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Abstract 

We propose a new extragradient method for the single-valued 
variational inequality problem. Our method is proven to be globally 
convergent to a solution of the variational inequality problem, 
provided the mapping is continuous and pseudomonotone. 
Convergence analysis is also presented. 

1. Introduction 

We consider the variational inequality problem (VIP), which is to find a 

vector Cx ∈∗  such that 
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 ( ) ,,0, CxxxxF ∈∀≥− ∗∗  (1) 

where C is a nonempty closed convex set in ,nR  F is a single-valued 

mapping from nR  into itself, and ⋅⋅,  and ⋅  denote the inner product and 

norm in ,nR  respectively. 

Many methods for computing the solution of (1) are projection-type 
methods. Projection-type algorithms have been extensively studied in the 
literature, see [5, 6, 7, 8, 10] and the references therein. In [6, 8, 10], the next 
iterate is a projection of the current iterate onto the intersection of the 
feasible set C and the hyperplane. In [3], the next iterate is a projection onto a 
halfspace whose bounding hyperplane supports the feasible set C at a certain 
point; see also [2]. However, the mapping is required to be Lipschitz 
continuous in [3]. In this paper, we introduce an extragradient algorithm for 
the VIP and obtain a global convergence theorem, assuming that F is 
continuous on C. As claimed in [3], our work is only a theoretical 
development although its potential numerical advantages are obvious. 

The organization of this paper is as follows: Section 2 provides necessary 
concepts and lemmas. Section 3 presents the algorithm and main theorems. 
Convergence analysis is reported in Section 4. 

2. Preliminaries 

F is called pseudomonotone on C, if for any x, ,Cy ∈  

 ( ) ( ) .0,0, ≥−⇒≥− yxxFyxyF  (2) 

Let S be the solution set of (1), that is, those points Cx ∈∗  satisfying 
(1). Throughout this paper, we assume that the solution set S of the problem 
(1) is nonempty and F is pseudomonotone on C with respect to the solution 
set S, i.e., 
 ( ) .,,0, SxCyxyyF ∈∀∈∀≥−  (3) 

The property (3) holds if F is pseudomonotone on C. 

Let CP  denote the projector onto C and let 0>μ  be a parameter. 
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Lemma 2.1. Cx ∈  solves the problem (1) if and only if 

 ( ) ( )( ) .0: =μ−−=μ xFxPxxr C  (4) 

Lemma 2.2. Let C be a closed convex subset of .nR  For any nyx R∈,  

and ,Cz ∈  the following statements hold: 

 (i) ( ) ( ) .0, ≥−− xPzxxP CC  

(ii) ( ) ( ) ( ) ( ) .222 yPyxxPyxyPxP CCCC −+−−−≤−  

Proof. See [11]. 

The proof of the following lemma is easy and we omit it (see Lemma 3.1 
in [1], for example). 

Lemma 2.3. For any nx R∈  and ,0>μ  

{ } ( ) ( ) { } ( ) .,1max,1min 11 xrxrxr μ≤≤μ μ  

3. Main Results 

Algorithm 3.1. Choose Cx ∈0  and two parameters ( ).1,0, ∈σγ  Set 

.0=i  

Step 1. Let ik  is the smallest nonnegative integer satisfying 

 ( ) ( ( ( ))) ( ) .iii
k

iCi
k xkrxFxPFxF ii

γσ≤γ−−γ  (5) 

Set ik
i γ=ρ  and 

 ( )( ).iiiCi xFxPy ρ−=  (6) 

If ( ) ,0=ρ ixr i  stop. 

Step 2. Compute ( )( ),:1 iiiCHi yFxPx
i

ρ−=+ ∩  where 

 { ( )( ) }.0:: ≤−−ρ−∈= iiiii
n

i yxyxFxxH R  (7) 

Let 1: += ii  and go to Step 1. 
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Remark 3.1. iH  in Step 2 is the halfspace whose bounding hyperplane 

supports C at .iy  

Remark 3.2. .iHC ⊆  Indeed, in view of Lemma 2.2(i) and (6), we 

have 

( )( ) .,0 CxyxyxFx iiiii ∈∀≤−−ρ−  

Therefore, .iHC ⊆  

We first show that Algorithm 3.1 is well defined. 

Proposition 3.1. If ix  is not a solution of problem (1), then there exists a 

nonnegative integer ik  satisfying (5). 

Proof. Suppose that for all k, we have 

( ) ( ( ( ))) ( ) .ii
k

iCi
k xrxFxPFxF kγ

σ>γ−−γ  

Therefore, 

 ( ) ( ( ( ))) ( )iki
k

iCi xrxFxPFxF kγγ

σ>γ−−  

{ } ( )i
k

k xr1,1min γ
γ

σ≥  

( ) ,1 ixrσ=  (8) 

where the second inequality follows from Lemma 2.3 and the equality 
follows from ( )1,0∈γ  and .0≥k  Since ( )⋅CP  is continuous and ,Cxi ∈  

( ( )) ( ).∞→→γ− kxxFxP ii
k

iC  Let ∞→k  in (8), we have 

( ) ( ) ( ) ,00 1 >σ≥−= iii xrxFxF  

being F continuous on C. This contradiction completes the proof. 

