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Abstract 

A method of the analysis of strong stability of symplectic matrix is 
presented. This method is based on spectral dichotomy methods of a 
matrix with respect to a circle whose new variant has been proposed. 
Applying the original idea proposed by S. K. Godunov, an algorithm 
of the analysis of strong stability is proposed. Numerical examples are 
presented to confirm the theory. 
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1. Introduction 

Let NNJ 22 ×∈ R  be a skew-symmetric and nonsingular matrix. A 

matrix NNW 22 ×∈ R  is J-symplectic if ;JJWW T =  we say also that W is 
J-orthogonal. The symplectic matrices belong to the group of structured 
matrices. They are important in optimal control theory [13, 15, 2] and in 
theory of parametric resonance (see, e.g., [21]). The eigenvalues of W can be 
classified in three groups with respect to the unit circle: a group of 0N  

eigenvalues inside the unit circle, another of 0NN =∞  eigenvalues outside 

the unit circle and the third group of ( )01 22 NNN −=  eigenvalues on the 

unit circle. For any eigenvalue λ of λλ 1,,W  and λ1  are eigenvalues of W. 

A symplectic matrix is strongly stable if and only if it verifies the KGL 
criterion [21, 9] or, equivalently, its spectrum is on the unit circle, and is 
uniquely composed of red and/or green eigenvalues [4, 9]. The KGL criterion 
is due to Krein, Gelfand and Lidskii [21]. This criterion is based on the 
following definition which classifies the eigenvalues of W lying on the unit 
circle in three groups. 

Definition 1.1. Let λ be a semisimple eigenvalue of W lying on the unit 
circle. Then λ is called an eigenvalue of the first (second) kind if the 
quadratic form ( )xiJx,  is positive (negative) on the eigenspace associated 

with λ. When ( ) ,0, =xJx  then λ is of mixed kind. 

In this definition, the notation ( )xiJx,  is the Euclidean scalar product 

and .1−=i  Recall that 1±  are mixed eigenvalues, since for any eigenvector 

x associated with 1 or –1, we have ( ) .0, =xJx  

Thus, the KGL criterion says that a symplectic matrix is strongly stable if 
and only if all its eigenvalues are either of first kind or second kind (see, e.g., 
[21, Chap. III], [12]). Another classification of eigenvalues of modulus 1 of 
symplectic matrix is given by the following definition. 
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Definition 1.2. Let λ be a semisimple eigenvalue of W. Then λ is a red 
(green) color or in short r-eigenvalues (g-eigenvalue) if ( )xxS ,0  is positive 

(negative) on the eigenspace associated with λ, where ( ) ( )1
0 21 −−= WWJS  

( ( ) ).TJWJW +≡  

The latter classification given by Definition 1.2 is more appropriate for 
numerical calculations than Definition 1.1 because it uses symmetric 
matrices. The link between Definitions 1.1 and 1.2 is that if ( )x,λ  is an 

eigenvalue of W with ,θ=λ ie  then we have ( ) ( ).,sin,0 xiJxxxS θ=  On the 

other hand, if ,θ=λ ie  with ,0 π<θ<  is an eigenvalue of first kind, then 
θ−=λ ie  is an eigenvalue of second kind associated with an eigenvector x  

and we have, for any linear combination ,xxz β+α=  

( ) ( ) ( )xxSxxSzzS ,,, 0
2

0
2

0 β+α=  

[ ( ) ( )] .0,,sin 22 >β−αθ= xxiJxiJx  

Thus, the second definition gives another formulation of the strong stability 
of a symplectic matrix suitable for numerical calculations. Indeed the KGL 
criterion is equivalent to the fact that all the eigenvalues of W must be either 
of red or green color (see [11, 4]). 

The objective of this paper is to construct an algorithm using the spectral 
dichotomy method to analyze the strong stability of a symplectic matrix W. 
The method of spectral dichotomy was introduced by Godunov [6]. It allows 
to calculate the spectral projectors associated with eigenvalues on, inside and 
outside a contour γ of the complex plane. The computation of projectors is 
accompanied by that of the norms of Hermitian and positive definite 
matrices, called criterion dichotomies (or numerical quality). These norms 
allow to know if projectors are well computed. If these criteria are small, 
then the numerical quality of the projectors is the best. In this study devoted 
to the analysis of the strong stability of symplectic matrices, we consider the 
case where γ is a circle. 
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In Section 2, we give the more important steps of the method of spectral 
dichotomy of a matrix with respect to the unit circle proposed by Godunov 
and Sadkane [10] and estimate the cost of the elementary operations 
neglecting the lower strict terms to 3. In Section 3, we present another variant 
of spectral dichotomy method with respect to the unit circle which is four 
times less expensive. These two methods are stable and allow a good 
computation of projectors. Their numerical qualities are good. Section 4 is 
devoted to the application of the spectral dichotomy in the analysis of the 
strong stability of symplectic matrix. Using a Cayley transformation (see [5, 
20]), 

( ) ( ) ( ) ,1
22

−+−== NN IWIWWA C  

where NI2  is an identity matrix of order 2N and the symmetric matrix ,0S  

we determine the projectors rP  and gP  associated with r-eigenvalues and          

g-eigenvalues, respectively. In Section 5, we present numerical examples in 
which our methods are checked. 

2. Spectral Dichotomy of a Matrix with Respect to a Unit Circle 

Consider a matrix NNA ×∈ R  such that A has not eigenvalues on the 
unit circle. 

2.1. Notation and preliminaries 

Suppose that .1=r  The spectral projector on the invariant subspace 
associated to interior eigenvalues to ( )1,0C  of the matrix A is given by (see 

[16, p. 39]), 

 ( ) ( )
( )

,2
1

2
1

1,0

2

0
11∫ ∫

π −θ−− θ−
π

=−
π

=
C

i
NN dAeIdzAzIiP  (1) 

where NI  is the identity matrix of order N or just I when the order is clear 

from context. 

The numerical computation of this projector is accompanied with a 
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Hermitian positive definite matrix H  which is defined by 

 ( ) ( )∫
π −θ−∗−θ− θ−−

π
=

2

0
1 .2

1 dAeIAeI i
N

i
NH  (2) 

The norm of H  is called criterion of dichotomy. It is a reliable indicator. 
However, we note that the pair ( )HP,  is the unique solution of the 

generalized Lyapunov system [8], 

 

( ) ( )

( )⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

=

=

>=

−−−=−

∗

∗

∗∗∗

.

