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Abstract

The main purpose of this paper is to study the properties of continua

with the property of Kelley which admit a Whitney map either for

hyperspace ( )XC  or for hyperspace ( ).2 XC  In particular, it is proved

that an arcwise connected continuum X with the property of Kelley

admits a Whitney map for ( )XC  if and only if it is metrizable.

1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are

continuous. The weight of a space X is denoted by ( ).Xw  We shall use the

notion of an inverse system as in [4, pp. 135-142]. An inverse system is

denoted by { }.,, ApX aba=X

A generalized arc is a Hausdorff continuum with exactly two non-

separating points (end points) x, y. Each separable arc is homeomorphic

to the closed interval [ ].1,0=I

We say that a space X is arcwise connected if for every pair x, y of

points of X there exists a generalized arc L with end points x, y.
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Let X be a space. We define its hyperspaces as the following sets:

{ },nonemptyandclosedis:2 FXFX ⊆=

( ) { },connectedis:2 FFXC X∈=

( ) ( )( ),2 XCCXC =

( ) { } .,pointsmostathas:2 N∈∈= nnFFnX X

The topology on X2  is the Vietoris topology and ( ) ( )nXXC ,  are

subspaces of .2X  Moreover, ( )1X  is homeomorphic to X.

Let X and Y be the spaces and let YXf →:  be a mapping. Define

YXf 22:2 →  by ( ) ( )FfFf =2  for .2XF ∈  By [10, Theorem 5.10, p. 170]

f2  is continuous and ( )( ) ( ),2 YCXCf ⊂  ( )( ) ( ).2 YnXf ⊂  The restriction

( )XCf |2  is denoted by ( ).fC

We say that an inverse system { }ApX aba ,,=X  is σ-directed if for

each sequence …… ,,,, 21 kaaa  of the members of A there is an Aa ∈

such that kaa ≥  for each .N∈k

Theorem 1.1. Let X be a compact Hausdorff space such that ( )Xw

.1ℵ≥  Then there exists a σ-directed inverse system { }ApX aba ,,=X  of

compact metric spaces aX  and surjective bonding mappings abp  such that

X is homeomorphic to . lim X  Moreover, if X is a Hausdorff continuum,

then each coordinate space aX  can be chosen as a metric continuum.

Proof. In [8, Theorem 1.8, p. 397] it is proved that there exists a

σ-directed inverse system { }ApX aba ,,=X  of compact metric spaces aX

such that X is homeomorphic to lim X. From the proof of [8, Theorem 1.8,

p. 397] it follows that the bonding mappings are surjective. It is clear that

if X is a Hausdorff continuum, then each ( )XpX aa =  is a metric

continuum.
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2. Hereditarily Irreducible Mappings

The notion of an irreducible mapping was introduced by Whyburn

[14, p. 162]. If X is a continuum, then a surjection YXf →:  is

irreducible provided no proper subcontinuum of X maps onto all of Y

under f.

A mapping YXf →:  is said to be hereditarily irreducible [11,

(1.212.3), p. 204] provided that for any given subcontinuum Z of X, no

proper subcontinuum of Z maps onto ( ).Zf

Lemma 2.1. If a hereditarily irreducible mapping YXf →:  is

monotone, then it is one-to-one. Moreover, if f is a surjection, then f is a

homeomorphism.

A mapping YXf →:  is light (zero-dimensional) if all fibers ( )yf 1−

are hereditarily disconnected (zero-dimensional or empty) [4, p. 450], i.e.,

if ( )yf 1−  does not contain any connected subsets of cardinality larger

than one ( ( ) ).0dim 1 ≤− yf  Every zero-dimensional mapping is light, and

in the realm of mappings with compact fibers the two classes of mappings

coincide.

An easy proof of the following lemma is left to the reader.

Lemma 2.2. Every hereditarily irreducible mapping is light.

A continuum X is called a D-continuum if for every pair C, D of its

disjoint non-degenerate subcontinua there exists a subcontinuum XE ⊂

such that EDEC ∩∩ ≠∅≠  and ( ) .\ ∅≠EDC ∪

Lemma 2.3. If X is an arcwise connected continuum, then X is a

D-continuum.

Proof. Let C, D be a pair of disjoint non-degenerate subcontinua of X.

