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Abstract

The main purpose of this paper is to study the properties of continua
with the property of Kelley which admit a Whitney map either for

hyperspace C(X) or for hyperspace C2(X ). In particular, it is proved
that an arcwise connected continuum X with the property of Kelley

admits a Whitney map for C(X) if and only if it is metrizable.
1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are
continuous. The weight of a space X is denoted by w(X). We shall use the

notion of an inverse system as in [4, pp. 135-142]. An inverse system is
denoted by X = {X,, pp, A}.

A generalized arc is a Hausdorff continuum with exactly two non-
separating points (end points) x, y. Each separable arc is homeomorphic
to the closed interval I = [0, 1].

We say that a space X is arcwise connected if for every pair x, y of

points of X there exists a generalized arc L with end points x, y.
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Let X be a space. We define its hyperspaces as the following sets:

2% = {F < X : F is closed and nonempty},

C(X) = {F € 2% : F is connected},

C*(X) = C(C(X)),

X(n) = {F € 2X : F has at most n points}, n € N.

The topology on 2% is the Vietoris topology and C(X), X(n) are

subspaces of 2%. Moreover, X(1) is homeomorphic to X.

Let X and Y be the spaces and let f : X — Y be a mapping. Define
2f :2X 5 9Y by 2/ (F)=f(F) for F e 2%. By [10, Theorem 5.10, p. 170]
2/ is continuous and 2/(C(X)) = C(Y), 2/(X(n)) = (Y). The restriction
2/ | C(X) is denoted by C(f).

We say that an inverse system X = {X,, p.y, A} is o-directed if for
each sequence ap, ag, ..., @, ... of the members of A there isan a € A

such that a > aj, for each & € N.

Theorem 1.1. Let X be a compact Hausdorff space such that w(X)
> Ny. Then there exists a o-directed inverse system X ={X,, pap, A} of
compact metric spaces X, and surjective bonding mappings pg, such that

X is homeomorphic to lim X. Moreover, if X is a Hausdorff continuum,

then each coordinate space X, can be chosen as a metric continuum.

Proof. In [8, Theorem 1.8, p. 397] it is proved that there exists a
o-directed inverse system X = {X,, p,p, A} of compact metric spaces X,

such that X is homeomorphic to lim X. From the proof of [8, Theorem 1.8,
p. 397] it follows that the bonding mappings are surjective. It is clear that

if X is a Hausdorff continuum, then each X, = p,(X) is a metric

continuum.
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2. Hereditarily Irreducible Mappings

The notion of an irreducible mapping was introduced by Whyburn

[14, p. 162]. If X is a continuum, then a surjection f:X — Y 1is
irreducible provided no proper subcontinuum of X maps onto all of Y

under f.

A mapping f: X —> Y 1is said to be hereditarily irreducible [11,

(1.212.3), p. 204] provided that for any given subcontinuum Z of X, no
proper subcontinuum of Z maps onto f(Z).

Lemma 2.1. If a hereditarily irreducible mapping f: X — Y is

monotone, then it is one-to-one. Moreover, if [ is a surjection, then [ is a

homeomorphism.

A mapping f : X > Y is light (zero-dimensional) if all fibers f1(y)
are hereditarily disconnected (zero-dimensional or empty) [4, p. 450], i.e.,

if ffl(y) does not contain any connected subsets of cardinality larger

than one (dim f~!(y) < 0). Every zero-dimensional mapping is light, and

in the realm of mappings with compact fibers the two classes of mappings

coincide.
An easy proof of the following lemma is left to the reader.
Lemma 2.2. Every hereditarily irreducible mapping is light.

A continuum X is called a D-continuum if for every pair C, D of its
disjoint non-degenerate subcontinua there exists a subcontinuum E < X
suchthat CNE # @ # DNE and (CUD)\E = &.

Lemma 2.3. If X is an arcwise connected continuum, then X is a

D-continuum.

Proof. Let C, D be a pair of disjoint non-degenerate subcontinua of X.
Take the points ¢ € C and d € D. There exists an arc L with the end
points ¢ and d. We have two cases. First, D is not a proper subset of L.
Now, E = CUL is a subcontinuum which contains C and DN E is a
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non-empty proper subset of D. Secondly, let D be a proper subset of L.
Then D is an arc with end points d and e. It is clear that e is not in C. Let
E = CU]c, e], where [c, e] is a subarc of L with end points ¢ and e. The

continuum E contains C and E (1 D = {e} c D. Finally, we infer that X is
a D-continuum.

Lemma 2.4. If X is a locally connected continuum, then X is a

D-continuum.

Proof. Let C, D be a pair of disjoint non-degenerate subcontinua of X.
Let d be a point of D. Let U, be a connected neighborhood of d such that
Cl(lUy;)NC =@ and D\CI(U,) # @. Set U = X\(Cl(U,)U D). Because

of the Boundary Bumping Theorem [12, p. 73, Theorem 5.4] there exists a
component K of CI(U) such that Cc K and KN Bd{U) = @. If KNC

=, then KNCUU,) = @. Set E=CUK. From d e Uy, Cl(Uz)NC =2
and D\CI(U,) # & it follows that C < E, END # & and D\E = Q.
The required continuum E is constructed. If K N Cl(U,) = &, then K N
(D\Cl(U,)) = &. Set E = K. 1t follows that C c E, END # & and
D\E = & since Cl(U,;) = D\E. Hence, X is a D-continuum.