0

2

HPHP

PP

PP

HH

PPPPHH

AA

IIAA

 (3) 

Consider the following decomposition of the matrix A: 

 ,1

0

−∞
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Γ

Γ
= XXA  (4) 

where ,0
pp×∈Γ C  ( ) ( )pNpN −×−

∞ ∈Γ C  and the spectrum ( )AΛ  of A is 

partitioned as ( ) ( ) ( )∞ΓΛΓΛ=Λ ∪0A  with 

( ) { },1thatsuch >λ∈λ=ΓΛ ∞  

( ) { }.1thatsuch0 <λ∈λ=ΓΛ  

The spectral projectors P  and P−I  onto the invariant subspaces of A 
associated to the eigenvalues of matrices 0Γ  and ∞Γ  are, respectively, given 

by 

 
( ) 1

0

00
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= X

I
X

p

pN
P  and 

( )
,

00

0 1−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=− X

I
XI

p

pN
P  (5) 

where ( )pN −0  is a null matrix of order ( )pN −  or just 0 when the order is 

clear from context. 
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Throughout this paper, the symbol  denotes the Euclidean norm or its 

induced norm and ( ) ( ) ( )XXXXX N 1
1

2 σσ=⋅=κ −  denotes the 

condition number of a nonsingular matrix X, where ( )XNσ  and ( )X1σ  are, 

respectively, the largest and smallest singular values. 

2.2. Presentation of the method 

A method of computation of approximations of P  and H  has been shown 
[10, Sec. 2] a method. We recall the most important steps. Considering the 
decomposition in Fourier series 

( ) ,1 ∑
+∞

−∞=

θ−θ− =−
k

ik
k

i eZAeI   where  ( )∫
π θ−θ θ−

π
=

2

0
1

2
1 deAeIZ iki

k  

of the 2π-periodic function ( ) ,1−θ−→θ AeI i  we get the projector ,0Z=P  

the matrix ∑+∞
−∞=

∗= k kk ZZH  and the infinity system 

 
⎪⎩

⎪
⎨
⎧

=−

≠=− +

,Z

,0if0

10

1

N

kk

IAZ

kAZZ
 (6) 

where ( ) Z∈kkZ  are unknown. In [18], it is shown that the Fourier coefficients 

kZ  converge to zero when k  converges to infinity. Putting 

 ( ) ∑
+∞

−∞=
+

∈= +
+

l
lkk kZZ j

j
,,1

1

2
2 Z  (7) 

where j is a given integer, the sequence ( ( ) ) ,
12

Z∈
+

kk
j

Z  is 12 +j -periodic and 

satisfies ( ) ,lim
12

kkj ZZ
j

=
+

+∞→  Z∈∀k  (see [10]). From (6) and (7), we 

obtained the finished linear (and cyclic) system 

 
( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

−≤≤=−

=−

+
+
++

++

121,0

,

12
1

2

2
1

2
0

11

11

j
kk

N

kAZZ

IAZZ
jj

jj

 (8) 
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of unknowns ( ) ( ) ( ) ( )11

1

11 2
0

2
2

2
1

2
0 ...,,,

++

+

++
=

jj

j

jj
ZZZZ  when j is great. This 

system has a unique solution if and only if the matrix A has not eigenvalues 
on the circle ( ).1,0C  Then P  and H  can be approximated iteratively with 

the following theorem (see [10] for the proof). 

Theorem 2.1. Put AAIB −== 00 ,  and 

( ) ( ),
11 2

10
2

20
++

+=Δ
jj

j ZAZBj  

( ) ( ) ,
11

1
2

120
2

20
++

+ +
+=∇

j

j

j

j ZAZBj  

( ( ) ) ( )∑
+

++

=

∗=

1
112

1

22 .
j

jj

k
kkj ZZH  

Then 

.11 jjjjjjj HHH ∇∇+ΔΔ= −
∗

−
∗  

Moreover, 

( ) ( ) ,limlim
1

1

1 2
2

2
0 P==

+

+

+

∞→∞→

j

j

j
ZZ

jj
 

( ) ,lim
12

1 IZ
j

j
−=

+

∞→
P  

.lim H=
∞→

j
j

H  

This theorem shows, in particular, that 

- the approximation of P  requires only the computation of ( ) =
+12

0
j

Z  

( )1

1
2

2

+

+

j

jZ  for j great, 
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- the approximation of H  requires only the computation of ( ),
12

1
+j

Z  

( ),
12

2

+j

jZ  ( )12
12

+

+

j

jZ  and ( )1

1
2

2

+

+

j

jZ  for j great. 

The computation of the matrices ( ) ( ) ( )111 2
12

2
2

2
1 ,,

+++

+

j

j

j

j

j
ZZZ  and ( )1

1
2

2

+

+

j

jZ  

in [10] is done with the following system: 

 

( )

( )

( )

( )

,
0

0

0

00

00

00

00

1

1

1

1

1

2
2

2
1

2
12

2
2

00

00

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+

+

+

+

IZ

Z

Z

Z

BA

AB

BA

AB

j

j

j

j

j

j

j

jj

jj
 (9) 

where the matrices jA  and jB  are constructed iteratively from the 0B  and 

0A  using a QR-factorization obtained by transformations of Householder in 

the form 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

−−

11

11

00

00

00

00

jj

jj

AB

BA

AB

 

 ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ,

00

0 1
24

1
23

1
22

1
14

1
13

1
12

1
11

1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

= −−−

−−−−

−

jj

jjj

jjjj

j

AB

RRR

RRRR

Q  (10) 

where ( )1−jQ  is a unitary matrix. The important steps of the method proposed 

by Godunov and Sadkane are summarized below (see [10, Algorithm 1]). 

Algorithm 2.1. (Spectral dichotomy of A by the unit circle) 

1. Initialization: :, 00 AAIB −==  
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- Compute ( )2
1Z  and ( )2

2Z  solutions of the system 

( )

( )
.

0
2

2

2
1

00

00
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

IZ

Z

BA

AB
 

- Compute ( ( ) ) ( ) ( ( ) ) ( ).2
2

2
2

2
1

2
10 ZZZZH ∗∗ +=  

2. Iteration: Computation of ( ) ( ) ( ) ( )1

1

111 2
2

2
12

2
2

2
1 ,,,

+

+

+++

+

j

j

j

j

j

j

j
ZZZZ  and jH  

for ....,2,1=j  

- Compute the QR-factorization 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−−

11

11

00

00

00

00

jj

jj

AB

BA

AB

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) .

00

0 1
24

1
23

1
22

1
14

1
13

1
12

1
11

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= −−−

−−−−

−

jj

jjj

jjjj

j

AB

RRR

RRRR

Q  

- Compute the solutions ( )12
1

+j
Z  and ( )1

1
2

2

+

+

j

jZ  of the system 

( )

( )
.

