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Abstract 

In this paper, the statistical properties of the Friday and Patil bivariate 
exponential distribution are discussed. Estimators of the parameters of 
the distribution are obtained using an intuitive approach and their 
properties are studied. Estimates of the parameters of the Freund 
bivariate exponential distribution are obtained as a special case. 
Moreover, using the relations between the parameters of the Marshall- 
Olkin and the Friday and Patil bivariate exponential distributions, 
estimators of the parameters of Marshall-Olkin bivariate exponential 
distribution are derived. Finally, numerical illustrations are performed 
to highlight the theoretical results. 
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1. Introduction 

The exponential distribution plays an important role in the reliability 
theory. It represents the lifetimes of systems or components. For two 
component systems, the components are not necessarily independent. In such 
situation, it is relevant considering bivariate distribution for the component 
lifetimes. In the literature, there are different models of bivariate exponential 
distributions, see [6]. One of these models is the Friday and Patil bivariate 
exponential distribution [5], which is interpreted as three different models 
with the names threshold, gestation and warm-up. For the threshold model, 
two components, say A and B with lifetimes 1X  and ,2X  respectively, are 

considered. There are two shocks, say 1S  and ,2S  described by Poisson 

processes, that can destroy the two components, respectively. These shocks 
are assumed to have varying intensity and the intensity is independent 
randomly of the time at which the shocks occur. The intensity of 1S  is 

always sufficient to destroy A and the intensity of 2S  is always sufficient to 

destroy B. For each component A or B, there is a fixed intensity threshold. If 
the intensity of a shock is below this threshold, then it could destroy its 
component only. If the intensity exceeds this threshold, then both 
components are destroyed simultaneously. The probability of each shock 
exceeding its threshold is ,1 0α−  ,10 0 ≤α<  see [5]. Examples of this 

model are two engine plane, person’s kidneys, eyes, ears or other paired 
organs. 

The joint density function of 1X  and ,2X  is 
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Friday and Patil [5] called this bivariate distribution BEE. Notice that the 
first two terms in (1.1) are densities with respect to two dimensional 
Lebesgue measure and the third term is a density with respect to one 
dimensional Lebesgue measure. Clearly, the joint density in (1.1) can be 
rewritten as 
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where 
( )

,/
321

0

i

i
i

−α−α+α

αα
=φ  provided that 

 ( ).2,1/
321 =α≠α+α − ii  (1.3) 

The joint survival function is 
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The joint survival function can be written as a mixture of an absolutely 
continuous function 
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and a singular survival function 
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 ( ) ( ) ( )2121 ,max
21, xx

s exxF α+α−=  (1.6) 

in the form 

 ( ) ( ) ( ) ( ) .0,,,1,, 2121021021 ≥α−+α= xxxxFxxFxxF sF  (1.7) 

The BEE distribution includes as special cases Freund [4], Marshall-
Olkin [7], Block-Basu [3], and Proschan-Sullo [11] bivariate models, see [5]. 
Despite the importance of the BEE distribution, few work, to our knowledge, 
has been written on its properties. Mokhlis [8] has discussed the reliability of 
stress-strength models with BEE distributions. Nadarajah and Gupta [10] 
obtained the distribution of some relations of 1X  and ,2X  when 1X  and 

2X  have the joint density in (1.1) in the special case when .10 =α  

In the present paper, we study the properties of the BEE distribution. In 
Section 2, we introduce the marginal densities and the cumulative function of 
the distribution. The correlation between 1X  and 2X  is also discussed. The 

conditional distributions are obtained and the regression equations are 
derived. In Section 3, we apply an intuitive approach for estimating the 
parameters of the distribution. The estimators obtained are the same as the 
maximum likelihood estimators in [8]. The properties of the estimators are 
also discussed. The estimators of the parameters of the Freund bivariate 
exponential distribution [4] are obtained as a special case. Moreover, we 
obtain estimates of the parameters of the Marshall-Olkin bivariate 
exponential distribution [7] by using relations between the parameters of the 
later and the BEE distribution. Finally, in Section 4, numerical illustration is 
performed to highlight the results obtained. 

2. Properties of the Distribution 

The BEE is the same as Freund’s distribution [4] with additional 
condition that the two components A and B may fail together with probability 

,1 0α−  ,10 0 ≤α<  and with probability 0α  that one of the components 

may fail before the other. 
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2.1. The cumulative function 

The joint cumulative distribution for BEE distributed rv’s ,1X  2X  is 
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 (2.1) 

where 1φ  and 2φ  are given in (1.3). 

