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Abstract

A method of the analysis of strong stability of symplectic matrix is
presented. This method is based on spectral dichotomy methods of a
matrix with respect to a circle whose new variant has been proposed.
Applying the original idea proposed by S. K. Godunov, an algorithm
of the analysis of strong stability is proposed. Numerical examples are
presented to confirm the theory.
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1. Introduction

Let J e RZNV2N pe g skew-symmetric and nonsingular matrix. A

RZ2N*2N g J-symplectic if WTIw =J; we say also that W is

matrix W e
J-orthogonal. The symplectic matrices belong to the group of structured
matrices. They are important in optimal control theory [13, 15, 2] and in
theory of parametric resonance (see, e.g., [21]). The eigenvalues of W can be

classified in three groups with respect to the unit circle: a group of N
eigenvalues inside the unit circle, another of N, = N eigenvalues outside
the unit circle and the third group of 2N; = 2(N — Ng) eigenvalues on the

unit circle. For any eigenvalue A of W, &, /A and 1/ are eigenvalues of W.

A symplectic matrix is strongly stable if and only if it verifies the KGL
criterion [21, 9] or, equivalently, its spectrum is on the unit circle, and is
uniquely composed of red and/or green eigenvalues [4, 9]. The KGL criterion
is due to Krein, Gelfand and Lidskii [21]. This criterion is based on the
following definition which classifies the eigenvalues of W lying on the unit
circle in three groups.

Definition 1.1. Let A be a semisimple eigenvalue of W lying on the unit
circle. Then A is called an eigenvalue of the first (second) kind if the
quadratic form (iJx, x) is positive (negative) on the eigenspace associated

with A.. When (Jx, x) = 0, then A is of mixed kind.

In this definition, the notation (iJx, x) is the Euclidean scalar product

and i = \/—_1 Recall that +1 are mixed eigenvalues, since for any eigenvector

x associated with 1 or -1, we have (Jx, x) = 0.

Thus, the KGL criterion says that a symplectic matrix is strongly stable if
and only if all its eigenvalues are either of first kind or second kind (see, e.g.,
[21, Chap. I11], [12]). Another classification of eigenvalues of modulus 1 of
symplectic matrix is given by the following definition.
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Definition 1.2. Let A be a semisimple eigenvalue of W. Then A is a red
(green) color or in short r-eigenvalues (g-eigenvalue) if (Spx, x) is positive

(negative) on the eigenspace associated with A, where Sg = (1/2)J(W —W‘l)
= (IW + (IW)").

The latter classification given by Definition 1.2 is more appropriate for
numerical calculations than Definition 1.1 because it uses symmetric
matrices. The link between Definitions 1.1 and 1.2 is that if (A, x) is an

eigenvalue of W with A = e'®, then we have (Spx, x) = sin B(iJx, x). On the
other hand, if 1 = €', with 0< 0 < =, is an eigenvalue of first kind, then

% =e"jsan eigenvalue of second kind associated with an eigenvector X
and we have, for any linear combination z = ax + BX,

(Soz. 2) =| & [*(Sox, X) + | B[*(SoX, X)
= sin 0f] o [2(idx, x) | B A(iI %, X)] > 0.

Thus, the second definition gives another formulation of the strong stability
of a symplectic matrix suitable for numerical calculations. Indeed the KGL
criterion is equivalent to the fact that all the eigenvalues of W must be either
of red or green color (see [11, 4]).

The objective of this paper is to construct an algorithm using the spectral
dichotomy method to analyze the strong stability of a symplectic matrix W.
The method of spectral dichotomy was introduced by Godunov [6]. It allows
to calculate the spectral projectors associated with eigenvalues on, inside and
outside a contour y of the complex plane. The computation of projectors is
accompanied by that of the norms of Hermitian and positive definite
matrices, called criterion dichotomies (or numerical quality). These norms
allow to know if projectors are well computed. If these criteria are small,
then the numerical quality of the projectors is the best. In this study devoted
to the analysis of the strong stability of symplectic matrices, we consider the
case where vy is a circle.
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In Section 2, we give the more important steps of the method of spectral
dichotomy of a matrix with respect to the unit circle proposed by Godunov
and Sadkane [10] and estimate the cost of the elementary operations
neglecting the lower strict terms to 3. In Section 3, we present another variant
of spectral dichotomy method with respect to the unit circle which is four
times less expensive. These two methods are stable and allow a good
computation of projectors. Their numerical qualities are good. Section 4 is
devoted to the application of the spectral dichotomy in the analysis of the
strong stability of symplectic matrix. Using a Cayley transformation (see [5,
20]),

A=CW)=W —I)W + Iy) 7Y

where I,y is an identity matrix of order 2N and the symmetric matrix Sg,
we determine the projectors P, and PPy associated with r-eigenvalues and

g-eigenvalues, respectively. In Section 5, we present numerical examples in
which our methods are checked.

2. Spectral Dichotomy of a Matrix with Respect to a Unit Circle

Consider a matrix A e RN*N

unit circle.

such that A has not eigenvalues on the

2.1. Notation and preliminaries

Suppose that r =1. The spectral projector on the invariant subspace
associated to interior eigenvalues to C(0, 1) of the matrix A is given by (see

[16, p. 39)),

1

1
F _Tn.[c(o,l)

2 .
(zly — A)ldz = 2—nj0 (Iy —e°a)yde, (1)

where 1y is the identity matrix of order N or just I when the order is clear
from context.