0
1

1

1

2
2

2
1

00
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+

+

IZ

Z

BA

AB
j

j

j
jj

 

- Compute the solutions ( )12
2

+j

jZ  and ( )12
12

+

+

j

jZ  of the system 

( ) ( )

( )

( )

( )

( ) ( )

( ) ( )

( )

( )
.

0
1

1

1

1

2
12

2
1

1
24

1
23

1
14

1
13

2
12

2
2

1
22

1
12

1
11

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

+

+

+

+
−−

−−

+
−

−−

j

j

j

j

j

j

j

Z

Z

RR

RR

Z

Z

R

RR

jj

jj

j

jj
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- Compute 

( ) ( ),
11 2

10
2

20
++

+=Δ
jj

j ZAZBj  

( ) ( ),
11

1
2

120
2

20
++

+ +
+=∇

j

j

j

j ZAZBj  

.11 jjjjjjj HHH ∇∇+ΔΔ= −
∗

−
∗  

2.3. Operations cost of Algorithm 2.1 

We now estimate the number of elementary operations in Algorithm 2.1. 
In these estimates, we consider only the most important terms, i.e., terms in 

.3N  

- Initialization: To compute ( )2
1Z  and ( ),2

2Z  we solve the linear systems 

block ( ) ( ) IZAI =− 2
2

2
0  and ( ) ( ).2

2
2

1 AZZ −=  The first requires 32N  

operations (computation of ),2
0A  and ( ) 332 N  operations (Gauss’s 

factorization of ( )),2
0AI −  and 32N  operations (resolution of two 

triangular systems block). The computations of ( )2
1Z  and 0H  require, 

respectively, 333 422 NNN =+  operations. 

- Iteration j: 

- The QR-factorization by Householder’s transformation requires 
354N  operations [14]. 

- The computation of ( )12
1

+j
Z  and ( )1

1
2

2

+

+

j

jZ  requires ( ) 3331 N  

operations: ( ) ( )3232 N  for the LU factorization of ,
00
⎟
⎠
⎞

⎜
⎝
⎛

BA
AB jj  

followed by resolution of two block-triangular systems, and 

considering the specificity of the second member ,
0
⎟
⎠
⎞

⎜
⎝
⎛

I
 these 

systems require 3N  for L and 34N  for U. 
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- The computation of ( )12
2

+j

jZ  and ( )1

1
2

2

+

+

j

jZ  requires 33 8:12 NN  to 

compute 
( ) ( )

( ) ( )

( )

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

+

+

−−

−−

1

1

1

2
2

2
1

1
24

1
23

1
14

1
13

j

j

j

Z

Z

RR

RR
jj

jj

 and 34N  to solve the block-

triangular system of matrix 
( ) ( )

( )
.

0 1
22

1
12

1
11

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−−

j

jj

R

RR
 

- Finally, the computations of jj ∇Δ ,  and jH  require, respectively, 

33 2,2 NN  and 34N  operations. 

In total, one iteration requires of the order of 33253 N  operations. 

The cost of the operations is summarized in Table 1. 

Table 1. Cost of Algorithm 2.1 

 

2.4. Spectral portrait 

The spectral portrait of the matrix A is the graph of the function 

 ( ) ( ) ,rHrfr =  (11) 



Mouhamadou Dosso, Namory Coulibaly and Lassana Samassi 84 

where 

 ( ) ∫
π −

θ−
−∗

θ θ⎟
⎠
⎞⎜

⎝
⎛ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

π
=

2

0

11

.2
1 dr

AeIr
AeIr iiH   (12) 

The spectral projector on the invariant subspace of A associated to 
eigenvalues inside the circle ( )r,0C  is 

( ) ( )
( )∫ ∫

π −
θ−− θ⎟

⎠
⎞⎜

⎝
⎛ −

π
=−

π
=

r
i dreIdzAzIir

,0

2

0

1
1 .1

2
1

2
1

C
P  

When A has an eigenvalue λ on the circle ( ),,0 rC  then ( ) ,∞→rf  i.e., the 

graph of f has an asymptote of equation .r=λ  It has been shown in [8, 

Sec. 13] that the function f is convex in each interval where it is defined. 
These intervals correspond to regions of absence of eigenvalues (the trace of 
projector remains constant). 

The spectral portrait is another perspective on the pseudo-spectrum [19] 
of a matrix. This allows the determination of neighborhoods defined by 
eigenvalues of all the perturbations of the matrix in a given region. Several 
techniques are used to calculate, see, e.g., [19, 17, 1]. The spectral portrait 
allows a spectral stratification, i.e., the construction of regions (bands in our 
case) that share the spectrum. 

3. Another Method of Spectral Dichotomy of a Matrix with Respect 
to a Unit Circle 

The variant of Algorithm 2.1 proposed in this section essentially removes 

the QR-factorization and the computation of ( )12
2

+j

jZ  and ( ).
1

1
2

2

+

+

j

jZ  Thus, the 

new variant is justified as follows. 

3.1. Analysis of the algorithm 

The system (8) gives 12 +j  solutions of expressions 

 ( ) [ ] .12...,,1,0, 11222 111
−=−= +−− +++ j

N
k

k kAIAZ
jjj

 (13) 
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Note that the analytic computation of this expression is not stable. It is 
preferable to compute them of iterative manner. For that, we put, for 

...,,1,0=j  

[ ][ ] ,1222
1

1 −
+

+
−−=

jjj
AIAIAK NNj  (14) 

[ ][ ] .122
1

1 −
+

+
−−=

jj
AIAIL NNj  (15) 

The following proposition gives the link between ( )12 +j

kZ  and ( ),2 j

kZ  and 

1+jH  and .jH  

Proposition 3.1. For ...,1,0=j  and ,2...,,1,0 jk =  we have 

( ) ( ) ,1
22 1

+=
+

jkk KZZ
jj

 (16) 

( ) ( ) ,1
22

2

1
++

=
+

jkk
LZZ

jj

j  (17) 

.11111 +
∗
++

∗
++ += jjjjjjj LHLKHKH  (18) 