2.2. The marginal densities 

Noticing that 1X  represents the lifetime of component A, the marginal 

density of 1X  can be derived arguing as follows: Component A fails before 

component B with probability ,
21

10
α+α
αα  fails simultaneously with component 

B with probability ,1 0α−  or fails after component B with probability 

.
21

20
α+α
αα  If A fails before B or simultaneously with B, the lifetime of A will 

be exponential with parameter ,21 α+α  while if it fails after B, then its 

lifetime will be the sum of two independent exponential random variables 

with parameters 21 α+α  and ./
1α  

Thus the marginal density function of 1X  is 
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which is equivalent to 
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where 2φ  is given by (1.3). 

Arguing in a similar manner, we have 
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which is equivalent to 
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where 1φ  is given by (1.3). 

We can see from equations (2.3) and (2.5) that the marginal densities of 

1X  and 2X  are mixtures of two exponential densities whenever 10 2 <φ<  

and ,10 1 <φ<  respectively. Otherwise, the marginal densities are weighted 

sums of exponential densities. 

The marginal density of 1X  corresponding to special cases of the 

parameters: 

Case 1. If ,21
/
11 α+α<α<α  then .1

2

/
121 <

α
α−α+α  Since 00 α<  

,1≤  0α  may take four different values. 

1. If 10 <α  and ,
2

/
121

0 α
α−α+α<α  then ,12 <φ  and the marginal 

density of 1X  will be a mixture of two exponential densities with parameters 

( )/
1α  and ( )21 α+α  and their coefficients are 2φ  and ( ),1 2φ−  respectively. 
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2. If ,10
2

/
121 ≤α<

α
α−α+α  then ,12 >φ  and the marginal density of 

1X  will be weighted sum of two exponential densities with parameters ( )/
1α  

and ( )21 α+α  and their coefficients are 2φ  and ( ),1 2φ−  respectively, where 

the first coefficient 2φ  is greater than unity. 

3. If 10 <α  and ,
2

/
121

0 α
α−α+α

=α  then 12 =φ  and the marginal 

density of 1X  will be exponential with parameter ( )./
1α  

Case 2. If ,/
121 α<α+α  then ( ) ,11 2 >φ−  and the marginal density of 

1X  is weighted sum of two exponential densities with parameters ( )/
1α  and 

( )21 α+α  and their coefficients are 2φ  and ( ),1 2φ−  respectively, where 

the second coefficient ( )21 φ−  is greater than unity. 

Case 3. If ,1
/
1 α<α  then ,10

121
2 <

α′−α+α
α

<  and ,10 2 <φ<  and 

the marginal density of 1X  is a mixture of two exponential densities with 

parameters ( )/
1α  and ( )21 α+α  and their coefficients are 2φ  and ( ),1 2φ−  

respectively. 

Case 4. If ,1
/
1 α=α  then the failure of component B does not affect 

component A, and the marginal density of 1X  is a mixture of two exponential 

densities with parameters ( )1α  and ( )21 α+α  and their coefficients are 0α  

and ( ),1 0α−  respectively. 

Case 5. When ,/
121 α=α+α  the joint density of 1X  and 2X  will be 
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and the marginal density of 1X  will be 
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Similarly, for the marginal density of ,2X  we have: 
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,10 ≤α  0α  may take different values as follows: 
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density of 2X  will be a mixture of two exponential densities with parameters 
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2α  and ( )21 α+α  and their coefficients are 1φ  and ( ),1 1φ−  respectively. 
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2X  is weighted sum of two exponential densities with parameters ( )/
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( )21 α+α  and their coefficients are 1φ  and ( ),1 1φ−  respectively, where the 

first coefficient 1φ  is greater than unity. 

3. If 10 <α  and ,
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α−α+α=α  then 11 =φ  and the marginal 

density of 2X  will be exponential distribution with parameter ( )./
2α  
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Case 2. If ,/
221 α<α+α  then ( )22 xf X  is a weighted sum of two 

exponential densities with parameters ( )/
2α  and ( )21 α+α  and their 

coefficients are 1φ  and ( ),1 1φ−  respectively, where the second coefficient 

( )11 φ−  is greater than unity. 

Case 3. If ,2
/
2 α<α  then ( )22 xf X  is a mixture of two exponential 

densities with parameters ( )/
2α  and ( )21 α+α  and their coefficients are 1φ  

and ( ),1 1φ−  respectively. 