Take the points Cc ∈  and .Dd ∈  There exists an arc L with the end

points c and d. We have two cases. First, D is not a proper subset of L.

Now, LCE ∪=  is a subcontinuum which contains C and ED ∩  is a
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non-empty proper subset of D. Secondly, let D be a proper subset of L.

Then D is an arc with end points d and e. It is clear that e is not in C. Let

[ ],, ecCE ∪=  where [ ]ec,  is a subarc of L with end points c and e. The

continuum E contains C and { } .DeDE ⊂=∩  Finally, we infer that X is

a D-continuum.

Lemma 2.4. If X is a locally connected continuum, then X is a

D-continuum.

Proof. Let C, D be a pair of disjoint non-degenerate subcontinua of X.

Let d be a point of D. Let dU  be a connected neighborhood of d such that

( ) ∅=CUCl d ∩  and ( ) .\ ∅≠dUClD  Set ( )( ).\ DUClXU d ∪=  Because

of the Boundary Bumping Theorem [12, p. 73, Theorem 5.4] there exists a

component K of ( )UCl  such that KC ⊂  and ( ) .∅≠UBdK ∩  If CK ∩

,∅=  then ( ) .∅≠dUClK ∩  Set .KCE ∪=  From ( ) ∅=∈ CUClUd dd ∩,

and ( ) ∅≠dUClD\  it follows that ,EC ⊂  ∅≠DE ∩  and .\ ∅≠ED

The required continuum E is constructed. If ( ) ,∅=dUClK ∩  then ∩K

( )( ) .\ ∅≠dUClD  Set .KE =  It follows that ,EC ⊂  ∅≠DE ∩  and

∅≠ED\  since ( ) .\EDUCl d ⊂  Hence, X is a D-continuum.

3. Whitney Map and Hereditarily Irreducible Mappings

Let Λ be a subspace of .2X  By a Whitney map for Λ [11, p. 24, (0.50)]

we will mean any mapping [ )∞+→Λ ,0:g  satisfying

(a) if Λ∈BA,  such that BA ⊂  and ,BA ≠  then ( ) ( )BgAg <  and

(b) { }( ) 0=xg  for each Xx ∈  such that { } .Λ∈x

If X is a metric continuum, then there exists a Whitney map for X2

and ( )XC  ([11, pp. 24-26], [5, p. 106]). On the other hand, if X is non-

metrizable, then it admits no Whitney map for X2  [2]. It is known that

there exist non-metrizable continua which admit and ones which do not

admit a Whitney map for ( )XC  [2].
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The following theorem is an external characterization of non-metric

continua which admit a Whitney map.

Theorem 3.1. Let X be a non-metric continuum. Then X admits a

Whitney map for ( )XC  if and only if for each σ-directed inverse system

{ }ApX aba ,,=X  of continua which admit Whitney maps for ( )aXC  and

Xlim=X  there exists a cofinal subset AB ⊂  such that for every Bb ∈

the projection bb Xp →Xlim:  is hereditarily irreducible and the projection

( ) ( ) ( )bb XCCpC →Xlim:  is light.

Proof. See [8, Theorem 2.3, p. 398]. The lightness of ( ) ( )XCpC b lim:

( )bXC→  follows from the fact that, for a mapping YXf →:  of a

continuum X  into a continuum Y, ( ) ( ) ( )YCXCfC →:  is light if and only

if f is hereditarily irreducible [11, p. 204, (1.212.3)].

As a consequence of Theorem 3.1 we have the following result.

Corollary 3.2. If a continuum X admits a Whitney map for ( ),2 XC

then it admits a Whitney map for ( ).XC

Proof. From Theorem 1.1 it follows that there exists a σ-directed

inverse system { }ApX aba ,,=X  of metric continua and surjective

bonding mappings such that X is homeomorphic to lim X. Consider the

inverse systems ( ) ( ) ( ){ }ApCXCC aba ,,=X  whose limit is ( )XC  and

( ) { ( ) ( ) }ApCXCC aba ,, 222 =X  whose limit is ( ).2 XC  If X admits a

Whitney for ( ),2 XC  then by Theorem 3.1 there exists a cofinal subset

AB ⊂  such that for every Bb ∈  the projection ( ) ( ) →XCpC b lim:

( )bXC  is hereditarily irreducible. This means that ( )bpC  is light

(Lemma 2.2). Using [11, (1.212.3), p. 204] we infer that bp  is hereditarily

irreducible. Now, Theorem 3.1 completes the proof.