Proof. We have 

 ( ) [ ] 1222 111 −− +++
−=

jjj
AIAZ N

k
k  

[ ] [ ][ ] 1222122 1 −−− +
−−−=

jjjjj
AIAIAAIA NNN

k  

( )
1

2
+= jk KZ

j
 (19) 

and 

( ) ( )[ ] [ ][ ] 12212222
2

111 −−+−
+

+++
−−−=

jjjjjj

j AIAIAIAZ NNN
k

k
 

[ ] [ ][ ] 122122 1 −−− +
−−−=

jjjj
AIAIAIA NNN

k  

( ) .1
2

+= jk LZ
j

 (20) 
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Moreover, 

( ( ) ) ( )∑
+

++

=

∗
+ =

1
112

1

22
1

j
jj

k
kkj ZZH  

( ( ) ) ( ) ( ( ) ) ( )∑ ∑
= +=

∗∗
+

++++
+=

j j

j

jjjj

k k
kkkk ZZZZ

2

1

2

12

2222
1

1111
 

( ( ) ) ( ) ( ( ) ) ( )∑ ∑
= =

+
∗

++
∗∗

+ +=

j j
jjjj

k k
jkkjjkkj LZZLKZZK

2

1

2

1
1

22
11

22
1  

( ( ) ) ( ) ( ( ) ) ( )
1

2

1

22
111

2

1

22
1 +

=

∗
+++

=

∗∗
+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= ∑∑ j

k
kkjjj

k
kkj LZZLLKZZK

j
jj

j
jj

 

.1111 +
∗
++

∗
+ += jjjjjj LHLKHK  ~ 

The following proposition allows to compute the matrices 1+jK  and 

1+jL  iteratively. 

Proposition 3.2. For ...,,1,0=j  we have 

 ⎟
⎠

⎞
⎜
⎝

⎛=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+

+

Nj

j

jj

jj
IL

K
BA
AB 0

1

1  (21) 

with 

( ) ( )., 2
2

2
1

j

j

j
ZBAZA jj =−=  

Proof. The second line of the system (8) written for jk 2=  gives 

( ) ( ) 0
11 2

12
2

2
=−

++

+

j

j

j

j AZZ  

or, according to Proposition 1 

( ) ( ) 01
2

11
2

2
=− ++ jj LAZKZ

jj

j  
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or again 

 .011 =+ ++ jjjj LAKB  (22) 

Similarly, the first line can be written, knowing that ( ) ( ) ,2
2

2
0

j

j

j
ZZ =  

( ) ( )
Njj IKAZLZ

jj

j =− ++ 1
2

11
2

2
 

or again 

 .11 Njjjj IKALB =+ ++  (23) 

 ~ 

For ...,,1,0=j  knowing 1+jK  and ,1+jL  we determine the matrices 

( )12
1

+j
Z  and ( )1

1
2

2

+

+

j

jZ  from ( )j
Z 2

1  and ( )j

jZ 2
2

 by the application of Proposition 

3.1, and 2+jK  and 2+jL  as solutions of the matrix system (21). 

3.2. Analysis of ( )1

1
2

2

+

+

j

jZ  

The following lemma is a preliminary convergence result for the 

matrices n
0Γ  and ,n−

∞Γ  for all 0≥n  (see [3]). It was used to show the 

convergence of the sequence ( ( ) )
0

1

1
2

2 jj
j

jZ ≥
+

+  to the projector P  where 0j  is a 

given integer. 

Lemma 3.1. For all ,0≥n  we have 

( ) nnn ωγ≤ΓΓ −
∞,max 0  

with 1≥ω  and .10 <γ<  

Proof. The spectra of 0Γ  and 1−
∞Γ  lie inside the unit disk. Then there 

exists symmetric positive definite matrices 0H  and ∞H  such that (see, e.g., 
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[8, p. 148]): 

p
T IHH =ΓΓ− 0000   and  pN

T IHH −
−
∞∞

−
∞∞ =ΓΓ− 1  

which give us 

.1
00

1
00

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛

Γ
Γ

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

Γ
Γ

−⎟
⎠
⎞

⎜
⎝
⎛

−
−
∞∞

−
∞∞ pN

p
T

I
I

H
H

H
H

 

We obtain the following estimate :0≥∀n  

,1
0 n

n
ωγ≤⎟

⎠
⎞

⎜
⎝
⎛

Γ
Γ

−
∞

 

where ( ) 1,max 0 ≥=ω ∞HH  and ( ) 1,max11 0 <−=γ ∞HH  

from a standard result on Lyapunov equations (see, e.g., [8, p. 149]). ~ 

From Lemma 3.1, we deduct the following lemma: 

Lemma 3.2. There exists N∈0j  such that for all ,0jj ≥  we have 

( [ ] [ ( ) ] ) .
1

,max 1

1
11

2

2
1212

0 +

+
++

ωγ−

ωγ≤Γ−−Γ− −
∞−

−
j

j
jj

pNpp III  

Proof. Remark that 

[ ] [ ] [ ( )]
111 2

0
12

0
12

0
+++

Γ−−Γ−=−Γ− −− jjj
ppppp IIIII  

[ ] .
11 2

0
12

0
++

ΓΓ−= − jj
pI  

Then we have 

[ ] [ ] .
111 2

0
12

0
12

0
+++

ΓΓ−≤−Γ− −− jjj
ppp III  

All eigenvalues of the matrix 0Γ  are in the unit circle; so there exists N∈1j  

such that .1
12

0 <Γ
+j

 Then [ ] ( )∑ ∞+
=

− ++
Γ=Γ− 0

2
0

12
0 ;

11

k
k

p
jj

I  this implies 
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that ,1jj ≥∀  we have 

[ ] ( )
111 2

0
0

2
0

12
0

+++
Γ

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
Γ≤−Γ− ∑

∞

=

− jjj

k

k
pp II  

11 2
0

0

2
0

++
Γ

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
Γ≤ ∑

∞

=

jj

k

k  

.
1

1

1

2
0

2
0

+

+

Γ−

Γ
≤ j

j

 

From Lemma 3.1, we deduct 

[ ] .,
1

12

2
12

0 1

1
1

jjII j

j
j

pp ≥∀
ωγ−

ωγ≤−Γ− +

+
+ −  

We get again the estimate 

[ ( ) ] 22

2
12 ,

1
1

1
1

jjI j

j
j

pN ≥∀
ωγ−

ωγ≤Γ− +

+
+ −

∞−  

remarking that [ ( ) ] [ ( ) ]
111 21212 +++ −

∞
−

−
−
∞

−
∞− Γ−Γ=Γ−

jjj
pNpN II  with the 

spectrum of 1−
∞Γ  lies inside the unit disk and 1

12 <Γ
+−

∞
j

 for a value 

.2 N∈j  We consider ( ).,max 210 jjj =  ~ 

Lemma 3.2 shows that 

 [ ] pp II
j

→Γ− −+ 12
0

1
  and  [ ( ) ] .012 1

→Γ− −
∞−

+j
pNI  (24) 

However, the matrix ( )1

1
2

2

+

+

j

jZ  can be decomposed as 

 ( ) [ ( ) ]

[ ]
.1

12
0

12
2

2 1

1
1

1
−

−

−
∞−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

Γ−

Γ−
= +

+
+

+ X
I

I
XZ j

j
j

j
p

pN  (25) 
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From the decomposition (25), we have the following theorem which 

presents an estimation of the error ( ) P−
+

+

1

1
2

2

j

jZ  when j take the great values. 