Case 4. If ,2
/
2 α=α  then this means that the failure of component A 

does not affect component B. In this case, ( )22 xf X  is a mixture of two 

exponential densities with parameters ( )2α  and ( )21 α+α  and their 

coefficients are 0α  and ( ),1 0α−  respectively. 

Case 5. If ,/
221 α=α+α  then ( )22 xf X  is a mixture of an exponential 

density with parameter ( )21 α+α  and a gamma density with parameters 
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2.3. The correlation between 1X  and 2X  

The correlation coefficient between 1X  and 2X  is given by 
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For finding the range of this correlation coefficient, we argue as follows: 

Case 1. If ,00 →α  then .1→ρ  This means, the two components A and 

B always fail together. In this sense, they are in close proximity and are 
highly positively correlated. 
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Case 2. If 10 =α  and ,/
2

/
121 αα=αα  then ,0=ρ  in this case, 1X  and 

2X  are uncorrelated. On the other hand, if ,10 =α  /
11 α=α  and ,/

22 α=α  

then 1X  and 2X  are independent and hence .0=ρ  

Case 3. If ,10 0 ≤α<  α=α=α 21  and 0/
1 →α  and ,0/

2 →α  then 

( ) .4 0
0
α−
α−

=ρ  This corresponds to the case if either component fails, then 

the other component does not fail ever. In this case, ρ is a decreasing 

function in ,0α  and if ,10 =α  then .3
1−

=ρ  

Case 4. If ,10 0 ≤α<  ∞→α/
1  and ,/

2 ∞→α  then .1→ρ  This 

corresponds to the case where the two components cannot function if either 
component fails. 

From the above cases and excluding the non-realistic situations, when 
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2 ∞→α  we have 

.13
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2.4. The conditional distributions 

The conditional density of ,1X  given ,22 xX =  is given by 
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The regression for 1X  on 22 xX =  is given by 
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where ( )22 xf X  is given by (2.4). 

Similarly, the conditional density of ,2X  given 11 xX =  is 
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and the regression for 2X  on 11 xX =  is given by 
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where ( )11 xf X  is given by (2.2). 

( )12 | XXE  is calculated for different values of ,0α  iα  and ( ),2,1/ =α ii  

and are presented in Figures 2.1, 2.2 and 2.3. 

From Figures 2.1, 2.2 and 2.3, we see that the different Cases 1-4 are 
verified. 
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Figure 2.1. The regression of 2X  on ,11 xX =  when ,00 →α  ,1α  ,2α  /
1α  

and /
2α  take different values. 
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Figure 2.2. The regression of 2X  on ,11 xX =  when ,10 =α  ,1α  ,2α  /
1α  

and /
2α  take different values. 
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Figure 2.3. The regression of 2X  on ,11 xX =  when ,5.00 =α  ,1α  ,2α  /
1α  

and /
2α  take different values. 

3. Estimation of the Parameters 

Suppose that a random sample of size n is drawn from a population 
having the BEE distribution given by (1.1). Suppose that the A component 
fails first 1n  times and the B component fails first 2n  times and both 

components A and B fail simultaneously 3n  times, where ,0>in  .3,2,1=i  

Furthermore, let us write the sum of the lifetimes of the A components 

which failed first as ∑
=

1

1
1

n

i
ix  and the sum of the lifetimes of the corresponding 

E(
X 2

 | 
X 1

) 
E(

X 2
 | 

X 1
) 

X1

X1
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B components as ∑
=

1

1
2 ,

n

i
ix  the sum of the lifetimes of the B components which 

failed first as 
2

2
1

n

i
i

x
=
∑  and the sum of the lifetimes of the corresponding A 

components as 
2

1
1

,
n

i
i

x
=
∑  and the sum of the lifetimes of both A and B 

components which failed together as ∑
=

3

1
.

n

i
ix  The likelihood function will be 

( ) ( ) ( ) ( )( ) 321 210
/
120

/
210 1 nnnL α+αα−αααααα=  

( )
1 1 2

/ / /
1 2 2 1 2 2 1 1

1 1 1
exp

n n n

i i i
i i i

x x x
= = =

⎛
⎜× − α + α − α − α − α
⎜
⎝

∑ ∑ ∑  

( ) ( )
32

/
1 2 1 2 1 2

1 1
,

nn

i i
i i

x x
= =

⎞
⎟− α + α − α − α + α
⎟
⎠

∑ ∑  (3.1) 

where .21 iii xxx ==  

Mokhlis [8] obtained the maximum likelihood estimators of the 

parameters ,0α  iα  and ( ).2,1/ =α ii  Here we shall use another intuitive 

approach for obtaining the estimates of the parameters. We notice that: 