The numerical computation of this projector is accompanied with a
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Hermitian positive definite matrix H which is defined by

1

27 . .
_ 2_71.[0 (Iy —e A ™1y - e 9A)de. @)

The norm of H is called criterion of dichotomy. It is a reliable indicator.
However, we note that the pair (P, H) is the unique solution of the

generalized Lyapunov system [8],

H - A"HA = P*P - (I - P)*(1 - P)

H=H">0

PA = AP ©)
P2 =P

HP = (HP)".

Consider the following decomposition of the matrix A:
I, 1
A=X X, (4)
To

where Ty e CP*P, T, « C(N=P*(N=P) anqg the spectrum A(A) of A is
partitioned as A(A) = A(Ty) U A(T,,) with

A(T,) = {\ e such that | A | > 1},

A(lp) = {X e such that | A | < 1}.

The spectral projectors P and | — P onto the invariant subspaces of A
associated to the eigenvalues of matrices Iy and I, are, respectively, given
by

O(N- 0 I(n= 0
pox| NP xLand1-p=x| VP X1 5
0 I 0 0p
where O(y _p) is a null matrix of order (N — p) or just 0 when the order is

clear from context.
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Throughout this paper, the symbol || || denotes the Euclidean norm or its

induced norm and k(X)) =| X |- X7 | = on(X)/oy(X) denotes the
condition number of a nonsingular matrix X, where o) (X) and o(X) are,
respectively, the largest and smallest singular values.

2.2. Presentation of the method

A method of computation of approximations of P and H has been shown
[10, Sec. 2] a method. We recall the most important steps. Considering the
decomposition in Fourier series

i +00 . 2 . .
(1-e¥p)1 = Z 2™ where z, = 2—17t'[0n(l — %Ay LeOqg

k=—o0

of the 2rn-periodic function 6 — (1 — eieA)_l, we get the projector P = Zj),

the matrix H = Z:f_oo ZZ and the infinity system

Zk—AZk+1=0if k-‘#o,
(6)

Zy - AZy = Iy,
where (Zy ), ., are unknown. In [18], it is shown that the Fourier coefficients
Zy converge to zero when |k | converges to infinity. Putting

+00

2j+l
2 =327, i, kel )
|=—c0

.. . . (2141 o jrl -
where j is a given integer, the sequence (Z ez, 1S 277" -periodic and

j+1
satisfies Iimj_mozlg2J+ ) = Z,, Vk € Z (see [10]). From (6) and (7), we

obtained the finished linear (and cyclic) system

2j+l 2j+l
2@ Az -,

: . )
1 1 .
2" Az =0, 1<k<2itoa
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i+l i+l j+1 j+1
of unknowns Z(()2 " ), 21(2 ' ), ZSJ ) — Z(()2 ) when j is great. This
system has a unique solution if and only if the matrix A has not eigenvalues
on the circle C(0,1). Then P and H can be approximated iteratively with

the following theorem (see [10] for the proof).

Theorem 2.1. Put By = I, Ay = —A and

Aj

2J+1 2J+1
Boz;j )+ pziE),

<
Il

_ (21 (21+h)
i =BoZyjn ¥ Aol

2j+1 j+1 j+1
21+ (2t
Hi=> (@@ )z,
k=1

Then
* *
HJ = AjHj—lAj +ijj—le'
Moreover,

. j+1 . j+1
lim 2(2 ) = lim Z(Z. ) = P,
j—oo 0 jooo 21+

. j+1
lim Zl(2+)=]P’—I,
j—>o

I|m Hj = H.
J—>x

This theorem shows, in particular, that

. . . . j+l
- the approximation of P requires only the computation of Z(()2 ) —

j+1
ZSS ) for j great,
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j+1
- the approximation of H requires only the computation of 21(2 ),

j+1 j+1 j+1
7@ Zgz.ﬁl) and ZS: ) for j great.

2! by
. B (2J+l) (2J+l) (21+1) (2J+l)
The computation of the matrices Z) , 2 Ay and Z'° 1
2} 2141 21t
in [10] is done with the following system:
2]+1
B A 0 0 zgj ' (o
j+1
A0 B 0]z@D] o
zlfa _ , 9)
. _ 21*
0 Bj 0 A |z®)] |o
0 0 A Byz@D| L

2J+l
where the matrices A; and Bj are constructed iteratively from the By and

Ay using a QR-factorization obtained by transformations of Householder in
the form

0 Bjy 0 A
RS
e

0 0 Bj

] Aj

i

where Q(j‘l) is a unitary matrix. The important steps of the method proposed

by Godunov and Sadkane are summarized below (see [10, Algorithm 1]).
Algorithm 2.1. (Spectral dichotomy of A by the unit circle)

1. Initialization: By = I, Ay = —A:
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- Compute 21(2) and Zgz) solutions of the system

Bo A)(z? (OJ
A Bo)z®) L)
- Compute Hq = (22 2(? + (z{2)yz{?).
. i (2j+l) (21+1) (21+1) (2j+1)
2. Iteration: Computation of A , 2 2% and H ;
2l 2] +1 J+ J
for j =12, ...

- Compute the QR-factorization

0 Bj; 0 Ay
-1 -1 -1 -1
A R R R

S0 o R R R

0 0 Bj Aj

. i+l
- Compute the solutions 21(2 ) and Z(2]+l ) of the system

(m Aq 22" (j
Ay By gil ) O

j+1 j+1
- Compute the solutions Zgzj ) and Zgzj 1) of the system
+

RUD %y>gﬁ5_ RUD RG22
j—1 @i | j—1 -1 i+ |
o RYIIZE RUD  RUD 2%
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- Compute
2j+1 2j+l
_p.z@" (@I
V= BOZ2j+1 + Aozzj+1 ,

* *
HJ = AjHj—lAj +VjHj_1Vj.
2.3. Operations cost of Algorithm 2.1

We now estimate the number of elementary operations in Algorithm 2.1.
In these estimates, we consider only the most important terms, i.e., terms in

N3,

- Initialization: To compute 21(2) and Zgz)’ we solve the linear systems
block (I - A@)Zéz) =1 and Zl(z) = —Azgz). The first requires 2N 3
operations (computation of Ag), and (2/3)N3 operations (Gauss’s
factorization of (I — Ag)), and 2N° operations (resolution of two
triangular systems block). The computations of 21(2) and Hg require,
respectively, 2N°% + 2N3 = aN?® operations.