Theorem 3.3. If a D-continuum X admits a Whitney map for ( ),XC

then ( ) ( )1\XXC  is metrizable and ( ) ( )( ) .1\ 0ℵ≤XXCw
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Proof. It is clear that the theorem is true if X is a metric continuum.

Let X be a non-metric continuum which admits a Whitney map for ( ).XC

From Theorem 1.1 it follows that there exists a σ-directed inverse system

{ }ApX aba ,,=X  of metric continua and surjective bonding mappings

such that X is homeomorphic to lim X. Consider inverse system ( ) =XC

( ) ( ){ }ApCXC aba ,,  whose limit is ( ).XC  From Theorem 3.1 it follows

that the projections ap  are hereditarily irreducible and ( )apC  are light.

If ( )apC  are one-to-one, then we have a homeomorphism ( )apC  of ( )XC

onto ( ) ( ).XpC a  Since ( ) ( )XpC a  is metric, ( )XC  is metrizable. It follows

that X is metrizable since X is homeomorphic to ( ).1X  Suppose that

( )apC  is not one-to-one. Then there exists a continuum aC  in aX  and two

continua C, D in X such that ( ) ( ) .aaa CDpCp ==  It is impossible that

DC ⊂  or CD ⊂  since ap  is hereditarily irreducible. Otherwise, if DC ∩

,∅≠  then for a continuum DCY ∪=  we have that C and D are

subcontinua of Y and ( ) ( ) ( ) aaaa CDpCpYp ===  which is impossible

since ap  is hereditarily irreducible. We infer that .∅=DC ∩  There

exists a subcontinuum E such that ,EC ⊂  ∅≠≠ EDD ∩  since X is a

D-continuum. Now ( ) ( )EpDEp aa =∪  which is impossible since ap  is

hereditarily irreducible. Furthermore, ( ) ( )( ) ( )111 XXpC aa =−  since from

the hereditarily irreducibility of ap  it follows that no non-degenerate

subcontinuum of X maps under ap  onto a point. Let ( ) ( )( ).XCpCY aa =

We infer that ( ) ( )[ ] ( ) ( ).1\1\1 XXCXYpC aaa =−  It follows that the

restriction ( ) ( ) ( )( )1\XXCpCP aa |=  is one-to-one and closed [4, Proposition

2.1.4, p. 95]. From ( ) ( )[ ] ( ) ( )1\1\1 XXCXYpC aaa =−  it follows that aP  is

surjective. Hence, aP  is a homeomorphism and ( ) ( )1\XXC  is metrizable.

Moreover, ( ) ( )( ) 01\ ℵ≤XXCw  since aY  as a compact metrizable space is

separable and, consequently, second-countable [4, p. 320].

It is known that if X is a continuum, then ( )XC  is arcwise connected

[9, p. 1209, Theorem]. Hence, using Lemma 2.3 and Theorem 3.3, we
have the following corollary.
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Corollary 3.4. If X is a continuum which admits a Whitney map

for the hyperspace ( ),2 XC  then ( ) ( ) ( )1\2 XCXC  is metrizable and

( ( ) ( ) ( )) .1\ 0
2 ℵ≤XCXCw

Similarly, for D-continua, we have the following theorem.

Theorem 3.5. If a D-continuum X admits a Whitney map for ( ),XC

then ( ) ( )( )1\XXCC  is metrizable and ( ) ( )( )( ) .1\ 0ℵ≤XXCCw

Proof. The theorem follows from Theorem 3.3 and the fact that if

( )dX ,  is a metric space, then the hyperspace of all compact subsets of X

in Vietoris topology is metrizable [5, Theorem 3.1, p. 16].

4. The Property of Kelley

We say that a continuum X has the property of Kelley at a point

Xp ∈  if for every subcontinuum XK ⊂  containing p and for every

open neighborhood U  of K in the hyperspace ( )XC  there exists a

neighborhood U of p in X such that if ,Uq ∈  then there exists a

continuum ( )XCL ∈  with .U∈∈ Lq  A continuum X has the property of

Kelley if it has the property of Kelley at each of its points.