Theorem 3.1. There exists N∈0j  such that for all ,0jj ≥  we have 

( ) ( ) .
1

1

1
1

1 2

2
2

2
2 +

+
+

+
ωγ−

ωγκ≤− j

j
j

j XZ P  

Proof. According to Lemma 3.2, there exists N∈0j  such that ,0jj ≥∀  

we have 

 ( ) P−
+

+

1

1
2

2

j

jZ  

[ ( ) ]

[ ]
1

12
0

12

1

1

0

0 −
−

−
∞−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−Γ−

Γ−
= +

+

X
II

I
X

pp

pN
j

j

 

( ) ( [ ] [ ( ) ] )1212
02

11
,max −

∞−
− ++

Γ−−Γ−κ≤
jj

pNpp IIIX  

( ) .
1

1

1

2

2
2 +

+

ωγ−

ωγκ≤ j

j

X  ~ 

The speed of convergence of ( ) P−
+

+

1

1
2

2

j

jZ  depends mainly on .
12 +

γ
j

 

The quantity ( )X2κ  comes from the block-diagonalization (4). This theorem 

shows that ( )1

1
2

2

+

+

j

jZ  converges to the projector P  very rapidly. 

3.3. Algorithm 

All the results obtained apply to the case where A has not eigenvalues on 

the circle ( )rC ,0  of center 0 and of radius r. It is enough to replace A by .r
A  

The new variant of the algorithm of spectral dichotomy with respect to the 
circle ( )r,0C  is given below. 
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Algorithm 3.1. (Spectral dichotomy of A with respect to the circle 
( ))rC ,0  

(1) Initialize 

(a) .0 r
AA −=  

(b) Resolve 

.
0

1

1

0

0 ⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠

⎞
⎜
⎝

⎛

NN

N
IL

K
AI
IA

 

(c) Put ( ) ,1
2

1 KZ =  ( )
1

2
2 LZ =  and compute ( ( ) ) ( ) += ∗ 2

1
2

11 ZZH  

( ( ) ) ( ).2
2

2
2 ZZ ∗  

(2) Iterate: for ...,2,1=j  

(a) Put 

( ) ( )., 2
2

2
10

j

j

j
ZBZAA jj ==  

(b) Resolve 

.
0

1

1
⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+

Nj

j

jj

jj
IL

K
BA
AB

 

(c) Compute 

( ) ( ) ,1
2

1
2

1
1

+=
+

jKZZ
jj

 

( ) ( ) ,1
2

2
2

2

1

1 +=
+

+ jLZZ
j

j

j

j  

.11111 +
∗
++

∗
++ += jjjjjjj LHLKHKH  

The cost of Algorithm 3.1 by neglecting the terms of power inferior to 3, 
is summarized in Table 2. 
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Table 2. Cost of Algorithm 3.1 

 

If we compare the cost of elementary operations presented in Tables 1 
and 2, we note that an iteration of Algorithm 2.1 is four times more 
expensive than an iteration of Algorithm 3.1. So Algorithm 3.1 represents a 
non-negligible gain in comparison to the algorithm of [10]. In general, about 
ten iterations are enough for Algorithm 3.1 (and to the algorithm proposed by 
Godunov and Sadkane) to construct very good approximations of projector 
P  and of the matrix .H  

4. Application to the Strong Stability of Symplectic Matrices 

We now give a matrix NNW 22 ×∈ R  and a matrix NNJ 22 ×∈ R  
invertible and anti-symmetric such that W is J-symplectic. 

The study of strong stability of W leads us, in a first step, to verify if all 
the eigenvalues are on the unit circle. Then we determine the projectors 

10, PP  and ∞P  associated, respectively, to eigenvalues of modulus less than 

1, equal to 1 and greater than 1 using Algorithm 3.1. For this, we use two 
circles ( )0,0 rC  and ( )∞r,0C  with the same center 0 and radii 0r  and ∞r  

such that the first contains all eigenvalues of W inside the unit circle (and 
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excluding others) and the second contains all eigenvalues of modulus less 
than or equal to 1 (and excluding others). Then the spectral projector 
obtained by Algorithm 3.1 applied to W and to circle ( )0,0 rC  will be equal 

to 0P  and this one obtained with ( )∞r,0C  will be equal to .2 ∞− PNI  Thus, 

we obtain ∞PP ,0  and so .021 ∞−−= PPP NI  

Considering the fact that the eigenvalues of symplectic matrices W are 
symmetric with respect to the unit circle (within the meaning of inversion), it 
suffices to find 0r  and to take .1 0rr =∞  To have ,0r  it is enough, for 

example, to approach the first minimum of this function located just left of 
the asymptote .1=r  Since the function is convex outside asymptotes, this 
minimum exists and can be approached by different techniques. 

If the projectors 00 == ∞PP  and ,21 NI=P  then we verify if all the 

eigenvalues are well defined, i.e., they are r-eigenvalues or g-eigenvalues. 
Denote by rP  and gP  the projectors onto the subspaces invariant associated, 

respectively, with the r-eigenvalues and g-eigenvalues of W. Denoting again 

by T
rr

T
rr SSS == PP 0  and ,0

T
gg

T
gg SSS == PP  then we have g

T
r S PP 0  

0=  and 0>− gr SS  and the following conditions are equivalent (see [4, 

11]): 

- W is strongly stable, (26) 

- The set of eigenvalues of W is formed only r-eigenvalues and 
g-eigenvalues, (27) 

- ,0,0,0 >−≤≥ grgr SSSS  (28) 

- 00 == ∞PP  and .21 Ngr I==+ PPP  (29) 

Note that two eigenvalues 1, ±≠μλ  of W such that ,1=μλ  are on the 

same circle, because 1=μλ  implies that 1
1

1
1

+μ
−μ=

+λ
−λ  which is the 

equation of the circle. We apply the idea originally proposed in [7], which is 
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to bring together all the eigenvalues λ of W at the intersection of the unit 

circle and the circle equation C=
+λ
−λ

1
1  (where C is a positive constant). 