- Iteration j:

- The QR-factorization by Householder’s transformation requires
54N operations [14].
. j+1 i+ .
- The computation of 21(2 ) and ZSJ) requires (31/3)N3

B; A;j
operations: (2/3)(2N)3 for the LU factorization of (A(J) Bjj’
0

followed by resolution of two block-triangular systems, and

0
considering the specificity of the second member [J these

systems require N2 for L and 4N?3 for U.
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j+1 j+1
- The computation of Zgzj ) and Zézjg ) requires 12N3:8N3 to

-0 RG-DY( 7@
R(3 ) R1(4 ) Zy

compute and 4N to solve the block-

j-1) -1 || 7 (1™
R£3 R£4) sz+1

rRU-D  RU-D
. . 11 12
triangular system of matrix

i-1) |
o RY
- Finally, the computations of A;, Vj and H j require, respectively,

2N3, 2N3 and 4N3 operations.

In total, one iteration requires of the order of 253/3N 3 operations.

The cost of the operations is summarized in Table 1.

Table 1. Cost of Algorithm 2.1

Initialization
Compute of ZEZ), Zéz}. Hy 26/3N3
One iteration j
Q) R-factorization 54N3
oi 5i+1 .
Computation of Zf“'._ Zéirl ) 31/3N3
5i+1 i+1 .
Computation of Zg[f ), Zéfﬂ ) 12N
Computation of A; o2N3
Computation of V; 2N3
Computation of H; 4AN3

Total %N 34 L;s,: N3

2.4. Spectral portrait
The spectral portrait of the matrix A is the graph of the function

r f(n)=[H(m)], (11)
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where

#\ L i -
H(r) = %j;n(l ~ i AT] (l e é) do. (12)

The spectral projector on the invariant subspace of A associated to
eigenvalues inside the circle C(O, r) is

2 . -1
L (2l — Ay ldz = ij n(l _ei® 1) do.

P(r) = 5

T J.c(o| r) 2rndo r

When A has an eigenvalue A on the circle C(0, r), then f(r) — o, i.e., the
graph of f has an asymptote of equation | A | = r. It has been shown in [8,

Sec. 13] that the function f is convex in each interval where it is defined.
These intervals correspond to regions of absence of eigenvalues (the trace of
projector remains constant).

The spectral portrait is another perspective on the pseudo-spectrum [19]
of a matrix. This allows the determination of neighborhoods defined by
eigenvalues of all the perturbations of the matrix in a given region. Several
techniques are used to calculate, see, e.g., [19, 17, 1]. The spectral portrait
allows a spectral stratification, i.e., the construction of regions (bands in our
case) that share the spectrum.

3. Another Method of Spectral Dichotomy of a Matrix with Respect
to a Unit Circle

The variant of Algorithm 2.1 proposed in this section essentially removes

L i j+1
the QR-factorization and the computation of Zézl ) and Z; i1

. Thus, the
new variant is justified as follows.

3.1. Analysis of the algorithm

The system (8) gives 21%1 solutions of expressions

j+1 j+1 j+1 j
7@ a2k A2 kZ0q, 2 m (13)
k N
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Note that the analytic computation of this expression is not stable. It is
preferable to compute them of iterative manner. For that, we put, for
i=01 ..,
2] 21 21+l
Kja=A"[Iy - A ][Iy - AT T, (14)

2J+1

Liva=[In - Azj][IN - AT (15)

. . . . (21+1) (24)
The following proposition gives the link between Z, and 2"/, and

Hj+1and Hj

Proposition 3.1. For j=0,1,..and k =0, 1, ..., 2j, we have

21+l 21
22 = 7K, (16)
@ _ @,
ZZj+k - Zk LJ+1’ (17)
|_|j+1 = KT+1HjKj+1+ I->I}+1Hj|-j+l- (18)

Proof. We have
j+l j+1 j+1
A A

20 k 2011 521 2] 20+l

= A" Iy AT AT Iy - AT ][Iy - AT ]
2]

=2 K (19)

and

j+1 i1 ] i j+1
Zgzl +|<) = A2 A P - Ay - A2
+

j j j j+1
= Ay = AT - A% Ty - A2 T

— 72, (20)
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Moreover,
2j+l j+1 j+1
i+ i+
Hia = 2@ )z
k=1
2j j+1 j+1 2j+l j+1 j+1
2 2 2 2
=@y )« > Z& Dy z#)
k=1 k=2J+1

2] _ } 2] ) )
" s (2] ew (2]
= ZKj+1(Z|£2 )) Z|£2 )Kj+1 +Z'—j+1(z|£2 )) Z|£2 )Lj+l

k=1 k=1
AN j 2! j j
* 21 x5 (2 29)\x5(2
= Kj+1 Z(Zﬁ )) Zlg ) Kj+l+ I-j+1 ZLj+1(Z|£ )) Z|£ ) I-j+1
k=1 k=1
= K]-:lHij + L’§+1Hj|_j+1. O

The following proposition allows to compute the matrices Kj,; and

Ljq iteratively.

