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Abstract 

In this paper, a new count model with gamma interarrival time 
distribution is introduced and its properties are studied. The Erlang 
model is developed as a special case and studied in detail. Various 
characteristics like mean function, variance function, probability 
generating function, hazard rate function, etc. are derived. The model 
is applied to a real data set on interarrival times of customers arrived in 
a bank counter at Muvattupuzha, Kerala, India. 
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1. Introduction 

Poisson model is the basic regression model for count data (i.e., the 
number of events in a given interval of time). For the Poisson model the 
conditional variance equals the conditional mean. In most real situations 
conditional variance exceeds the conditional mean (over-dispersion) or 
conditional variance is less than conditional mean (under-dispersion). In 
these cases, Poisson model is inefficient and leads to biased inference 
(Winkelmann [5]). 

Note that Poisson process corresponds to a sequence of independent and 
identically distributed exponential waiting times (interarrival times) (see Cox 
[2]). A generalized model can be derived by replacing the exponential 
distribution by another nonnegative distribution. Weibull and gamma nest the 
exponential distribution and allow for non-constant (monotone) hazard 
function (duration dependence). Weibull distribution is mostly preferred in 
duration analysis for its closed form hazard function. But gamma distribution 
is preferred here for its reproductive property (since sum of independent 
gamma random variables is again gamma distributed). 

Recently many researchers have attempted to develop new count models 
as alternatives to the Poisson count process. McShane et al. [4] developed a 
Weibull count model whereas Jose and Abraham [3] developed a Mittag-
Leffler Count model. Seetha Lekshmi and Catherine [6] also developed some 
generalizations of Poisson count process. 

In this paper, we develop a new approach for constructing count models 
to obtain a generalized Poisson model by replacing the exponential 
distribution by gamma distribution which is a generalization of exponential 
distribution. This model has the following merits: First, our count model is 
based upon an assumed gamma interarrival process which nests the 
exponential as a special case. Second, this model can handle over-dispersed, 
under-dispersed as well as equi-dispersed data. Third, the gamma interarrival 
time model is richer than the exponential model because it allows non-
constant hazard rates (duration dependence). Fourth, we can implement the 
model entirely in standard computing software. 
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The rest of the paper is organized as follows. In Section 2, gamma count 
model is discussed. Erlang count model is introduced and discussed in 
Section 3. Application to a real data set on customer arrivals in a bank 
counter is considered in Section 4. 

2. Gamma Count Model 

Let us describe a general framework utilized to describe the model that is 
based upon the relationship between the interarrival times and their count 
model equivalent. Let kτ  be the waiting time between ( )1−k th and kth 

events. The arrival time of the nth event is given by 

....,3,2,1,
1∑ =

=τ=ν
n
k kn n  

Let us assume that the waiting times are independent and identically 
distributed gamma variables. The density can be written as 

 ( ) ( ) .,;,, 1 +−αβ−
α

∈βα
αΓ

β=βα Rtetf t  (1) 

For ,0>t  ( )
β
α

=tE  and ( ) ,2β

α
=tVar  the hazard function is given by 

( ) ( )
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,
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tf=τλ  where ( ) ( )tFtF −= 1  and ( )tF  is the distribution function. 

By reproductive property of the gamma distribution, 
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As a new approach the cumulative distribution is obtained using the 
relationship between incomplete gamma integral and Poisson probabilities, 
so that, 
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Hence we can obtain 
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Table 1 and Table 2 give values of gamma count model probabilities for 
different values of α and β at .3,2,1=t  

Table 1 
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Table 2 

 

3. Erlang Count Model 

In this section, we consider the gamma count model given by (3) for 
integer values of α and this model can be referred to as Erlang count model. 
A detailed study of Erlang count model is carried out using Laplace 
transform techniques. Mean function, variance function, probability 
generating function and hazard rate function are considered. The Erlang 
count model probabilities are obtained as 

( ) ( )( )
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=β=
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This means that it is a count model with interarrival time distributed as 
Erlang with parameters β and α, where α is an integer. The Erlang 
distribution with parameters β and α is given by 

( ) 0...,,2,1;,; 1 >β=α
αΓ

β
=αβ −αβ−

α
xexf x  

0=    otherwise. 

3.1. Mean function 

Expected number of counts for the Erlang model is 

 ( ) ( )( ) ( ).
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=
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Taking Laplace transform on both sides, we get 
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3.2. Variance function 

The variance function can be obtained from the relation 

 ( ) ( )[ ] ( )[ ][ ] .22 tNEtNEtV −=  (6) 

The Laplace transform of ( )[ ]2tE  is given by 

( ) [( ) ]
[( ) ]

.21 αα

ααα
∗

β−β+

β+β+β
=

ss
ssM  

When ( ) .,1 ttV β==α  

When ( ) .16
1

2
1

16
1

4
1,2 42 tt etettV β−β− −β−+β==α  



Count Model with Gamma and Erlang Interarrival Time Distributions 89 

3.3. Probability generating function 

The probability generating function of the model is given by 
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The corresponding Laplace transform is 
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3.4. Hazard rate function 

The hazard rate function is given by 
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The following figure displays the hazard rate function of Erlang count 
model for ,2=α  .4,3,2,1=β  Clearly, it is increasing function of time t. 

 

If the hazard function is a decreasing function of time, then the 
distribution displays negative duration dependence. If the hazard function is 
an increasing function of time, then the distribution displays positive 
duration dependence. In both cases the conditional probability of a current 
occurrence depends on the time since the last occurrence rather than on the 
number of previous events. 

There is a link between duration dependence and dispersion. Without 
making the assumptions on the exact distribution of τ, a limiting result can be 
obtained. Denote the mean and the variance of the waiting time distribution 

by ( ) μ=τE  and ( ) 2σ=τVar  and the coefficient of variation by .
μ
σ=ν  

Let ( )tλ  be the hazard function. The distribution displays negative duration 

dependence for ( ) 0<λ
dt

td  and positive duration dependence for ( ) .0>λ
dt

td  

Assume that the hazard function is monotonic. Then by Barlow and Proschan 

[1], ( ) ( ) ( ).111000 <=>ν⇒>=<λ
dt

td  
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4. Application to a Real Data Set 

In this section, we apply the model to a data on the interarrival time of 
customers arrived on a given day in 2011 at a bank counter in Muvattupuzha, 
Kerala, India. All interarrival times are expressed in minutes and total 
number of customers arrived in the bank on a randomly selected day is 350. 
Here the conditional mean is greater than the conditional standard deviation 
(mean = 7.649 and S.D = 5.404). Thus this data set is under-dispersed and 
hence we can apply the Erlang count model. Using maximum likelihood 
method of estimation, the values of the parameters are given by 2=α  and 

.814.3=β  To test whether there is significant difference between the 

observed interarrival time distribution and Erlang distribution we use the 
Kolmogrov Smirnov test. Let :0H  the data follows Erlang distribution. Here 

the calculated value of the Kolmogrov Smirnov test statistic is 0.04077 and 
critical value at 5 percent level of significance is 0.077 showing that the 
Erlang assumption for interarrival times is valid. 

The following figure gives the P-P plot of the Erlang distribution. 

 

 

P-P Plot of Erlang Distribution
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The P-P plot is very close to the straight line joining (0, 0) and (1, 1). 
This shows that the Erlang distribution is a good fit to the data. Thus based 
on Kolmogrov Smirnov statistic and P-P plot we conclude that the null 
hypothesis of Erlang distribution as a good fit to the data is acceptable. From 
the graph we can conclude that it is a good fit. 
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