1. Since the ( )21,min XX  is exponential with parameter ( ),21 α+α  the 

maximum likelihood estimate of ( )21 α+α  is given by 

 ( )
( )

1 2

1 2
1

.

min ,
n

i i
i

n

x x
=

α + α =

∑
 (3.2) 

2. If the component B fails first 2n  times, then the residual lifetime of 

component A is ( ),21 XX −  which is distributed exponentially with parameter 
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,/
1α  and the maximum likelihood estimate of /

1α  is 

 

( )
2

/ 2
1

1 2
1

ˆ .
n

i i
i

n

x x
=

α =

−∑
 (3.3) 

3. If the component A fails first 1n  times, then the residual lifetime of 

component B is ,12 XX −  which is exponentially distributed with parameter 

,/
2α  and the maximum likelihood estimate of /

2α  is 

 

( )

.ˆ
1

1
12

1/
2

∑
=

−

=α n

i
ii xx

n  (3.4) 

4. The parameter 0α  represents the probability that either the component 

A fails before B or the component B fails before A, i.e., the two components 
do not fail together. Since ( )21 nn +  is the number of times that A and B do 

not fail together, the maximum likelihood estimate of 0α  is 

 ( ) .ˆ 21
0 n

nn +
=α  (3.5) 

Notice that ( )21 nn +  is a value of a binomial random variable with 

parameters ( )., 0αn  

5. The probability that the component A fails before B is ,
21

10 ⎟
⎠
⎞

⎜
⎝
⎛

α+α
αα  

and 1n  is the number of times the component A fails before B. Clearly, 1n  is 

a value of a binomial random variable with parameters ,,
21

10 ⎟
⎠
⎞

⎜
⎝
⎛

α+α
ααn  then 

the maximum likelihood estimate of 
21

10
α+α
αα  is 

0 1 1
1 2

.n
n

α α⎛ ⎞ =⎜ ⎟α + α⎝ ⎠
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Using the invariance property of maximum likelihood estimators, (3.2) 
and (3.5), we get 

 

( ) ( )
.

,min

ˆ

1
2121

1
1

∑
=

+

=α n

i
ii xxnn

nn  (3.6) 

6. Similarly, since the probability that the component B fails before A is 

( ) ,
21

20
α+α
αα  and 2n  is the number of times B fails before A, the maximum 

likelihood estimate of ( )21
20
α+α
αα  is 

0 2 2
1 2

.n
n

α α⎛ ⎞ =⎜ ⎟α + α⎝ ⎠
 

Hence 

 

( ) ( )
.

,min

ˆ

1
2121

2
2

∑
=

+

=α n

i
ii xxnn

nn
 (3.7) 

The estimates of the parameters of BEE in equations (3.3), (3.4), (3.5), 
(3.6) and (3.7) are the same as those obtained in [8]. 

3.1. Properties of the estimators 

Now we study the properties of the estimators obtained. The properties 
discussed are sufficiency, unbiasedness and consistency. 

1. Sufficiency 

The likelihood function in (3.1) can be rewritten as 

( ) ( ) ( ) ( )( ) 321 210
/
120

/
210 1 nnnL α+αα−αααααα=  

( ) ( )1 2 1 2
1

exp min ,
n

i i
i

x x
=

⎧⎪× − α + α⎨
⎪⎩

∑  

( ) ( )
1 2

/ /
2 2 1 1 1 2

1 1
.

n n

i i i i
i i

x x x x
= =

⎫⎪− α − − α − ⎬
⎪⎭

∑ ∑  (3.8) 
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We find that 

( ) ( ) ( )
1 2

1 2 3 1 2 2 1 1 2
1 1 1

, , , min , , ,
n nn

i i i i i i
i i i

n n n x x x x x x
= = =

⎧ ⎫⎪ ⎪− −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑  

are jointly sufficient. All estimators ,ˆ 0α  ,ˆ1α  ,ˆ 2α  /
1α̂  and /

2α̂  are functions 

of the jointly sufficient statistics. 