Proposition 3.2. For j =0, 1, ..., we have
Bi A K; 0
o))
Aj  B;j L1 In

o ar@hy o S2h)
Aj=-AZ" By =25

with

Proof. The second line of the system (8) written for k = 21 gives

2@ _pz@
2! 2)41

or, according to Proposition 1

2! 2]
z;hqﬂ—Aq Wi =0
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or again

BjKj+1+Aij+1=0. (22)
Similarly, the first line can be written, knowing that Z(()ZJ) = ZSJ),

2] 2]
zgj Wi - AZZ K = Iy

or again
Bij+1+AjKj+1:|N' (23)
O

For j=0,1, .., knowing K; ., and Lj,;, we determine the matrices
j+l j+l j j — -
21(2 ) and Zgzjﬂ ) from 21(2 ) and Zézj ) by the application of Proposition

3.1,and Kj,p and Lj,, assolutions of the matrix system (21).

2j+l)
j+1

3.2. Analysis of Zg

The following lemma is a preliminary convergence result for the
matrices Ty and T.)", for all n>0 (see [3]). It was used to show the

i+l . o
convergence of the sequence (ZS+1 )) i> o to the projector P where jj isa
given integer.

Lemma 3.1. For all n > 0, we have
max(| I3 [, | T5" [) < oy"
with ®>1and 0 <y <1.

Proof. The spectra of Iy and 2} lie inside the unit disk. Then there

exists symmetric positive definite matrices Hy and H,, such that (see, e.g.,
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[8, p. 148]):

Ho —Tg Holp = 1 and H,, —ToTH I =1y

which give us

Ho Iy T (Ho I (e
H,, .t H,, rl) In_p )
We obtain the following estimate vn > 0:
I n
.t

where o = max(| Ho [, | Ho, [) 21 and v = y1-3/max (| H ||, [ Ho, [) <1
from a standard result on Lyapunov equations (see, e.g., [8, p. 149]). O

< oayn,

From Lemma 3.1, we deduct the following lemma:

Lemma 3.2. There exists jo € N such that for all j > jy, we have

2j+l

2111 2111 Q
max(| [1p ~ 18 T =1y b Dy~ T2 T ) s =
1- oy

Proof. Remark that
2111 2]+l 4 oJ+l
[Ip_ro ] _Ipz[lp_ro ] [Ip_(lp_ro )]
2J+l 1 o]+l
=[l,-Tg I'Tg .
Then we have
2l* Qi+l g i+l
Il =T T7=tp <ty -To" T7MITe |
All eigenvalues of the matrix I are in the unit circle; so there exists j; € N

such that || FO ||<1 Then [1, —FOZJ Zk 0(1"021 ; this implies
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that vj > j;, we have

2J+1 _1 i 2J+1 k 2]+l
0y -8, <] S >ujuro |
k=0

X j+1 K j+1
2 2
< I JII Iy |
k=0
2j+l
(R
1-]To" |
From Lemma 3.1, we deduct
. j+1
2i+l. 1 wy? L.
I -To 17 —1p ||3—1 i g Vj2 g
We get again the estimate
. j+1
i1 wy? ..
IV n=p) . N Sy—zm’ Vizp
1- oy

j+1 j+1 j+1
remarking that [I(n_p) —FO%H It = [1";)2J+ - I(,\,_p)]_ll“ogzJ+ with the

1o o _oitl
spectrum of Tl lies inside the unit disk and || T,;2 | <1 for a value

jo € N. We consider jo = max(j, jo). -

Lemma 3.2 shows that

j+1 —l j+l _1
lp-T& TH 1, and [Iy_py-T5 T' >0 (24)
. j+1
However, the matrix Zgzjﬂ ) can be decomposed as
2t [nep) — T ] -
23, =X (N-p) i XL @)
[I p— I ]
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From the decomposition (25), we have the following theorem which

L i+l )
presents an estimation of the error me ) P when j take the great values.

Theorem 3.1. There exists j, € N such that for all j > j;, we have

(27*) o
12850 B k()
1- (oyz

Proof. According to Lemma 3.2, there exists jy € N such that Vj > jg,

we have
2j+1
125, -2
21+l
_x Iin-p)— T ] 0 w1
N i+
0 lo-T5 Th -1,
2j+1 1 2j+l 1
< (X)) max(| [Ip -y - Ip I 1 [I(N—p) -Iy 17D
(0y2j+l
< KZ(X)W ]
1- oy

2j+1 2j+1

The speed of convergence of || Zé i1 ) _p | depends mainly on y

The quantity k,(X) comes from the block-diagonalization (4). This theorem

j+1 . .
shows that Zézm ) converges to the projector P very rapidly.

3.3. Algorithm
All the results obtained apply to the case where A has not eigenvalues on
the circle C(0, r) of center 0 and of radius r. It is enough to replace A by é

The new variant of the algorithm of spectral dichotomy with respect to the
circle C(0, r) is given below.
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Algorithm 3.1. (Spectral dichotomy of A with respect to the circle
C(0, r))

(1) Initialize
@ A =2,
(b) Resolve
I VR
In A/ Lu InJ
(c) Put 21(2) = Ky, Zgz) =Ly and compute H; = (21(2))*21(2) +
2y 282,
(2) Iterate: for j =1, 2, ...
(@) Put

2J 2]
A= AZi?), By =2

ity
A B L) Uy

i+l 2l
7 =2 K,

(b) Resolve

(c) Compute

@ _ @
Hj+l = K>jk+1HjKj+1 + L*j+1Hij+1-

The cost of Algorithm 3.1 by neglecting the terms of power inferior to 3,
is summarized in Table 2.
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Table 2. Cost of Algorithm 3.1

Initialization
Computation of Ky, Ly, Hy (26/3)N*

an iteration j

Computation of A; IN3
Computation of K1, Ljt1 (31/3)N3
ai+1 )
Computation of Z{z ) 2N3
i+1 ]
Computation of Zé_?_;] ) N3
Computation of Hj 4 4N3

Total N3 4 8LiN3

If we compare the cost of elementary operations presented in Tables 1
and 2, we note that an iteration of Algorithm 2.1 is four times more
expensive than an iteration of Algorithm 3.1. So Algorithm 3.1 represents a
non-negligible gain in comparison to the algorithm of [10]. In general, about
ten iterations are enough for Algorithm 3.1 (and to the algorithm proposed by
Godunov and Sadkane) to construct very good approximations of projector
P and of the matrix H.

