j

j
z

j
n

k

k

thus for all mj ≤  we get

( )
( )

( )
( )

( ) ( )k
k

kk nj
n
nj

j
nj

±ββ
±β
±β

=
β
±β −1

.0 ε<δα≤

So zM  is hypercyclic on ( ).βpL

(ii) By Theorem 2 and the same method used in the proof of part (i), it
is clear.

Theorem 4. Let zM  be invertible on ( )βpL  and suppose that there

exists a sequence of integers .∞→kn  Then we have

 (i) if ( ) ( ) ,0limlim =−β=β k
k

k
k

nn  then zM  holds in the

Hypercyclicity Criterion.

(ii) if ( ) ( ) ,0lim =−ββ kkk
nn  then zM  holds in the Supercyclicity

Criterion.

Proof. Let ZY =  be the linear span of { } .Z∈jjf  Then Y and Z are

dense in ( ).βpL

(i) For all ,Z∈j  we have

00 fMMfMMfM kkk n
z

j
z

n
z

j
zj

n
z ≤=

( )k
j
zn

j
z nMfM

k
β==
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and

00 fMMfMMfM kkk n
z

j
z

n
z

j
zj

n
z

−−− ≤=

( ).k
j
zk

j
z nMfM

n
−β== −

So we get 0limlim == −
j

n
z

k
j

n
z

k
fMfM kk  for all Z∈j  and this implies

that 0limlim ==− fMfM kk n
z

k

n
z

k
 for all f in Y and Z. Thus zM  holds in

the hypothesis of the Hypercyclicity Criterion.

(ii) For all i and j  in Z  we have

( ) ( ).kk
j
z

i
zi

n
zj

n
z nnMMfMfM kk β−β≤−

Therefore 0lim =− gMfM kk n
z

n
z

k
 for all f in Y and g in Z. Now we can

see that zM  holds in the hypothesis of the Supercyclicity Criterion.

Corollary 5. Let zM  be invertible. Then zM  is hypercyclic

(supercyclic) if and only if zM  satisfies the hypothesis of the

Hypercyclicity (Supercyclicity) Criterion.

Proof. Note that by our convention, zM  is bounded on ( ).βpL  So, in

Theorem 3, the boundedness of B on ( )βpL  implies that indeed zM  is

invertible on ( ).βpL  Now by Theorems 1, 2, 3 and 4, the proof is clear.

Note that in the following theorem, zM  is not necessarily invertible.

Theorem 6. Suppose that there exist an 0>α  and a sequence of

integers ∞→kn  such that ( ) ( )rnn k
r

k −βα≥β  for all positive integers k

and r. Then we have

 (i) if ( ) ( ) ,0limlim =−β=β k
k

k
k

nn  then zM  is hypercyclic on ( ).βpL

(ii) if ( ) ( ) ,0lim =−ββ kk
k

nn  then zM  is supercyclic on ( ).βpL
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Proof. Let 0>ε  and .N∈m  Put

{ ( ) ( ) }.,:,max 11
0 mjmiiMj mi

z
mj ≤≤ββα=α −+−−

(i) By Theorem 1, it is sufficient to show that ( ) ( ) ε<β+β −1jnj  and

( ) ( ) ε<β−β −1jnj  for all mj ≤  and n sufficiently large. Suppose that

.0
0α
ε

<δ<  Then there exists k large enough such that ( ) δ<β kn  and

( ) .δ<−β kn  For Z∈j  with mj ≤  and mnn k −=  we have

( )
( )

( )
( )

( ) ( )k
k

k nj
n

nmj
j

nj
ββ

β
+−β

=
β
+β −1

( ) ( )k
mj nj ββα≤ −− 1 .0 ε<δα≤

Also, with the same choice of n and for mi ≤  we get

( )
( )

( )
( ) ( ) ( )k

k

k ni
n

nmi
i

ni −ββ
−β

−+β
=

β
−β −1

( ) δβ≤ −+ 1iM mi
z

.0 ε<δα≤

So zM  is hypercyclic on ( ).βpL

(ii) We will see that the condition of Theorem 2 is satisfied. Let δ be

such that .0 2
0 ε<δα<  By the hypothesis, there exists an integer k large

enough such that ( ) ( ) .δ<−ββ kk nn  Now for mimnn k ≤−= ,  and

mj ≤  we have

( ) ( )
( ) ( )

( )
( )

( ) ( ) ( )
( )

( ) ( )k
k

k
k

k

k ni
n

nmi
nj

n
nmj

ij
ninj

−β







β

−β
−+β

β







β

β
+−β

=
ββ

−β+β −− 11

( ( ) ) ( ( ) )δββα≤ −+−− 11 iMj mi
z

mj .2
0 ε<δα≤

Hence zM  is supercyclic on ( ).βpL

Remark 7. (i) Theorem 4 is an immediate consequence of the above

theorem. Because if zM  is invertible, then it is bounded below, i.e., there
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exists an 0>α  such that ffMz α≥  for all f in ( ).βpL  This implies

that ( ) ( )iffi ii αβ=α≥=+β +11  for all Z∈i  and so ( ) ( )kii k −βα≥β

for all Z∈i  and for all .+∈ Zk

(ii) By Theorems 1 and 2, clearly the converse of Theorem 6 is also

true.
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