For a given continuum X we define the function ( )XCXX
2: →α  by

( ) ( ){ }AxXCAxX ∈∈=α :

for each point Xx ∈  [3, p. 91].

It is clear that

( ) ( ) ( )( )1\XXCCXX ⊂α

since ( )xXα  is a continuum in ( )XC  which contains { }x  and { },X  i.e.,

( )xXα  is a nondegenerate subcontinuum of ( ).XC  Moreover, if ,yx ≠

then ( ) ( )yx XX α≠α  since { } ( ).yx Xα∉

Lemma 4.1. The function Xα  is upper semi-continuous.

Proof. See [13, (2.1) Theorem, p. 292] or [1, (2.1) Proposition, p. 210].
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Theorem 4.2 [3, Theorem 3.1, p. 92]. The function Xα  is continuous

if and only if X has the property of Kelley.

Hence, we have the following lemma.

Lemma 4.3. The function ( )XCXX
2: →α  is an embedding if X has

the property of Kelley.

Now we are ready to prove the following theorem.

Theorem 4.4. If a continuum X with the property of Kelley admits a

Whitney map for ( ),2 XC  then it is metrizable.

Proof. The hyperspace ( )XC  is arcwise connected [9, Theorem,

p. 1209,]. By Corollary 3.4 the space ( ) ( ) ( )1\2 XCXC  is metrizable

and ( ( ) ( ) ( )) .1\ 0
2 ℵ≤XCXCw  Using Lemma 4.3 we see that ( ) ⊂α XX

( ) ( ) ( )1\2 XCXC  is metrizable. Moreover, X is homeomorphic to ( ).XXα

Hence, X is metrizable. Let us observe that X admits also a Whitney map
for ( )XC  (Corollary 3.2).

If a continuum X with the property of Kelley is a D-continuum, then
we have the following theorem.

Theorem 4.5. If a D-continuum X with the property of Kelley admits

a Whitney map for ( ),XC  then it is metrizable.

Proof. By virtue of Theorem 3.5 the space ( ) ( )( )1\XXCC  is

metrizable. Lemma 4.3 completes the proof.

Problem 1. Is it true that a continuum X with the property of Kelley
is metrizable if it admits a Whitney map for ( ) ?XC

A locally connected continuum is a D-continuum (Lemma 2.4) and
has the property of Kelley [6, Theorem 9, p. 46]. Thus, we have the
following theorem.

Theorem 4.6. If a locally connected continuum X admits a Whitney

map for ( ),XC  then X is metrizable.

Remark. For another proof of this theorem see [7, Theorem 8, p. 4].
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We say that a continuum X is hereditarily indecomposable if no sub-

continuum of X can be written as the union of two proper subcontinua.

Lemma 4.7 [1, Proposition 2.7, p. 211]. Hereditarily indecomposable

continua have the property of Kelley.

From Theorem 4.4 and Lemma 4.7 we obtain the following result.

Theorem 4.8. If a hereditarily indecomposable continuum X admits a

Whitney map for ( ),2 XC  then X is metrizable.

An arboroid is a hereditarily unicoherent arcwise connected

continuum. A metrizable arboroid is a dendroid.

We close this section with the following theorem.

Theorem 4.9. Let X be an arboroid with the property of Kelley. Then

X admits a Whitney map for ( )XC  if and only if it is metrizable.

Proof. Apply Theorem 4.5.

5. Concluding Remarks

It is known [4, Corollary 3.1.20, p. 171] that if a compact space X is

the countable union of its subspaces ,, N∈nXn  such that ( ) ,0ℵ≤nXw

then ( ) .0ℵ≤Xw  Using this fact and theorems proved in the previous

section we obtain the following theorems.

Theorem 5.1. Let a continuum X be the countable union of its locally

connected subcontinua. Then X admits a Whitney map for ( )XC  if and

only if it is metrizable.

Theorem 5.2. If a continuum X is the countable union of its arcwise

connected subcontinua with the property of Kelley, then X admits a

Whitney map for ( )XC  if and only if it is metrizable.

Finally, applying Theorem 4.4 we obtain the following theorem.

Theorem 5.3. If a continuum X is the countable union of its

subcontinua with the property of Kelley and if X admits a Whitney map

for ( ),2 XC  then X is metrizable.
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