4. Application to the Strong Stability of Symplectic Matrices

We now give a matrix W e R?N*2N and a matrix J e RZN*2N
invertible and anti-symmetric such that W is J-symplectic.

The study of strong stability of W leads us, in a first step, to verify if all
the eigenvalues are on the unit circle. Then we determine the projectors
Py, P, and P,, associated, respectively, to eigenvalues of modulus less than
1, equal to 1 and greater than 1 using Algorithm 3.1. For this, we use two
circles C(0, ry) and C(0, r,,) with the same center 0 and radii ry and r,
such that the first contains all eigenvalues of W inside the unit circle (and
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excluding others) and the second contains all eigenvalues of modulus less
than or equal to 1 (and excluding others). Then the spectral projector
obtained by Algorithm 3.1 applied to W and to circle C(0, rp) will be equal

to [Py and this one obtained with C(0, r,,) will be equal to I,y — P,,. Thus,
we obtain Py, P, andso P, = I,y — Py — Po.

Considering the fact that the eigenvalues of symplectic matrices W are
symmetric with respect to the unit circle (within the meaning of inversion), it
suffices to find rp and to take r, =1/ry. To have ry, it is enough, for

example, to approach the first minimum of this function located just left of
the asymptote r = 1. Since the function is convex outside asymptotes, this
minimum exists and can be approached by different techniques.

If the projectors Py = P, =0 and P, = Iy, then we verify if all the

eigenvalues are well defined, i.e., they are r-eigenvalues or g-eigenvalues.
Denote by P, and Py the projectors onto the subspaces invariant associated,

respectively, with the r-eigenvalues and g-eigenvalues of W. Denoting again
by S, = IP’rT SoPr = S,rT and Sy = IPJSOIPQ = Sg, then we have IP’rT SoPy
=0 and S, — Sy >0 and the following conditions are equivalent (see [4,

11]:

- W is strongly stable, (26)
- The set of eigenvalues of W is formed only r-eigenvalues and
g-eigenvalues, 27
- § 20,835 <0, S -S4 >0, (28)
- Pp=P,=0and P + Py =P = lpy. (29)

Note that two eigenvalues A, p = +1 of W such that Ap =1, are on the
A-1| |p-1
A+1] |p+1
equation of the circle. We apply the idea originally proposed in [7], which is

same circle, because Ap =1 implies that ‘ ‘ which is the
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to bring together all the eigenvalues A of W at the intersection of the unit

circle and the circle equation H—;i = C (where C is a positive constant).

We know that the eigenvectors associated with eigenvalues A and p located

p-1

- . A—1
I - = r=-
on distinct circles (‘ a1l ‘ nT

since Ap # 1) are J-orthogonal (see

[9]). The result of this simple remark allows us to analyze strong stability
(determination projectors I, and Py). We summarize the main ideas:

Suppose that the application of Algorithm 3.1 to W, with a suitable
choice of ry, givesus Py = P, = 0 and thus P} = Iy

Suppose further that the matrix Sy is invertible and consider the matrix
A given by the classical Cayley transformation:

-1
A=CW) =W —In)W +loy)
whose eigenvalues are of the form

oo Ml
k_7\.k+1

=i.tan(8,/2), k=12, .., m,

where iy = e'% with 0, e ]-x, n], designates an eigenvalue of W of
modulus 1. C(W) is only defined if A € {+1, -1} is not eigenvalue of W and

its eigenvalues are on the imaginary axis. Note that the eigenvectors (and
invariant subspaces) of A and W are the same.

Let &, ay, ... be positive numbers that interweave strictly eigenvalues of
modulus | Iy |, |15 |, .... In other words, 0 < a, < |l | < ag,q fork =1, ..., m.
Since W is a real matrix, its eigenvalues Ay and therefore I, are complex
conjugate and so m < N + 1.

In practice, it is possible to choose, for example, a; in a neighborhood of

0and ay, inthe interval ]| A|, o[, where | A| denotes any matrix norm of
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A. The others a; can be obtained by examining the spectral portrait of A.
Furthermore, since W must not have eigenvalues +1 to be strongly stable,

there must exist two positive reals r, and M such that
re<ap <|h|<-<ag <|lg|<agm < <|lp|<amu <M. (30)

If [1;| =0 (or|ly | =+w), there is not strong stability because this implies

that +1 (or —1) is an eigenvalue of A. Hence the following proposition:

Proposition 4.1. A symplectic matrix W having all the eigenvalues on the
unit circle, has not eigenvalues 1 if and only if there exist two positive

reals r, and M such that all the eigenvalues I, of A=W —1)(W + 1!
verifies

. <[lk|<M, k=12 .,m

Proof. The eigenvalue A = el% of W, where 0 € |—=, n], is different from
+1 if and only if 6 ¢ {0, n}. This implies that tan(6/2) ¢ {0, o} or again

there exist two positive reals r, and M such that r, <|tan(6/2)| < M. O

We know from the above discussion that the eigenvectors (and invariant
subspaces) associated with the eigenvalues and Iy, and I; in different fields

are J-orthogonal. These regions can be obtained by applying Algorithm 3.1
to the matrix A.