We know that the eigenvectors associated with eigenvalues λ and μ located 

on distinct circles ⎟
⎠
⎞⎜

⎝
⎛ ≠μλ

+μ
−μ≠

+λ
−λ 1since1

1
1
1  are J-orthogonal (see 

[9]). The result of this simple remark allows us to analyze strong stability 
(determination projectors rP  and ).gP  We summarize the main ideas: 

Suppose that the application of Algorithm 3.1 to W, with a suitable 
choice of ,0r  gives us 00 == ∞PP  and thus .21 NI=P  

Suppose further that the matrix 0S  is invertible and consider the matrix 

A given by the classical Cayley transformation: 

( ) ( ) ( ) 1
22

−+−== NN IWIWWA C  

whose eigenvalues are of the form 

( ) ,...,,2,1,2tan.1
1 mkil k

k
k

k =θ=
+λ
−λ

=  

where ki
k e θ=λ  with ] ],, ππ−∈θk  designates an eigenvalue of W of 

modulus 1. ( )WC  is only defined if { }1,1 −+∈λ  is not eigenvalue of W and 

its eigenvalues are on the imaginary axis. Note that the eigenvectors (and 
invariant subspaces) of A and W are the same. 

Let ...,, 21 aa  be positive numbers that interweave strictly eigenvalues of 

modulus ....,, 21 ll  In other words, 10 +<<< kkk ala  for ....,,1 mk =  

Since W is a real matrix, its eigenvalues kλ  and therefore kl  are complex 

conjugate and so .1+< Nm  

In practice, it is possible to choose, for example, 1a  in a neighborhood of 

0 and ma  in the interval ] [,, ∞A  where A  denotes any matrix norm of 
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A. The others ka  can be obtained by examining the spectral portrait of A. 

Furthermore, since W must not have eigenvalues 1±  to be strongly stable, 

there must exist two positive reals εr  and M such that 

.1111 Malalalar mmkkk <<<<<<<<<< ++ε  (30) 

If 01 =l  ( ),or +∞=ml  there is not strong stability because this implies 

that 1+  ( )1or −  is an eigenvalue of A. Hence the following proposition: 

Proposition 4.1. A symplectic matrix W having all the eigenvalues on the 
unit circle, has not eigenvalues 1±  if and only if there exist two positive 

reals εr  and M such that all the eigenvalues kl  of ( ) ( ) 1−+−= IWIWA  

verifies 

....,,2,1, mkMlr k =<<ε  

Proof. The eigenvalue θ=λ ie  of W, where ] ],, ππ−∈θ  is different from 

1±  if and only if { }.,0 π∉θ  This implies that ( ) { }∞∉θ ,02tan  or again 

there exist two positive reals εr  and M such that ( ) .2tan Mr <θ<ε  ~ 

We know from the above discussion that the eigenvectors (and invariant 
subspaces) associated with the eigenvalues and ,kl  and jl  in different fields 

are J-orthogonal. These regions can be obtained by applying Algorithm 3.1 
to the matrix A. 

Denote by ,kP  1...,,1 += mk  the projectors on the subspaces associated 

with eigenvalues of A in the circles ( )ka,0C  with 01 =P  and .IPm =  

Furthermore, each matrix 

 mkPPQ kkk ...,,2,1,1 =−= +  (31) 

is a projector on the invariant subspace of A (also of W) associated to 
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eigenvalues 1
1

+λ
−λ=l  of A located in the crown 

 ....,,2,1,1
1

1 mkaa kk =<
+λ
−λ

< +  (32) 

Consider now the matrix kS  defined by 

 ....,,2,1,0 mkSQSQS T
kk

T
kk =≡=  (33) 

The idea is to gather all the eigenvalues λ of W for which kS  is positive (or 

negative) semi-definite. To have W strongly stable, all the matrices kS  

should be well definite, i.e., they should be positive (negative) semi-definite. 
This discussion leads to Theorem 4.1 below. 

Theorem 4.1. The matrix W is strongly stable if and only if 

00 == ∞PP   and  Ngr I21 ==+ PPP  

with 

∑
≥

=
0kS

kr QP   and  ∑
≤

=
0

.
kS

kg QP  

The algorithm which allows to determine the strongly stable of a                
J-symplectic matrix W, is the following: 

Algorithm 4.1. 

1. Using Algorithm 3.1 and an appropriate choice of the parameter ,0r  

to determine the projectors 10, PP  and .∞P  

2. If 00 ≠P  ( ),0or ≠∞P  then there is no strong stability. Else compute 

( ) (( ) ( ) ).210
TJWJWS +=  

 If 0S  is singular (poorly conditioned), then there is no stability. Else 
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compute 

( ) ( ) .1−+−= IWIWA  

 From the spectral portrait of A, determine the scalars ( ) 11 +≤≤ mkka  

satisfying inequalities (30) and (32). 

3. Determine the projectors IPPPP mm == +121 ,...,,,0  by the spectral 

dichotomy applied to A and circle ( ) .1...,,2,1,,0 += mkakC  

4. For ,...,,2,1 mk =  compute 

kkk PPQ −= +1   and  .0 k
T
kk QSQS =  

 If kS  is not definite, then there is not strong stability. If all the 

matrices kS  are semi-definite, then there is strong stability. In this 

case 

∑
≥

=
0kS

kr QP   and  ∑
≤

=
0

.
kS

kg QP  

Taking 01 >a  (if it exists) such that ,1 kla <  mk ...,,1=∀  and 

,1 Aam >+  we obtain 01 =P  and .1 IPm =+  In Algorithm 4.1, the 

computation of each projector is accompanied of its dichotomy criterion. The 
algorithm stops if this criterion is too big. When there is strong stability, all 
the projectors must be computed with a good criterion dichotomy. To define 
the red and green projectors, all eigenvalues must be on the unit circle 
because we are primarily interested in the study of stability. But beyond the 
questions linked to the stability, it is entirely possible to define these 
projectors in a larger context, i.e., some eigenvalues cannot be necessarily on 
the unit circle. Indeed, if ,0,0 ≠∞PP  then ,1 I≠P  it is enough to apply 

Algorithm 4.1 to the matrix ( ) ( ) .1
11

−+−= IWIWA PP  A simple 

adaptation of Algorithm 4.1 shows that the projector 1P  can be decomposed 

as gr PPP +=1  with ∑ ≥= 0kS kr QP  and ∑ ≤= 0 .
kS kg QP  
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5. Numerical Example 

Example 5.1. Consider the J-symplectic matrices 

,

5
305

4000

05
40005

3
5
405

3000

000010

000100

05
30005

4

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

−

−

−
=W   where  .