2. Unbiasedness and consistency 

a. The number of times where the component A fails before B or the 
component B fails before A is ( )21 nn +  which is a value of a random 

variable having a binomial distribution with parameters ( ),, 0αn  then 

 ( ) ,ˆ 00 α=αE   and  ( ) ( ) .1ˆ 00
0 nV α−α

=α  (3.9) 

Thus 0α̂  is unbiased and consistent. 

b. Notice that ( )
2

1 2
1

n

i i
i

x x
=

−∑  extends over the cases where the B 

component fails first. When B fails first, ( )ii xx 21 −  is a value assumed by a 

random variable having the exponential distribution with parameter ,/
1α  then 

( )
2

1 2
1

N

i i
i

M X X
=

= −∑  is a gamma distributed random variable with parameters 

( ),, /
12 αn  where 2N  is the r.v. representing the number of times B fails first. 

Thus /
1α̂  in (3.3) is the ratio of a value assumed by a binomial random 

variable with parameters ⎟
⎠
⎞

⎜
⎝
⎛

α+α
αα

21
20,n  to a value assumed by a random 

variable having a gamma distribution with parameters ( )., /
12 αn  

Approximate formulas for the expectation and the variance of /
1α̂  are 

given, respectively, by 
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( ) ( )
( )

( )
( )

( ) ( )
( )

,,covˆ
3
2

2
222/

1
ME

MVNE
ME

MN
ME
NE

M
NEE +−⎟

⎠
⎞

⎜
⎝
⎛=α   (3.10) 

( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎟

⎠
⎞

⎜
⎝
⎛α MENE

MN
ME

MV
NE

NV
ME
NEV

2
2

2
2

2
2

2
2/

1
,cov2ˆ   (3.11) 

(see [9, p. 181]). 

Noticing that 

( ) ( )( )2NMEEME |=  

and 

( ) ( )( ) ( )( ),22 NMEVNMVEMV |+|=  

we have 

( )
( )

,
21

/
1

20
α+αα

αα
=

nME  (3.12) 

( )
( ) ( )

.2
21

20

21
2/

1

20 ⎟
⎠
⎞

⎜
⎝
⎛

α+α
αα

−
α+αα

αα
=

nMV  (3.13) 

Also, 

 ( ) .
21

20
2 α+α

αα
=

nNE  (3.14) 

Substituting with (3.12), (3.13) and (3.14) in (3.10) and (3.11), we get, 
respectively, 

( ) ( )
( )

( )( ) ,2,covˆ
20

2021
/
1

2
2/

1
/
1 αα

αα−α+αα
+−αα nME

MNE   (3.15) 

( ) ( ) ( ) ( )
( ) ( ) .,cov223ˆ

2
2

20
20212/

1
/
1 ⎥⎦

⎤
⎢⎣
⎡ −

αα
αα−α+α

αα MENE
MN

nV   (3.16) 

Since 

( ) ( ) ( ),,cov 22 MVNVMN ≤  
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we have 

( )
( )

( )( ) ( )( )
20

20210211
2

2 21,cov
αα

αα−α+αα−α+αα′
≤ nME

MN  

and 

( )
( ) ( )

( )( ) ( )( ) .21,cov
20

2021021
2

2
αα

αα−α+αα−α+α
≤ nMENE

MN  

Thus, 

 ( )
( )

0,covlim 2
2 =

∞→ ME
MN

n
 (3.17) 

and 

 ( )
( ) ( ) .0,covlim

2
2 =

∞→ MENE
MN

n
 (3.18) 

Taking the limit of both sides of equations (3.15) and (3.16) as ,∞→n  

and using equations (3.17) and (3.18), we see that /
1α̂  is asymptotically 

unbiased and consistent. 

c. Similarly, /
2α̂  in (3.4) is the ratio of a value assumed by a binomial 

random variable with parameters ⎟
⎠
⎞

⎜
⎝
⎛

α+α
αα

21
10,n  to a value assumed by a 

random variable having a gamma distribution with parameters ( )., /
21 αn  So, 

we can show that /
2α̂  is asymptotically unbiased and consistent. 

d. From equation (3.6), we see that ( ) ,ˆ 1 ⎟
⎠
⎞⎜

⎝
⎛=α U

nREE  where =U  

( )∑
=

n

i
ii XX

1
21 ,min  which is gamma distributed with parameters ( )21, α+αn  

and ,1
X
NR =  with 1N  is a binomial random variable with parameters 
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,,
21

10 ⎟
⎠
⎞

⎜
⎝
⎛

α+α
ααn  and X is a binomial random variable with parameters 

( )., 0αn  

Moreover, R and U are independent. 

