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Abstract 

Our purpose of this paper is to show how the asymptotic method 
developed in Cotton et al. [2] and Fouque et al. [7] in the context of 
the Black-Scholes theory is applied to interest rates. We do this by 
considering simple models of short rates (such as the Vasicek model) 
and computing corrections that come from a fast mean-reverting 
stochastic volatility given by a nonnegative function of a fractional 
Ornstein-Uhlenbeck (fOU) process. Here, fOU process is driven by a 
fractional Brownian motion (fBm) with arbitrary Hurst parameter 

( ).1,0∈H  What is important for the asymptotic results we present is 

that fOU process is characterized by α, the rate of mean-reversion, and 
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has a unique invariant probability distribution ( ),, 2
HmN ν  that is, the 

normal distribution with mean m and variance .2
Hν  

The asymptotic approximations we present are in the limit ∞→α  

with 2
Hν  fixed, which we refer to as fast mean-reversion. We assume 

that volatility shocks and interest rate shocks are independent. 

Then we obtain the corrected price for zero-coupon bond so that it is 
expanded around the usual Vasicek one-factor bond pricing function 
with the averaged parameters related to stochastic volatility model 
parameters. 

Since for 21≠H  fractional Brownian motion is neither a Markov 

process, nor a semimartingale, usual stochastic calculus cannot be 
applied to our model. Therefore, instead of the probabilistic 
approaches such as the use of conditional expectation, standard Ito 
formula and the Feynman-Kac representation, our research is made by 
the fractional integration theory which is due to Hu [10] and partial 
differential equation approach. 

More precisely, we derive bond pricing partial differential equation by 
fractional Ito formula, introduce fast-scale to model fast mean-
reversion in stochastic volatility, and hence obtain the expression for 
corrected price for zero-coupon bond so that it is characterized by the 
averaged parameters which are computed as the averaged values with 
respect to the invariant probability distribution of the fOU process. 

Here, asymptotics in the fast-scale is made by singular perturbation 
expansion, analogous to these in Fouque et al. [5-7] and Narita [14-
16]. This again leads to a leading order term which is the usual 
Vasicek one-factor bond pricing function with the corrected mean 
level related to fOU process. Our theorem is an extension of the results 
in Cotton et al. [2] and Fouque et al. [7] to a fractional Vasicek model 
in the case that fluctuations in price and volatility have zero 
correlation. 

1. Introduction 

A one-dimensional fractional Brownian motion (fBm) with Hurst 
parameter ( )1,0∈H  is a Gaussian stochastic process with ( ) 00 =HB  such 
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that 

( )[ ] ( ) ( )[ ] { }HHH
HHH ststsBtBEtBE 222

2
1,0 −−+==  

for all ., R∈ts  Here, [ ]⋅E  denotes the mathematical expectation with respect 

to the probability law Hμ  for .HB  

The fBm HB  is self-similar with self-similar index H, that is, for every 

,0>c  the process ( ){ }R∈tctBH ;  is identical in distribution to { ( );tBc H
H  

}.R∈t  Since for ,21≠H  fBm HB  is neither a Markov process, nor a 

semimartingale, usual stochastic calculus cannot be applied to the field of the 
network traffic analysis and mathematical finance. If ,21=H  then HB  is 

one-dimensional standard Brownian motion (sBm). 

In our Vasicek model, the short rate is modeled as a mean-reverting 
Gaussian stochastic process ( )( ) 0≥ttr  on a probability space ( )P,, FΩ  

equipped with an increasing filtration ( ) .0≥ttF  Under the subjective 

probability measure ,P  this process is influenced by a stochastic volatility 

( )tσ  given by a nonnegative function ( )( )tYf  of a fractional Ornstein-

Uhlenbeck (fOU) process ( )( ) 0≥ttY  as follows: 

( ) ( )( ) ( )( ) ( ),ˆ tdWtYfdttrratdr +−= ∞  (1.1) 

( ) ( )( ) ( )tdBdttYmtdY Hβ+−α=  (1.2) 

with a family { }βα∞ ,,,,ˆ mra  of positive constants, where f is a positive 

suitably regular function on .R  Here, ( )( )tW  is a one-dimensional sBm, and 

( )( )tBH  is a one-dimensional fBm with Hurst parameter ( ).1,0∈H  ( )( )tY  

is called the volatility-driving process, and the factor ( )( ),tσ  where ( ) =σ :t  

( )( )tYf  is called the stochastic volatility process. 