001000

000001

100000

000010

000100

010000

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

=J  

We will study the strong stability of this matrix W by the spectral 
dichotomy method. By applying the spectral dichotomy method (Algorithm 
3.1) to the matrix W and the circles ( )0,0 rC  and ( ),1,0 0rC  respectively, 

where ,9992.00 =r  we deduce the projectors ,00 =P  61 I=P  and 0=∞P  

with ( ) ,0=iTr P  ,,0 ∞=i  ( ) ,61 =PTr  ,02 =− ii PP  ∞= ,1,0i  and 

,,1,0,9168.6652 ∞== iiH  where ( )iTr P  is the trace of the matrix .iP  

This implies that all the eigenvalues of W are on the unit circle. We can 
verify if all the eigenvalues are either of red color or either of green color. 

Thus, we consider the spectral portrait of the matrix ( ) ( ) 1−+−= IWIWA  

to determine the constants ( ) ...,2,1=kka  which allow to compute the projectors 

rP  and .gP  This computation gives us ,1667.01 =a  ,6667.02 =a  5.13 =a  

and 44 =a  examining spectral portrait of the matrix A on Figure 1. We can 

remark that ] [,31,01 ∈a  ] [,1,312 ∈a  ] [2,13 ∈a  and ] [.,24 ∞∈a  

Algorithm 3.1 gives us the projectors 
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⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

000000

000000

000000

000100

000010

000000

,

000000

010000

000000

000000

000000

000001

21 QQ  

and  ,

100000

000000

001000

000000

000000

000000

3

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=Q  

and the symmetric matrices 

,0

000000

0530000

000000

000000

000000

0000053

1 ≤

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

=S  

0

000000

000000

000000

000100

000010

000000

2 ≥

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=S  
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and 

.0

5400000

000000

0054000

000000

000000

000000

3 ≤

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
=S  

Then the symplectic matrix W is strongly stable, since 00 == ∞PP  and 

6Igr =+ PP  with 2Qr =P  and .31 QQg +=P  We verify that the conditions 

(27) and (28) are satisfied as follows: 

( ) ( ) 0,0 31020 ≤+==≥== SSSSSSS g
T

ggr
T

rr PPPP  

and 

.0

8000.000000

06000.00000

008000.0000

0000000.100

00000000.10

000006000.0

>

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=− gr SS  
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Figure 1. Spectral portrait of the matrix A. 

Example 5.2. Let the skew-symmetric matrix .
22

22 ⎟
⎠
⎞

⎜
⎝
⎛ −

=
OI
IO

J  Consider 

Example 2 of [4] given by the following of J-symplectic matrices for all 
[ ]:2,0 π∈t  

( )
( )( ) ( ) ( )( )( ) ( )

( )( ) ( ) ( )( )( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ωω

ω−ω
=

−

−

ttsCttsC

ttsCttsC
tW

T

T

cossin

sincos
 

with ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−−= 22

2

1
11
ss

ssC  and ( ) ( ) ( ) ( ) ( )( ).3sin3121,sin4 tttts −π=ω=  

For all [ ],2,0 π∈t  ( )tW  has eigenvalues inside, on, and outside the unit 

circle. We illustrate the strong stability with some value of t using the 
spectral dichotomy method (i.e., with Algorithm 2.1 or 3.1). 
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• At ,93.2=t  we show numerically that the matrix ( )93.2W  is strongly 

stable. Using Algorithm 3.1 to the matrix ( )93.2W  and the circles 

( )0,0 rC  and ( ),1,0 0rC  respectively, where ,109925.9 1
0

−×=r  we 

deduce the projectors ,040 =P  41 I=P  and .04=∞P  Then all the 

eigenvalues of ( )93.2W  are on the unit circle. We can verify if all 

eigenvalues are well defined. Thus, Algorithm 4.1 computes the 
matrix 

( )[ ] ( )[ ] 1
44 93.293.2 −+−= IWIWA  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

××××−

×−×−×−×

×−×−×−×

×−×−×−×

=

−−−

−−−−

−−−−

−−

1011

1211

1111

1002

100319.21020890.1101431.9107711.1

102818.9101800.5107711.1103189.7

104351.9101528.2100319.2102818.9

101528.2101259.1102089.1101800.5

 

and determines the constant ,101404.6 2
1

−×=a  0355.12 =a  and 5.23 =a  

from the spectral portrait of Figure 2. Applying again Algorithm 3.1 three 
times to the matrix A and the circles ( ) ,3,2,1,,0 =kakC  respectively, we 

get the projectors 241 ,0 PP =  and ,3 IP =  where 

.

105109094.40104657.4
104646.3105104657.40

0106362.5105104646.3
106362.50109094.4105

121

211

112

121

2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

×××
×−××−−

−×−××−
×××

=

−−−

−−−

−−−

−−−

P  
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Figure 2. Spectral portrait of the matrix A. 

This gives 

121 PPQ −=  

,

105109094.4100104657.4
104646.3105104657.40

0106362.5105104646.3
106362.50109094.4105

1211

211

112

121

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

××××
×−××−

×−××−
×××

=

−−−−

−−−

−−−

−−−

 

232 PPQ −=  

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

××−×−
×××

×××
×−×−×

=

−−−

−−−

−−−

−−−

121

211

111

121

105109094.40104657.4
104646.3105104657.40

0106362.5105104646.3
106362.50109094.4105
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and 

1011 QSQS T=  

,0

101595.1107701.7109030.7108090.9

107701.7101246.2109524.1105869.5

109030.7109524.1108009.1108106.5

108090.9105869.5108106.5103583.8

1222

2112

2112

2222

≥

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

××−××

×−××−×−

××−××

××−××

=

−−−−

−−−−

−−−−

−−−−

 

2022 QSQS T=  

.0

101803.4103337.7100147.1106633.3

103337.7101454.5106284.4103428.3

100147.1106284.4101943.4101564.6

106633.3103428.3101564.6102292.3

1211

2112

1112

1221

≤

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×−×−×−×

×−×−×−×

×−×−×−×

××××−

=

−−−−

−−−−

−−−−

−−−−

 

Then the symplectic matrix W(2.93) is strongly stable and the projectors rP  

and gP  are given by 

1Qr =P  

,

105109094.40104657.4

104646.3105104657.40

0106362.5100000.5104646.3

106362.50109094.4105

121

211

112

121

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×××

×−××−−

×−××−

×××

=

−−−

−−−

−−−

−−−

 

2Qg =P  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

××−×−

×××

×××

×−×−×

=

−−−

−−−

−−−

−−−

121

211

112

121

105109094.40104657.4

104646.3105104657.40

0106362.5105104646.3

106362.50109094.4105
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of qualities 1722 106801.6 −×≈−≈− ggrr PPPP  and of traces 2. We 

can verify that the conditions (27) and (28) are all satisfied as follows: 

( ) ( ) 0,0 2010 ≤==≥== SSSSSS g
T

ggr
T

rr PPPP  

and 

gr SS −  

.0

103399.5103643.4108050.1106824.2

103643.4102700.7106759.2109298.8

108050.1106759.2109952.5104579.3

106824.2109298.8104579.3100650.4

1311

3112

1113

1231

>

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

××××−

×−×××−

××××−

×−×−×−×

=

−−−−

−−−−

−−−−

−−−−

 

• At ,20260.0=t  we briefly show that ( )20260.0W  is strongly stable. 