Denote by R, k =1, ..., m + 1 the projectors on the subspaces associated
with eigenvalues of A in the circles C(0, ax) with P, =0 and P, =I.

Furthermore, each matrix
Qk = H<+1 - Pk' k = l! 21 ey M (31)

is a projector on the invariant subspace of A (also of W) associated to
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eigenvalues | = % of A located in the crown

|2 -1

<A1

<agy, k=12, .,m (32)

Consider now the matrix Sy defined by

Sk =QiSoQx =Sk, k=12 .,m (33)

The idea is to gather all the eigenvalues A of W for which Sy is positive (or
negative) semi-definite. To have W strongly stable, all the matrices Sy

should be well definite, i.e., they should be positive (negative) semi-definite.
This discussion leads to Theorem 4.1 below.

Theorem 4.1. The matrix W is strongly stable if and only if
POZPOO =0 and PI’ +Pg =P1= IZN

with

Pr= > Q and Py = > Q.

Sk =0 Sk <0

The algorithm which allows to determine the strongly stable of a
J-symplectic matrix W, is the following:

Algorithm 4.1.

1. Using Algorithm 3.1 and an appropriate choice of the parameter 1y,

to determine the projectors Py, P; and P,,.

2. If Py # 0 (or PP, # 0), then there is no strong stability. Else compute

So = @/2)((IW) + (IW)").

If Sy is singular (poorly conditioned), then there is no stability. Else
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compute
A=W -DW + 1)L

From the spectral portrait of A, determine the scalars (ay ), <m.1
satisfying inequalities (30) and (32).

3. Determine the projectors P, = 0, P, ..., Py, Ppy1 = | by the spectral
dichotomy applied to A and circle C(0, ay ), k =1, 2, ..., m+ 1.

4. For k =1, 2, ..., m, compute

-
Qk = P+1 — P and S = Qy SQk-
If Sy is not definite, then there is not strong stability. If all the
matrices S, are semi-definite, then there is strong stability. In this
case
Pr= ZQk and Pg = ZQK
Sk =0 Sk <0
Taking a; > 0 (if it exists) such that a <|l¢|, vk =1, .., m and
ams1 > || A, we obtain P, =0 and Py, =1. In Algorithm 4.1, the

computation of each projector is accompanied of its dichotomy criterion. The
algorithm stops if this criterion is too big. When there is strong stability, all
the projectors must be computed with a good criterion dichotomy. To define
the red and green projectors, all eigenvalues must be on the unit circle
because we are primarily interested in the study of stability. But beyond the
questions linked to the stability, it is entirely possible to define these
projectors in a larger context, i.e., some eigenvalues cannot be necessarily on
the unit circle. Indeed, if Py, P, # 0, then P, = I, it is enough to apply

Algorithm 4.1 to the matrix A=(PW —1)(BW + L A simple
adaptation of Algorithm 4.1 shows that the projector P; can be decomposed
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5. Numerical Example

Example 5.1. Consider the J-symplectic matrices

4 3
g 00 0 £ O 000 0 10
0 01 0 0 0 00 10 00
W 0—100302 e g |0 L0000
= , where J = .
0 00 -z 0 ¢ 000 0 01
3 4
_3 4 10 0 00
5000503
4 0 0 100
0 00 -2 0 -3

We will study the strong stability of this matrix W by the spectral
dichotomy method. By applying the spectral dichotomy method (Algorithm
3.1) to the matrix W and the circles C(0, ry) and C(0, 1/ry), respectively,

where rp = 0.9992, we deduce the projectors Pp =0, P, = Ig and P, =0
with Tr(Bj)=0, i=0,0, Tr(P)=6, |P?-P |=0, i=0,1 0 and
| H; ||2 = 665.9168, i = 0, 1, o, where Tr(P;) is the trace of the matrix P;.

This implies that all the eigenvalues of W are on the unit circle. We can
verify if all the eigenvalues are either of red color or either of green color.

Thus, we consider the spectral portrait of the matrix A=W — 1)(W + I)‘1

to determine the constants (ay ), _; , Which allow to compute the projectors

Py and Py. This computation gives us & = 0.1667, a, = 0.6667, a3 = 1.5

and a4 = 4 examining spectral portrait of the matrix A on Figure 1. We can
remark that a; € |0, 1/3[, a, € |/3,1[, aze ]l 2[ and a4 € |2, o]
Algorithm 3.1 gives us the projectors
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Q =

Q =

and Q3

and the symmetric matrices

0

~3/5

Sy =
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and
0 0 O 0 0 0
0 0 O 0 0 0
0 0 O 0 0 0
S3 = <0.
0 0 0 -45 0 0
0 0 O 0 0 0
0 0 O 0 0 -4/5

Then the symplectic matrix W is strongly stable, since Py = P,, =0 and
Py + Py = lg with Py = Q, and Py = Q; + Q3. We verify that the conditions
(27) and (28) are satisfied as follows:

Sr = (P ) SoPy =S 20, Sy =(Py) SoPy =Sy +S3 <0

and

0.6000 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 1.0000 0 0 0

Sr — Sg = > 0.

0 0 0 0.8000 0 0
0 0 0 0 0.6000 0
0 0 0 0 0 0.8000
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Figure 1. Spectral portrait of the matrix A.