3. Whitney Map and Hereditarily Irreducible Mappings

Let A be a subspace of 2X, By a Whitney map for A [11, p. 24, (0.50)]

we will mean any mapping g : A — [0, + o) satisfying
(a) if A, B € A suchthat A < B and A # B, then g(A) < g(B) and

() g({x}) = 0 for each x € X such that {x} € A.

If X is a metric continuum, then there exists a Whitney map for 2X
and C(X) ([11, pp. 24-26], [5, p. 106]). On the other hand, if X is non-

metrizable, then it admits no Whitney map for 2X [2]. It is known that
there exist non-metrizable continua which admit and ones which do not
admit a Whitney map for C(X) [2].
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The following theorem is an external characterization of non-metric

continua which admit a Whitney map.

Theorem 3.1. Let X be a non-metric continuum. Then X admits a

Whitney map for C(X) if and only if for each oc-directed inverse system
X ={X,, Py, A} of continua which admit Whitney maps for C(X,) and
X = lim X there exists a cofinal subset B < A such that for every b € B
the projection py :1imX — Xy is hereditarily irreducible and the projection
C(pp) : C(lim X) — C(X,) is light.

Proof. See [8, Theorem 2.3, p. 398]. The lightness of C(p;): C(lim X)
— C(Xp) follows from the fact that, for a mapping f: X - Y of a
continuum X into a continuum Y, C(f) : C(X) — C(Y) is light if and only
if fis hereditarily irreducible [11, p. 204, (1.212.3)].

As a consequence of Theorem 3.1 we have the following result.

Corollary 3.2. If a continuum X admits a Whitney map for CQ(X),
then it admits a Whitney map for C(X).

Proof. From Theorem 1.1 it follows that there exists a o-directed

inverse system X ={X,, psy, A} of metric continua and surjective
bonding mappings such that X is homeomorphic to lim X. Consider the
inverse systems C(X) = {C(X,), C(pyp), A} whose limit is C(X) and
C*(X) = {C*(X4), C*(Pgp), A} whose limit is C*(X). If X admits a
Whitney for C%(X), then by Theorem 3.1 there exists a cofinal subset
B c A such that for every b € B the projection C(pp): C(lim X) —
C(Xp) is hereditarily irreducible. This means that C(p,) is light
(Lemma 2.2). Using [11, (1.212.3), p. 204] we infer that p; is hereditarily

irreducible. Now, Theorem 3.1 completes the proof.

Theorem 3.3. If a D-continuum X admits a Whitney map for C(X),
then C(X)\X(1) is metrizable and w(C(X)\X(1)) < N.
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Proof. It is clear that the theorem is true if X is a metric continuum.

Let X be a non-metric continuum which admits a Whitney map for C(X).

From Theorem 1.1 it follows that there exists a o-directed inverse system

X ={X,, Pgp, A} of metric continua and surjective bonding mappings
such that X is homeomorphic to lim X. Consider inverse system C(X) =
{C(X,), C(pgp), A} whose limit is C(X). From Theorem 3.1 it follows
that the projections p, are hereditarily irreducible and C(p,) are light.
If C(p,) are one-to-one, then we have a homeomorphism C(p,) of C(X)
onto C(p,)(X). Since C(p,)(X) is metric, C(X) is metrizable. It follows
that X is metrizable since X is homeomorphic to X(1). Suppose that
C(p,) is not one-to-one. Then there exists a continuum C, in X, and two
continua C, D in X such that p,(C) = p,(D) = C,. It is impossible that
C < Dor D c C since p, is hereditarily irreducible. Otherwise, if C (1 D
# &, then for a continuum Y =CUD we have that C and D are
subcontinua of Y and p,(Y) = p,(C) = p,(D) = C, which is impossible
since p, is hereditarily irreducible. We infer that C D = &. There
exists a subcontinuum E such that C « E, D# DN E # & since X1is a
D-continuum. Now p,(E U D) = p,(E) which is impossible since p, is

hereditarily irreducible. Furthermore, C(p,)*(X,(1)) = X(1) since from
the hereditarily irreducibility of p, it follows that no non-degenerate

subcontinuum of X maps under p, onto a point. Let Y, = C(p,)(C(X)).

We infer that C(p,) '[Y,\X,(1)]=C(XN\X(1). It follows that the
restriction P, = C(p, )|(C(X)\X(1)) is one-to-one and closed [4, Proposition

2.1.4, p. 95]. From C(p,) ' [Y,\X,(1)] = C(X\X(1) it follows that P, is
surjective. Hence, P, is a homeomorphism and C(X)\X(1) is metrizable.
Moreover, w(C(X)\X(1)) < X, since Y, as a compact metrizable space is

separable and, consequently, second-countable [4, p. 320].