So, 

 ( ) ( ) ( )REn
nE 211 1

ˆ α+α
−

=α  (3.19) 

and 

 ( ) ( ) ( )( ) ( )
( )

.1ˆ
2

2
211 ⎥

⎦

⎤
⎢
⎣

⎡
+α+αα nRE

RVREV   (3.20) 

An approximation of ( )RE  is given by 

( ) ( )
( )

( )
( )210

01
2

1
21

1 1,cov
α+αα

α−α
+−

α+α
α

nXE
XNRE   

and 

( )
( )

( )( ) ( )
( ) .11,cov

210
00121

2
1

α+αα
α−α−α+αα

≤ nXE
XN  

So we have 

( ) .lim
21

1
α+α

α
=

∞→
RE

n
 

The variance of R is given approximately by 

( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎟

⎠
⎞

⎜
⎝
⎛

XENE
XN

XE
XV

NE
NV

XE
NERV

1
1

2
1

2
1

2
1 ,cov2

  

(see [9, p. 181]). 

So, 

( ) ( )( ) ( )
( ) ( ) ,,cov212

1
1

10
012

2

21
1

⎥⎦
⎤

⎢⎣
⎡ −

αα
α−α+α

⎟
⎠
⎞

⎜
⎝
⎛

α+α
α

XENE
XN

nRV   
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where 

( )
( ) ( )

( )( ) ( ) .11,cov
10

00121
1

1
αα

α−α−α+αα
≤ nXENE

XN
 

Thus 
( ) .0lim =

∞→
RV

n
 

Taking the limit of both sides of equations (3.19) and (3.20), as ,∞→n  

we see that 1α̂  is asymptotically unbiased and consistent. 

e. Similarly, ( ) ,ˆ 2 ⎟
⎠
⎞⎜

⎝
⎛=α U

nQEE  where ,2
X

NQ =  and 2N  is a binomial 

random variable with parameters ,,
21

20 ⎟
⎠
⎞

⎜
⎝
⎛

α+α
ααn  and Q and U are 

independent. So, 2α̂  is asymptotically unbiased and consistent. 

Notice that the estimates in (3.3)-(3.7) are derived by assuming that all 
,0>in  .3,2,1=i  Now, we shall discuss the cases when one or more of the 

in ’s are zeros. 

  (i) If ,01 =n  then this means that the component A never fails first, and 

there will be no need for the parameter ./
2α  Also, it is reasonable to set 

.0ˆ 1 =α  

In this case, the estimates will be 

( )∑
=

=α=α=α=α n

i
ii xx

n
n
n

1
21

2
2

0
/
21

,min

ˆ,ˆ,0ˆˆ  and 

( )
2

/ 2
1

1 2
1

ˆ .
n

i i
i

n

x x
=

α =

−∑
 

 (ii) If ,02 =n  then this means that the component B never fails first and 

in this case, 

( )∑
=

=α=α=α=α n

i
ii xx

n
n
n

1
21

1
1

02
/
1

,min

ˆ,ˆ,0ˆˆ  and 

( )

.ˆ
1

1
12

1/
2

∑
=

−

=α n

i
ii xx

n  
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(iii) If ,03 =n  then this means that the two components A and B do not 

fail together. Therefore, 

( )
,

,min

ˆ,1ˆ

1
21

1
10

∑
=

=α=α n

i
ii xx

n    

( )
,

,min

ˆ

1
21

2
2

∑
=

=α n

i
ii xx

n  

( )
2

/ 2
1

1 2
1

ˆ
n

i i
i

n

x x
=

α =

−∑
  and  

( )

.ˆ
1

1
12

1/
2

∑
=

−

=α n

i
ii xx

n  

(iv) If ,031 == nn  then this means that the component B always fails 

before component A. In this case nn =2  and 

,0ˆˆ /
21 =α=α  ,1ˆ 0 =α  

∑
=

=α n

i
ix

n

1
2

2ˆ  and 

( )
.ˆ

1
21

/
1

∑
=

−

=α n

i
ii xx

n  

(v) If ,032 == nn  then this means that the component A always fails 

before B. So, we have nn =1  and 

,0ˆˆ /
12 =α=α  ,1ˆ 0 =α  

∑
=

=α n

i
ix

n

1
1

1ˆ  and 

( )
.ˆ

1
12

/
2

∑
=

−

=α n

i
ii xx

n  

(vi) If ,021 == nn  then this means that the two components A and B 

always fail together. So it is reasonable to let ,0ˆ 0 =α  i.e., .00 =α  However, 

0α  is defined such that ,10 0 ≤α<  so this case could not happen. 

Now, we shall obtain estimators of the parameters of Freund [4], and 
Marshall-Olkin [7] bivariate exponential distributions as special cases. 