Now we obtain the following auxiliary result that will be used for 
proving the convergence of Algorithm 3.1. 
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Theorem 3.1. Let { }ix  be the sequence generated by Algorithm 3.1 and 

let .Sx ∈∗  Suppose that the assumption (3) holds, then 

 ( ) ( ) .1 2
1

2222
1 iiii xrxxxx ρσ−−−≤− ∗∗
+  (9) 

Proof. Since ,Sx ∈∗  it follows from assumption (3) that 

 ( ) .0, ≥− ∗xyyF ii  (10) 

Therefore, 

 ( ) ( ) .,, 11 iiiii yxyFxxyF −≥− +
∗

+  (11) 

By the definition of ,iH  we have 

( )( ) .0,1 ≤−ρ−−+ iiiiii yxFxyx  

Thus, 

 ( )( ) iiiiii yyFxyx −ρ−−+ ,1  

( ) ( ) ( )iiiiiiiiiii yFxFyxyxFxyx −−ρ+−ρ−−= ++ ,, 11  

( ) ( ) .,1 iiiii yFxFyx −−ρ≤ +  (12) 

Denoting ( ),iiii yFxz ρ−=  

 2
1

∗
+ − xxi  

( ) 2∗−= xzP iHi
 

( ) ( ) ∗∗ −+−−+−= xzzzPxzzzP iiiHiiiH ii
,  

( ) ( ) .,22 ∗∗ −−+−+−= xzzzPzPzxz iiiHiHii ii
 (13) 

Since 

( ) ( ) ∗−−+− xzzzPzPz iiiHiHi ii
,22 2  

( ) ( ) ,0,2 ≤−−= ∗
iHiHi zPxzPz

ii
 (14) 
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we get 

 ( ) ( ) ( ) ,,2 22
iHiiiiHiHi zPzxzzzPzPz

iii
−−≤−−+− ∗  (15) 

Hence, 

 ( ) 222
1 iHiii zPzxzxx i−−−≤− ∗∗
+  

( )( ) ( )( ) ( ) 22
iHiiiiii zPyFxxyFx

i
−ρ−−−ρ−= ∗  

( )iiiiii yFxxxxxx ,2 1
2

1
2

+
∗

+
∗ −ρ+−−−=  

( ) ,,2 1
2

1
2

iiiiiii yFxyxxxx ++
∗ −ρ+−−−≤  (16) 

where the last inequality follows from (11). Therefore, 

 ( )iiiiiiii yFxyxxxxxx ,2 1
2

1
22

1 ++
∗∗

+ −ρ+−−−≤−  

11
2 , ++

∗ −+−−+−−−= iiiiiiiii xyyxxyyxxx  

( )iiii yFxy ,2 1+−ρ+  

2
1

22
+

∗ −−−−−= iiiii xyyxxx  

( ) iiiiii yyFxyx −ρ−−+ + ,2 1  

2
1

22
+

∗ −−−−−≤ iiiii xyyxxx  

( ) ( )iiiii yFxFyx −−ρ+ + ,2 1  

2
1

22
+

∗ −−−−−≤ iiiii xyyxxx  

( )iii xryx iρ+ −σ+ 12  

2
1

22
+

∗ −−−−−= iiiii xyyxxx  

,2 1 iiii yxyx −−σ+ +  (17) 

where the second inequality follows from (12) and the third one follows from 
Cauchy-Schwarz inequality and (5). 
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In addition, 

( )210 iiii yxyx −−−σ≤ +  

.2 2
11

22
++ −+−−σ−−σ= iiiiiiii xyyxyxyx  (18) 

Therefore, 

 .2 2
1

22
1 ++ −+−σ≤−−σ iiiiiiii xyyxyxyx  (19) 

Combining (17) and (19), we have 

 ( ) .1 2222
1 iiii yxxxxx −σ−−−≤− ∗∗
+  (20) 

By Lemma 2.3, 

 ( )iii xryx
iρ=−  

{ } ( )iii xrρ≥ ,1min  

( ) .iii xrρ=  (21) 

It follows from (20) and (21) that 

 ( ) ( ) .1 2
1

2222
1 iiii xrxxxx ρσ−−−≤− ∗∗
+  (22) 

This completes the proof. 

Theorem 3.2. If nCF R→:  is continuous on C and the assumption 
(3) holds, then the sequence { }ix  generated by Algorithm 3.1 converges to a 

solution x  of (1). 