It is known that if X is a continuum, then C(X) is arcwise connected

[9, p. 1209, Theorem]. Hence, using Lemma 2.3 and Theorem 3.3, we
have the following corollary.
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Corollary 3.4. If X is a continuum which admits a Whitney map
for the hyperspace C?*(X), then C2*(X\C(X)(1) is metrizable and
w(CHXNC(X) (1)) < Ro.
Similarly, for D-continua, we have the following theorem.
Theorem 3.5. If a D-continuum X admits a Whitney map for C(X),
then C(C(X)\X(1)) is metrizable and w(C(C(X)\X(1))) < Ng.

Proof. The theorem follows from Theorem 3.3 and the fact that if
(X, d) is a metric space, then the hyperspace of all compact subsets of X

in Vietoris topology is metrizable [5, Theorem 3.1, p. 16].
4. The Property of Kelley

We say that a continuum X has the property of Kelley at a point
p € X if for every subcontinuum K < X containing p and for every

open neighborhood U of K in the hyperspace C(X) there exists a
neighborhood U of p in X such that if ¢ € U, then there exists a
continuum L € C(X) with ¢ € L € U. A continuum X has the property of
Kelley if it has the property of Kelley at each of its points.

For a given continuum X we define the function oy : X — c? (X) by
ax(x)={AeCX):x e A}
for each point x € X [3, p. 91].

It is clear that
ax(X) c C(C(XNX())

since ax(x) is a continuum in C(X) which contains {x} and {X}, i.e.,
ax(x) is a nondegenerate subcontinuum of C(X). Moreover, if x # y,

then ax(x) # ax(y) since {x} ¢ ax(y).
Lemma 4.1. The function ox is upper semi-continuous.

Proof. See [13, (2.1) Theorem, p. 292] or [1, (2.1) Proposition, p. 210].
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Theorem 4.2 [3, Theorem 3.1, p. 92]. The function ox is continuous
if and only if X has the property of Kelley.

Hence, we have the following lemma.

Lemma 4.3. The function ax : X — C%(X) is an embedding if X has
the property of Kelley.

Now we are ready to prove the following theorem.

Theorem 4.4. If a continuum X with the property of Kelley admits a
Whitney map for C*(X), then it is metrizable.

Proof. The hyperspace C(X) is arcwise connected [9, Theorem,
p. 1209,]. By Corollary 3.4 the space C2(X\C(X)(1) is metrizable
and w(CZ(X)\C(X)(1)) < Ny. Using Lemma 4.3 we see that oy (X) c
C?(X)\C(X)(1) is metrizable. Moreover, X is homeomorphic to oy (X).

Hence, X is metrizable. Let us observe that X admits also a Whitney map
for C(X) (Corollary 3.2).

If a continuum X with the property of Kelley is a D-continuum, then

we have the following theorem.

Theorem 4.5. If a D-continuum X with the property of Kelley admits
a Whitney map for C(X), then it is metrizable.

Proof. By virtue of Theorem 3.5 the space C(C(X)\X(1)) is
metrizable. Lemma 4.3 completes the proof.

Problem 1. Is it true that a continuum X with the property of Kelley
is metrizable if it admits a Whitney map for C(X)?

A locally connected continuum is a D-continuum (Lemma 2.4) and
has the property of Kelley [6, Theorem 9, p. 46]. Thus, we have the
following theorem.

Theorem 4.6. If a locally connected continuum X admits a Whitney
map for C(X), then X is metrizable.

Remark. For another proof of this theorem see [7, Theorem 8, p. 4].
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We say that a continuum X is hereditarily indecomposable if no sub-

continuum of X can be written as the union of two proper subcontinua.

Lemma 4.7 [1, Proposition 2.7, p. 211]. Hereditarily indecomposable
continua have the property of Kelley.

From Theorem 4.4 and Lemma 4.7 we obtain the following result.

Theorem 4.8. If a hereditarily indecomposable continuum X admits a

Whitney map for C*(X), then X is metrizable.

An arboroid is a hereditarily unicoherent arcwise connected

continuum. A metrizable arboroid is a dendroid.
We close this section with the following theorem.

Theorem 4.9. Let X be an arboroid with the property of Kelley. Then
X admits a Whitney map for C(X) if and only if it is metrizable.

Proof. Apply Theorem 4.5.
5. Concluding Remarks

It is known [4, Corollary 3.1.20, p. 171] that if a compact space X is

the countable union of its subspaces X,,, n € N, such that w(X,,) < N,

no
then w(X) < Ny. Using this fact and theorems proved in the previous
section we obtain the following theorems.

Theorem 5.1. Let a continuum X be the countable union of its locally
connected subcontinua. Then X admits a Whitney map for C(X) if and
only if it is metrizable.

Theorem 5.2. If a continuum X is the countable union of its arcwise
connected subcontinua with the property of Kelley, then X admits a

Whitney map for C(X) if and only if it is metrizable.

Finally, applying Theorem 4.4 we obtain the following theorem.

Theorem 5.3. If a continuum X is the countable union of its

subcontinua with the property of Kelley and if X admits a Whitney map
for C%(X), then X is metrizable.
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