Assumption 1.1. We assume the following: 

  (i) Throughout this paper, let the Hurst parameter H be arbitrary in 
( )1,0  and fixed. 
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 (ii) ( )( )tW  and ( )( )tBH  are independent. 

(iii) RR →:f  is smooth and bounded above and below: 

∞<≤≤< 210 cfc  

for constants 01 >c  and ,02 >c  and f has bounded derivatives. 

The process ( )( )tY  is mean-reverting fOU process; α measures the 

characteristic speed of mean-reversion of ( )( ).tY  

In (1.2), ( )( )tY  is a process with a unique invariant probability 

distribution, modeling volatility mean-reversion. In this case, the invariant 

probability distribution is the normal distribution ( )2, HmN ν  with mean m 

and variance ,2
Hν  where we define 

( ),21 2
22 HH

H
H Γ⎟

⎠
⎞⎜

⎝
⎛
α

β=ν  

and ( )⋅Γ  is the Gamma function, i.e., ( ) ∫
∞ −ξ− ξξ=Γ
0

1 .dex x  

Remark 1.2 (Fast-scale volatility factor driven by fBm). The asymptotic 

approximations we present are in the limit ∞→α  with 2
Hν  fixed, which we 

refer to fast mean-reversion. Namely, we shall consider the fOU process 
( )( )tY  given by (1.2) under the scaling 

ε=α 1   and  ( ) .10;1 ε<ε=β HO  

Then, for ε small enough, we shall derive a partial differential equation 
(PDE) satisfied by the no-arbitrage bond price (Lemma 3.1 in Section 3 and 
Lemma 4.4 in Section 4). Further, appealing to singular perturbation method, 
we shall obtain asymptotics of correction for bond prices such that it is 
expanded around the usual Vasicek one-factor bond pricing function with the 
averaged parameters related to stochastic volatility model parameters 
(Theorems 4.6 and 4.7 in Section 4). 
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Remark 1.3 (Fast-scale volatility factor driven by sBm). Consider the 
one-factor Vasicek model where the short rate process ( )( )tr  is influenced by 

the stochastic volatility ( ) ( )( )tYft =σ :  as follows: 

( ) ( )( ) ( ) ( ),ˆ tdWtdttrratdr σ+−= ∞  

( ) ( )( ) ( ( ) ( ))tdZtdWddttYmtdY 21 ρ−+ρβ+−α=  

with a family { }βα∞ ,,,,ˆ mra  of positive constants. Here, ( )( )tW  and ( )( )tZ  

independent standard Brownian motions (sBms). The parameter ( )1,1−∈ρ  

allows a correlation between the sBm ( )( )tW  driving the short rate and its 

volatility. In this case, ( )( )tY  has the long-run distribution which is the 

normal distribution ( )2, νmN  with mean m and variance ,2ν  where we 

define ( ).222 αβ=ν  Then, by singular perturbation method, Cotton et al. 

[2] and Fouque et al. [7] studied asymptotic analysis and obtained corrections 
for bond prices and bond option prices under the scaling 

( ) ,2,1 εν=βε=α  

where 10 ε<  and ( )1O=ν  (fixed). Their result is summarized as 

Theorem 2.1 in the following Section 2. 

As follows from Theorem 2.1, the generality of the class of models is in 
not having to specify a function f; the features of this function that are needed 
for the theory are captured by group parameters derived in the asymptotics 
and easily calibrated from data. Such group parameters will be extended to 
these for the case of the fractional Vasicek model (Theorems 4.6 and 4.7 in 
Section 4). 

In the present paper, we investigate a bond pricing problem by the 
singular perturbation method as in Fouque et al. [5-7] and Narita [14-16]. 

In order to proceed to asymptotics of corrected price, we shall apply 
fractional Ito formula in Appendices B and C to the total value of the 
portfolio and then derive pricing partial differential equation (pricing PDE). 
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Our stochastic integral is in the sense of Hu [10], where stochastic 
integration theory is developed for algebraically integrable integrands by 
Wiener chaos expansions; a brief comparison among several definitions of 
stochastic integrals is introduced in Appendix A. 

2. Stochastic Volatility Vasicek Models 

For a clear understanding of the comparison between the fBm model and 
the sBm model, we first describe the simple one-factor Vasicek model 
(Vasicek [26]), introduce the two-factor Vasicek model (the stochastic 
volatility Vasicek model) and hence review how bonds are priced under these 
models in the sBm environment. We quote the following from Cotton et al. 
[2] and Fouque et al. [7, Chapter 11]. 