(a) Freund parameters 

When ,10 =α  the distribution in (1.1) is reduced to that of Freund [4], 
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and the estimators in case (iii), when 03 =n  are exactly the same as those 

obtained by Freund [4]. 

(b) Marshall-Olkin parameters 

The joint survival function of the Marshall-Olkin [7] bivariate 
exponential distribution is 

( ) ( ) ,0,,,0,,, 21021
,max

21 2102211 >λλλ>= λ−λ−λ− xxexxF xxxx
M  

which can be written as a mixture of absolutely continuous survival function 

( ) ( ) ( ),, 212102211 ,max
21

0,max

21
21

xxxxxx
aM eexxF λ−λ−λ−λ−

λ+λ
λ

−
λ+λ

λ=  

where ,210 λ+λ+λ=λ  and a singular survival function 

( ) ( )21,max
21, xx

sM exxF λ−=  

in the form 

 ( ) {( ) ( ) ( )}210212121 ,,1, xxFxxFxxF sMaMM λ+λ+λ
λ

=  (3.21) 

(see [6, p. 364]). 

It is known that there are no exact solutions for the maximum likelihood 
estimators of the parameters ,0λ  1λ  and .2λ  However, in the literature, 

there are various approaches for estimating these parameters, for example, 
estimators obtained by Arnold [1], Proschan-Sullo [11], Bemis et al. [2] (see 
[6]). 

Here, we shall obtain estimators of ,0λ  1λ  and 2λ  by using the relations 

between these parameters and the parameters of the BEE. 

Friday and Patil [5] showed that the Marshall-Olkin distribution in [7] is 

obtained by replacing ,0α  iα  and ( )2,1/ =α ii  in (1.7) by ( ) ,1
21

−λλ+λ  

( ( ) )1
2101 −λ+λλ+λi  and ,0λ+λi  respectively. 
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Writing ,0λ  1λ  and 2λ  in terms of ,0α  1α  and ,2α  we have 

( ) ( ),1 0210 α−α+α=λ  

( ).2,10 =αα=λ iii  

Using the invariance property of the maximum likelihood estimators and 
the maximum likelihood estimators of ,0α  1α  and ,2α  given by equations 

(3.5), (3.6) and (3.7), respectively, we get 

( )
,

,min

ˆ

1
21

3
0

∑
=

=λ n

i
ii xx

n  (3.22) 

( )
( ).2,1

,min

ˆ

1
21

==λ

∑
=

i

xx

n
n

i
ii

i
i  (3.23) 

It can be easily shown the estimators in (3.22) and (3.23) are consistent. 

Notice that ,ˆ
0λ  1λ̂  and 2λ̂  in (3.22) and (3.23) are the same as those 

obtained by Arnold [1] except for the constant ,1
n

n −  which appears in [1]. 

4. Numerical Illustration 

Two hundred random samples of size 30 are generated from the BEE 
distribution in (1.1) by applying Theorems (3.1) and (3.2) in [5], for different 

values of the parameters ,0α  ,1α  ,2α  /
1α  and ./

2α  The estimates of the 

parameters ,0α  ,1α  ,2α  /
1α  and /

2α  are computed by using equations (3.5), 

(3.6), (3.7), (3.3) and (3.4), respectively. The average of each estimate is 
calculated by computing the mean of the two hundred replicates. The 
estimates of the bias and mean squared error (MSE) of each estimator are 
also calculated. The estimate of the bias is calculated by computing the 
difference between the average estimate and the true value of the parameter, 
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while the estimate of the MSE is calculated by computing the mean of the 
squares of the differences of the two hundred replicates of the estimates from 
the true value of the parameters. 

The average estimates, estimates of bias, estimates of MSE of ,ˆ 0α  ,ˆ1α  

,ˆ 2α  /
1α̂  and /

2α̂  are given in Tables 4.1-4.3. We have fixed 0α̂  and changed 

the values of the other parameters, in order to cover the different cases 
considered in Section 2. 