Using Algorithm 3.1 to the matrix ( )2026.0W  and the circles ( )0,0 rC  

and ( ),1,0 0rC  respectively, where ,10992.9 1
0

−×=r  we deduce the 

projectors 4140 ,0 I== PP  and .04=∞P  Then all the eigenvalues 

of ( )20260.0W  are on the unit circle. We can verify if all eigenvalues 

are well defined. Indeed, from Algorithm 4.1, we get 

,

105103881.50104092.4

104905.3105104092.40

0107125.5105104905.3

107125.501038815.5105

121

211

112

121

1

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×××

×−××−

×−××−

×××

=

−−−

−−−

−−−

−−−

Q  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

××−×−

×××

×××

×−×−×

=

−−−

−−−

−−−

−−−

111

211

112

121

2

105103881.50104092.4

104905.3105104092.40

0107125.5105104905.3

107125.50103881.5105

Q  
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and 

1011 QSQS T=  

,0

107170.5107854.9101040.9104060.4

107854.9107044.1105841.1105233.7

101040.9105841.1104723.1100005.7

104060.4105233.7100005.7103967.3

2222

2112

2112

2222

≥

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

××−××

×−××−×−

××−××

××−××

=

−−−−

−−−−

−−−−

−−−−

 

2022 QSQS T=  

.0

103427.4100698.9102034.1107456.3

100698.9104754.5108780.4105928.4

102034.1108780.4103830.4105528.7

107456.3105928.4105528.7102503.3

1211

2112

1112

1221

≤

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×−×−×−×

×−×−×−×

×−×−×−×

××××−

=

−−−−

−−−−

−−−−

−−−−

 

Then the symplectic matrix W(2.93) is strongly stable and the projectors rP  

and gP  are given by 

1Qr =P  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×××

×−××−

×−×××−

×××

=

−−−

−−−

−−−

−−−

121

211

111

121

105103881.50104092.4

104905.3105104092.40

0107125.5105104905.3

107125.50103881.5105

 

2Qg =P  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

××−×−

×××

×××

×−×−×

=

−−−

−−−

−−−

−−−

121

211

111

121

105103881.50104092.4

104905.3105104092.40

0107125.5105104905.3

107125.50103881.5105
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of qualities ,101208.1 162 −×≈− rr PP  172 108268.5 −×≈− gg PP  and 

of traces 2. We can verify that the conditions (27) and (28) are all satisfied as 
follows: 

( ) ( ) 0,0 2010 ≤==≥== SSSSSS g
T

ggr
T

rr PPPP  

and 

gr SS −  

.0

109144.4101561.7101138.2103050.3

101561.7101798.7102939.3102116.1

101138.2102939.3108554.5105234.5

103050.3102116.1105234.5105900.3

1311

3111

1113

1131

>

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

××−××−

×−×××−

××××−

×−×−×−×

=

−−−−

−−−−

−−−−

−−−−

 

• At ,1413505.0=t  we show numerically that ( )1413505.0W  is not 

stable. Using Algorithm 3.1 to the matrix ( )1413505.0W  and the 

circles ( )0,0 rC  and ( ),1,0 0rC  respectively, where ,109991.9 1
0

−×=r  

we get the projectors: 

,

104756.6101856.2103786.1107393.5

103120.6101304.2103438.1105943.5

109311.6103394.2104756.1101430.6

100452.8107154.2107127.1101304.7

1111

1111

1111

1111

0

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×××−×

×−×−××−

×××−×

×××−×

=

−−−−

−−−−

−−−−

−−−−

P  

,

105107287.40103955.4

106896.1105.0103955.40

0107057.5105106896.1

107057.50107287.4105

121

211

112

121

1

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

××−×−

×××

×××

×−×−×

=

−−−

−−−

−−−

−−−

P  
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,

104756.1107127.1103786.1103438.1

101430.6101304.7107393.5105943.5

109311.6100452.8104756.6103120.6

103394.2107154.2101856.2101304.2

1111

1111

1111

1111

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×−×−××−

×××−×

×−×−××−

×−×−××−

=

−−−−

−−−−

−−−−

−−−−

∞P  

where 

,10556546525188460.7 16
0

2
0

−×≈− PP  

15
1

2
1 10071597280441574.2 −×≈− PP  

and ,10917488562438483.5 162 −
∞∞ ×≈− PP  and the trace ( ) ,10 =PTr  

( ) 21 =PTr  and ( ) .1=∞PTr  This implies that all the eigenvalues are not on 

the unit circle; so W is not stable. 

• At ,968715351413504338.0=t  we show numerically that 

( )968715351413504338.0W  is not strongly stable. Using Algorithm 

3.1 to the matrix ( )...1413504339.0W  and the circles ( )0,0 rC  and 

( ),1,0 0rC  respectively, where ,109880.9 1
0

−×=r  we get the 

projectors 4140 ,0 I== PP  and .04=∞P  Then all the eigenvalues 

of ( )...1413504339.0W  are on the unit circle. However, the 

determination of 1a  gives .10372961398662330.1 8
11

−×=< la  

That is approximately equal to zero. Then W has an eigenvalue 1+  or 

.1−  So W is not strongly stable. 

6. Conclusion 

In this paper, we proposed a method to analyze the strong stability of 
symplectic matrices using methods of spectral dichotomy. This method 
determines, using the spectral portrait, a parameter 0r  such that the circle 

( )0,0 rC  contains all the eigenvalues of modulus strictly less than 1 of a 
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symplectic matrix W. Then we apply Algorithm 2.1 or 3.1 two times: one 
with matrix W and ( )0,0 rC  and another with the matrix W and ( )01,0 rC  to 

finally obtain the three projectors ,0P  ∞P  and 1P  on the invariant subspaces 

associated, respectively, with eigenvalues of modulus of less than 1, more 
than 1 and equal to 1. The computation of these projectors are accompanied 
with the dichotomy criterions which give an information on the qualities of 
the projectors. 

In the case where ,00 == ∞PP  Algorithm 4.1 is verified if we can 

decompose the projector I=1P  in two projectors rP  and gP  on the 

invariant subspaces associated, respectively, with r- and g-eigenvalues. This 
decomposition is possible if and only if the matrix W is strongly stable. Two 
examples show how to analyze the strong stability of a symplectic matrix. 
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