Proof. Let .Sx ∈∗  Since ,10 <σ<  we have ( ).1,01 2 ∈σ−  It follows 

from Theorem 3.1 that 

 ( ) ( ) .1 2
1

22
1

22 ∗
+

∗ −−−≤ρσ− xxxxxr iiii  (23) 

It follows that the sequence { }2
1

∗
+ − xxi  is nonincreasing, and hence is a 

convergent sequence. Therefore, { }ix  is bounded and 
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( ) ( ) 010 2
1

22
1

22 →−−−≤ρσ−≤ ∗
+

∗ xxxxxr iiii  as ,∞→i  

which implies that 

 ( ) .0lim =ρ
∞→ iiii

xr  (24) 

We consider two possible cases. Suppose first that .0suplim >ρ∞→ ii  

Then, by (24), it must be the case that ( ) .0inflim =∞→ iii xr  Since ( )⋅1r  is 

continuous and { }ix  is bounded, there exists an accumulation point x  of 

{ }ix  such that ( ) .01 =xr  It follows that x  is a solution of the problem (1). 

We show next that the whole sequence { }ix  converges to .x  Replacing ∗x  

by x  in the preceding argument, we obtain that the sequence { }xxi −  is 

nonincreasing and hence converges. Since x  is an accumulation point of 
{ },ix  some subsequence of { }xxi −  converges to zero. This shows that 

the whole sequence { }xxi −  converges to zero, hence .lim xxii =∞→  

Suppose now that .0lim =ρ∞→ ii  By the choice of ,iρ  we have, for all 

,1≥ik  

( ) ( ( ( ))) ( )ii
k

iCi
k xrxFxPFxF ikii 1

11
−γ

−− σ>γ−−γ  

 ( ) ,1
1

i
k xri −σγ≥  (25) 

where the second inequality follows from Lemma 2.3. Therefore, 

 ( ) ( ( ( ))) ( ) ,1
iiiiiCi xrxFxPFxF σ>ργ−− −  (26) 

Let x  be any accumulation point of { }ix  and { }jix  is the corresponding 

subsequence converging to .x  It follows from (26) that 

 ( ) ( ( ( ))) ( ) .1
1

jjjj iiiiCi xrxFxPFxF σ>ργ−− −  (27) 

Letting ∞→j  in (27), we have 
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 ( ) ( ) ( ) ,0 1 xrxFxF σ≥−=  (28) 

being F and ( )⋅CP  continuous. Therefore, ( ) .01 =xr  This implies that x  

solves the variational inequality (1). Similar to the preceding proof, we 
obtain that .lim xxii =∞→  

4. Convergence Rate 

Now we provide a result on the convergence rate of the iterative 
sequence generated by Algorithm 3.1. To establish this result, we need a 
certain error bound to hold locally (see (29) below). The research on error 
bound is a large topic in mathematical programming. One can refer to the 
survey [9] for the roles played by error bounds in the convergence analysis of 
iterative algorithms; more recent developments on this topic are included in 
Chapter 6 in [4]. 

We say that F is Lipschitz continuous on C if there exists a constant 
0>L  such that, for all ( ) ( ) .,, yxLyFxFCyx −≤−∈  

Theorem 4.1. In addition to the assumptions in Theorem 3.2, if F is 
Lipschitz continuous with modulus 0>L  and if there exist positive constants 
c and δ such that 

 ( ) ( ) ,,dist 1 xrcSx ≤  for all x satisfying ( ) .1 δ≤xr  (29) 

Then any sequence { }ix  generated by Algorithm 3.1 converges strongly to a 

solution x  of (1) and the rate of convergence is R-linear. 

Proof. Put { }.,21min: 1γσ=ρ −L  We first prove that ρ>ρi  for all i. By 

the construction of ,iρ  we have ( ].1,0∈ρi  If ,1=ρi  then clearly >ρi  

.2
1 ρ≥  Now we assume that .1<ρi  Since ,ik

i γ=ρ  it follows that the 

nonnegative integer .1≥ik  Thus the construction of ik  implies that 

 ( ) ( ) ( ( ( ))) .11
1 i

k
iCi

k
i xFxPFxFxr ii

ik
−−

γ
γ−−γ<σ −  (30) 
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It follows from the Lipschitz continuity of F that 

( ) ( ( ))i
k

iCi
k

i xFxPxLxr ii
ik

11
1

−−
γ

γ−−γ<σ −  

 ( ) .1
1

ii xrL ik −γ
−γρ=  (31) 

Therefore .1 ρ≥γσ>ρ −Li  

Let ( ).iS xPx ∈∗  By (9) and (29), we obtain that for sufficiently large i, 

( ) ( ) ( ) 2222
11

2 1,dist iiii xrxxxxSx
iρ

∗∗
++ σ−−−≤−≤  

( ) ( ) 2
1

222 1 iii xrxx ρσ−−−≤ ∗  

( ) ( ) 2
1

222 1 ii xrxx ρσ−−−≤ ∗  

( ) ( ) ( )SxcSx ii ,dist1,dist 22222 −ρσ−−≤  

( ( ) ) ( ),,dist11 2222 Sxc i
−ρσ−−=  (32) 

where the second inequality follows from Lemma 2.3 and the third one 
follows from .ρ>ρi  Therefore the sequence ( ){ }Sxi ,dist  converges 

Q-linearly to zero, and hence { }ix  converges R-linearly to .Sx ∈  
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