Table 4.1. Friday-Patil distribution: estimate, bias and MSE (when 21 α+α  

)/
2

/
1 α+α>  

 True Avg. estimate Bias MSE 

0α  0.5 0.500833333 0.000833333 4.9E-05 

1α  0.3 0.298013899 –0.001986101 0.000139076 

2α  0.29 0.296488321 0.006488321 0.000246566 
/
1α  0.1 0.112779415 0.012779415 0.000303213 
/
2α  0.2 0.23763206 0.03763206 0.002859907 

Table 4.2. Friday-Patil distribution: estimate, bias and MSE (when 21 α+α  

)/
2

/
1 α+α=  

 True Avg. estimate Bias MSE 

0α  0.5 0.504 0.004 4.69444E-06 

1α  0.1 0.106190196 0.006190196 9.75456E-05 

2α  0.2 0.204582529 0.004582529 1.46205E-05 
/
1α  0.14 0.151089483 0.011089483 0.000623954 
/
2α  0.16 0.191004754 0.031004754 0.001997982 
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Table 4.3. Friday-Patil distribution: estimate, bias and MSE (when 21 α+α  

)/
2

/
1 α+α<  

 True Avg. estimate Bias MSE 

0α  0.5 0.506 0.006 4.9E-05 

1α  0.1 0.103321806 0.003321806 8.51114E-07 

2α  0.2 0.199941412 –5.85878E-05 6.90681E-05 
/
1α  0.3 0.344685505 0.044685505 0.001468237 
/
2α  0.23 0.323476795 0.093476795 0.013828941 

From Tables 4.1-4.3, we see that the performance of the estimators is 
good. 

In order to investigate the performance of the estimates of the Marshall- 
Olkin parameters obtained in (3.22) and (3.23), 200 random samples of size 
30 are generated from the Marshall-Olkin distribution in [7] for different 
values of the parameters, the estimates in (3.22) and (3.23) are calculated. 
Also the well-known estimates proposed by Arnold [1], Proschan-Sullo [11], 
and Bemis et al. [2] are calculated. The estimates proposed by Arnold [1] are 
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where 

 ∑
=
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n

j
iji iXS

1
2,1,  (4.1) 

and the estimates proposed by Bemis et al. [2], are 
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=λ  where iS  is given by (4.1). The average 

estimates, estimates of the bias and the MSE of the parameters ,ˆ
0λ  1λ̂  and 

2λ̂  are calculated using the four approaches mentioned above, and are given 

in Tables 4.4(a, b) and 4.5(a, b). 

Table 4.4(a). Marshall-Olkin distribution: estimates and bias (when =λ0  

,225.0  4.01 =λ  and )8.02 =λ  

Parameter True I Bias II Bias III Bias IV Bias 

0λ  0.225 0.224082 0.00092 0.21661 0.00839 0.22322 0.00178 0.22109 0.00391 

1λ  0.4 0.429365 0.02936 0.41505 0.01505 0.42847 0.02847 0.43071 0.03071 

2λ  0.8 0.81586  0.015858 0.78866 0.01134 1.403173 0.60317 0.81535 0.01535 

Table 4.4(b). Marshall-Olkin distribution: MSE (when ,225.00 =λ  4.01 =λ  

and )8.02 =λ  

Parameter True I II III IV 

0λ  0.225 0.01307 0.01212 0.00896 0.01037 

1λ  0.4 0.01599 0.01482 0.01481 0.01417 

2λ  0.8 0.03889 0.03601 0.03601 0.0297 
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Table 4.5(a). Marshall-Olkin distribution: estimates and bias (when ,1.00 =λ  

04.01 =λ  and )2.02 =λ  

Parameter True I Bias II Bias III Bias IV Bias 

0λ  0.1 0.10115 0.00114 0.09777 0.00222 0.10222 0.00222 0.10126 0.00126 

1λ  0.04 0.03953 0.00047 0.03821 0.00179 0.04002 1.703E-05 0.04071 0.0007 

2λ  0.2 0.20006 5.6E-05 0.19339 0.00661 0.46528 0.39445 0.20127 0.00123 

Table 4.5(b). Marshall-Olkin distribution: MSE (when ,1.00 =λ  04.01 =λ  

and )2.02 =λ  

Parameter True I II III IV 

0λ  0.1 0.00134 0.00126 0.00078 0.0001 

1λ  0.04 0.00061 0.00057 0.00056 0.00055 

2λ  0.2 0.00358 0.00323 0.00323 0.00345 

In Tables 4.4(a, b) and 4.5(a, b), I stands for estimates calculated using 
equations (3.22) and (3.23), II stands for estimates calculated using Arnold 
[1] estimators, III stands for estimates calculated using Proshan-Sullo [11] 
estimators, and IV stands for estimates calculated using Bemis et al. [2] 
estimators. 

From Tables 4.4(a, b) and 4.5(a, b), we see that the proposed estimates in 
(3.22) and (3.23) perform well. 
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