0, -I
Example 5.2. Let the skew-symmetric matrix J = ( | 2 o 2}. Consider
2 2

Example 2 of [4] given by the following of J-symplectic matrices for all
t € [0, 2n]:

W) = (C(s(t)) cosa(t) —(C(s(t)))" sin m(t)]
C(s(t))sinm(t)  (C(s(t))" coswlt)

2

with C(s) = (1‘25 ) ‘12j and s(t) = 4sin(t), oft) = ©(/2) - (/3)sin 3t).
s -5

For all t e [0, 2r], W(t) has eigenvalues inside, on, and outside the unit

circle. We illustrate the strong stability with some value of t using the
spectral dichotomy method (i.e., with Algorithm 2.1 or 3.1).
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e Att = 2.93, we show numerically that the matrix W (2.93) is strongly
stable. Using Algorithm 3.1 to the matrix W(2.93) and the circles
C(0, 1p) and C(0, 1/ry), respectively, where ry = 9.9925x 1071, we
deduce the projectors Py =04, P, =14 and P, = 04. Then all the

eigenvalues of W(2.93) are on the unit circle. We can verify if all

eigenvalues are well defined. Thus, Algorithm 4.1 computes the
matrix

A = [W(2.93) - 1,][W(2.93) + I4]™*

51800x107% -1.2089x10°  -1.1259x10° -2.1528x107%
9.2818x1071  —2.0319x107F -2.1528x107' -9.4351x107!
7.3189x1071  -1.7711x107' -5.1800x1072 -9.2818x107*
~1.7711x1077  9.1431x107  1.20890x10°  2.0319x107*

and determines the constant a; = 6.1404 x 1072, a, =1.0355 and ag = 2.5

from the spectral portrait of Figure 2. Applying again Algorithm 3.1 three
times to the matrix A and the circles C(0, ay ), k =1, 2, 3, respectively, we

get the projectors P, = 04, P, and P; = |, where
5x1071 4.9094 x1072 0 5.6362x1071
b, _ | ~34646x 1072 5x10!  -56362x107" -0
2 — _ _ _ .
-0 ~44657x1071  5x1071 —3.4646x1072

4.4657 x107L 0 4.9094 x 102 5x1071
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Figure 2. Spectral portrait of the matrix A.
This gives
Q=P -R
5x107L 4.9094 %1072 0 5.6362 %1071
_| -3.4646 % 1072 5x1071 —5.6362x10 7 0
0 —4.4657x1071 5x1071 —3.4646x1072 |’
4.4657 x1071 0x1071 4.9094 x 102 5x1071
Q=P-P
5x1071 —4.9094 %1072 0 5.6362x1071
_| 3.4646 % 1071 5x107 1 5.6362 x 10+ 0
0 4.4657 x1071 5x1071 3.4646 x 102

—4.4657 x107L 0 —4.9094 %1072 5x10 1
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and
AT
S1=Q1 SoQ
8.3583x1072  5.8106x1072 —5.5869x1072 9.8090x10~2
| 5.8106x107%  1.8009x107" -1.9524x10"  7.9030x10
_55860x1072 -1.9524x10 2.1246x107F —7.7701x1072 |
0.8090x1072  7.9030x1072 —7.7701x10~2 1.1595x107L
AT
Sy =Q250Q7

~3.2292x1071  6.1564x1072  3.3428x1072  3.6633x10°L
_| 61564x107%  -4.1043x10 -4.6284x107 -10147x107 |
3.3428x1072 —4.6284x10"L —51454x10"L —7.3337x1072 |

3.6633x107F  —1.0147x1071 —7.3337x1072 —4.1803x10°%

Then the symplectic matrix W(2.93) is strongly stable and the projectors P,
and Py are given by

IP>r = Ql
5x10°1 4.9094 x 1072 0 5.6362 %10
| -3.4646x107% 5.0000x10"  -5.6362x107" 0
-0 —4.4657 %1071 5x107L —3.4646x1072 |
4.4657 x1071 0 4.9094 1072 5x107t
IP>g =Q
5x1071 —4.9094 %1072 0 _5.6362x107 1
| 34646x1072  5x107! 5.6362x 107+ 0
0 4.4657 x107L 5x10 T 3.4646 x 1072

—4.4657x107L 0 —4.9094 x 1072 5x107L
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of qualities | P? — P, || ~ | IP’S ~ Py || ~ 6.6801x 10717 and of traces 2. We

can verify that the conditions (27) and (28) are all satisfied as follows:

Sy =(B) SgPy =S, 20, Sy =(Py) SoPy =S, <0

Sy —Sg

4.0650x107"  -3.4579x107° -8.9298x107% -2.6824x10"
_| -34579x107°  5.9952x10  26750x107  1.8050x107" |
-8.9298x107%  2.6759x107"  7.2700x107!  -4.3643x107°

—26824x101  1.8050x1071  4.3643x107°  5.3399x10° %

e At t =0.20260, we briefly show that W (0.20260) is strongly stable.
Using Algorithm 3.1 to the matrix W (0.2026) and the circles C(0, ry)

and C(0, I/rg), respectively, where ry = 9.992 x 1071, we deduce the
projectors Py = 04, P, = 14 and P, = 04. Then all the eigenvalues
of W(0.20260) are on the unit circle. We can verify if all eigenvalues
are well defined. Indeed, from Algorithm 4.1, we get

5x1071 5.38815x1072 0 5.7125x107*
~3.4905x1072 5x1071 ~5.7125x107* 0
Q= -1 -1 -2/
0 —4.4092x10 5x10 ~3.4905x10
4.4092x107" 0 5.3881x10 " 5x107!
5x1071 ~5.3881x1072 0 ~5.7125x107 1
3.4905x 1072 5x107% 5.7125x107% 0
2 =
0 4.4092x107L 5x107t 3.4905x1072

—4.4092x1071 0 ~5.3881x107} 5x10 71
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and
AT
S1=Q1 SoQ

3.3967 x10 72
7.0005x1072
~7.5233x1072
4.4060x1072

Sy =Q2 S0Qy

~3.2503x107}
7.5528x10 72
4.5928x1072
3.7456x107

7.0005x1072
1.4723x107*
~1.5841x107
9.1040x1072

7.5528x10 72
~4.3830x10*
~4.8780x107%
~1.2034x107%

~7.5233x1072
~1.5841x107*
1.7044x107%

~9.7854x1072

4.5928x1072
~4.8780x10*
—5.4754x107
~9.0698x1072

Mouhamadou Dosso, Namory Coulibaly and Lassana Samassi

4.4060x1072
9.1040x1072
~9.7854x1072
5.7170x1072

3.7456x10 71
~1.2034x107%
9.0698x1072 |
~4.3427x107t

Then the symplectic matrix W(2.93) is strongly stable and the projectors P,

and Py are given by

I[Dr = Ql
5x107t 5.3881 x 102 0 5.7125 x 1071
|-3.4905x1071  5xx10t  -57125x107" 0
0 —4.4092 x 1071 5x10°1 ~3.4905 x 102
4.4092 x 1071 0 5.3881x 102 5x1071
IP>g =Q
5x10°t —5.3881x1072 0 _5.7125x10°1
| 34905x10  5x10  57125x107 0
0 4.4092 x107% 5x1071 3.4905 x 102
—4.4092 x 1071 0 ~5.3881x 102 5x1071
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of qualities || P7 ~ Pr | ~ 1.1208 x107%°, || P — P | ~ 5.8268x 10~ and

of traces 2. We can verify that the conditions (27) and (28) are all satisfied as

follows:

S = (Py)" SoPy = $; >0,

Sy -Sq

3.5900 x 1071
_5.5234x107°

~1.2116 x107L

~3.3050 x 1071

2.1138 x 107 %

_55234x107% -1.2116x101 —3.3050x107}
5.8554 x 1071
3.2939x 1071

.
Sg = (Py)  SoPy =S, <0

3.2939x101  2.1138x107L .
> V.
7.1798x1071  —7.1561x1072
~7.1561x10% 4.9144x107L

e At t =0.1413505, we show numerically that W(0.1413505) is not
stable. Using Algorithm 3.1 to the matrix W (0.1413505) and the

circles C(0, ry) and C(0, 1/rg), respectively,where ry = 9.9991x 1071,
we get the projectors:

7.1304 x1071
6.1430 x 101

_5.5943x 1071

5.7393 x 1071

5x1071
1.6896 x 102
0

—4.3955x 107t

1.7127 x107L
—1.4756 x 1071
1.3438 x 1071

—1.3786x107 L

~4.7287 x1072
5x107 T
4.3955x 107"
0

2.7154x1071  8.0452x107L

23394x101  6.9311x1071

~21304x1071 -6.3120x107!

218561071  6.4756x107!
0 —5.7057 x10~ %
5.7057 x10~1 0
05x1071 1.6896 x 102
—4.7287 x 1072 5x10t
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~2.1304x1071 21856x1077 —27154x1071 —2.3394x107%

—6.3120x10°Y  6.4756x1071 —8.0452x101 —6.9311x107L

5.5943x10 1 -57393x101 7.1304x10! 6.1430x107L

1.3438x101 1.3786x1071 -1.7127x10! -1.4756x107!
where

| BZ — Iy || ~ 7.652518846055654 x 1076,
| P2 — P, || ~ 2.728044157407159 x 101

and | P2 - P, | ~ 5.856243848391748 x 10720, and the trace Tr(PBy) =1,
Tr(P) = 2 and Tr(P,,) = 1. This implies that all the eigenvalues are not on
the unit circle; so W is not stable.

o At t=0.141350433896871535, we show numerically that
W (0.141350433896871535) is not strongly stable. Using Algorithm
3.1 to the matrix W (0.1413504339...) and the circles C(0, ry) and

C(0,1/ry), respectively, where rg =0.9880x107%, we get the
projectors Py = 04, P, = I4 and P, = 04. Then all the eigenvalues
of W(0.1413504339...) are on the unit circle. However, the

determination of a; gives a < |k | =1.139866233037296 x 10~%.
That is approximately equal to zero. Then W has an eigenvalue +1 or
—1. So W is not strongly stable.

6. Conclusion

In this paper, we proposed a method to analyze the strong stability of
symplectic matrices using methods of spectral dichotomy. This method
determines, using the spectral portrait, a parameter rp such that the circle

C(0, ry) contains all the eigenvalues of modulus strictly less than 1 of a
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symplectic matrix W. Then we apply Algorithm 2.1 or 3.1 two times: one
with matrix W and C(0, ry) and another with the matrix W and C(0, 1/ry) to
finally obtain the three projectors Py, P, and IP; on the invariant subspaces

associated, respectively, with eigenvalues of modulus of less than 1, more
than 1 and equal to 1. The computation of these projectors are accompanied
with the dichotomy criterions which give an information on the qualities of
the projectors.

In the case where Py =P, =0, Algorithm 4.1 is verified if we can
decompose the projector Py =1 in two projectors P, and Py on the
invariant subspaces associated, respectively, with r- and g-eigenvalues. This

decomposition is possible if and only if the matrix W is strongly stable. Two
examples show how to analyze the strong stability of a symplectic matrix.
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