In the Vasicek model, the short rate is modeled as a mean-reverting 
Gaussian stochastic process ( )( ) 0≥ttr  on a probability space ( )P,, FΩ  

equipped with a filtration ( ) .0≥ttF  Under the real-world probability measure 

,P  it satisfies the linear stochastic differential equation (SDE): 

 ( ) ( )( ) ( )tWddttrratrd σ+−= ∞ˆ  (2.1) 

with constants ,0ˆ >a  0>∞r  and ,0>σ  where ( ( )) 0≥ttW  is a standard          

P -Brownian motion. Here, σ  is its constant volatility, â  is the rate of 
mean-reversion and ∞r  is the long-run mean. 

Under an equivalent martingale (pricing) measure ,�P  it also follows a 
linear SDE: 

 ( ) ( ( )) ( ),ˆ tdWdttrratrd �� σ+−=  (2.2) 

where ( ( )) 0≥ttW �  is a standard �P -Brownian motion, if we assume that 

market price of interest rate risk, denoted by λ, to be a constant. It is 

included in ( ) .ârr σλ−= ∞
�  In other words, in the risk-neutral world ,�P  

the short rate process is an Ornstein-Uhlenbeck (OU) process fluctuating 

around its mean level �r  with a rate of mean-reversion .â  
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The no-arbitrage price at time t of a zero-coupon bond maturing at time 
T, denoted by ( ),, TtB  is given by 

 ( )
( )

( )( ),;,, TtrtPeETt t
dssrT

t =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∫− FB �  (2.3) 

where �E  denotes the mathematical expectation with respect to ,�P  and the 

bond pricing function ( )TxtP ;,  satisfies the partial differential equation 

(PDE) 

 ( ) 0ˆ
2
1

2

2
2 =−

∂
∂−+

∂

∂σ+
∂
∂ Pxx

Pxra
x
P

t
P �  (2.4) 

with the terminal condition ( ) .1;, =TxTP  

The solution is 

 ( ) ( ) ( ) ,;, xtTBetTATxtP −−−=  (2.5) 

where A and B satisfy the system of ordinary differential equations 

,01ˆ =−+′ BaB  (2.6) 

0ˆ
2
1 22 =−σ+

′
− BraBA

A �  (2.7) 

with ( ) 10 =A  and ( ) .00 =B  This gives explicitly 

( ) ,ˆ
1 ˆ

a
eB

aτ−−=τ  (2.8) 

( ) ( ) ,1
ˆ4ˆ

1exp 2ˆ
3

2ˆ

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−σ+−−τ−=τ τ−

−

∞∞
a

ra
e

aa
eRRA  (2.9) 

where 

 .
ˆ2ˆˆ2 2

2

2

2

aar
a

rR σ−σλ−=σ−= ∞∞
�  (2.10) 

This leads to an explicit formula for the zero-coupon bond price ( ) =Tt,B  

( )( ):;, TtrtP  
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( )Tt,B  

( ) ( )( )
( )

( ( ) ) .1
ˆ4ˆ

1exp 2ˆ
3

2ˆ

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−σ+−−−−−= −−

−−

∞∞
tTa

tTa
e

aa
etrRtTR  

 (2.11) 

We observe that the solution ( )tr  of the SDE (2.2) of the Vasicek type is 

given by 

 ( ) ( ) ( ) ( ) ( )∫ −−−− σ+−+=
t statata sdWeerertr
0

ˆˆˆ .10 ��  (2.12) 

Its integral is 

( ) ( ) ( ( ))
( )

∫
−−−−+−=

T

t

tTa

a
etrrtTrdssr ˆ

1 ˆ
��  

( )
( )∫

−−−σ+
T

t

sTa
sdWa

e ,ˆ
1 ˆ

�  (2.13) 

which, conditional on ( ),tr  is normally distributed with mean 

 ( ) ( ) ( ) ( ( ))
( )

a
etrrtTrtrdssrE

tTaT

t ˆ
1 ˆ −−−−+−=

⎭
⎬
⎫

⎩
⎨
⎧∫ ���  (2.14) 

and variance 

 ( ) ( )
( )

∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −σ=
⎭
⎬
⎫

⎩
⎨
⎧ −−T

t

sTaT

t
dsa

etrdssrV .ˆ
1

2ˆ
2�  (2.15) 

Thus, using the moment generating function of a normal random variable, we 
can compute the expectation in (2.3) as 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−= ∫ trdssrETt

T

t
exp, �B  

( ) ( ) ( ) ( ) .2
1exp ⎟

⎠
⎞

⎜
⎝
⎛

⎭
⎬
⎫

⎩
⎨
⎧+

⎭
⎬
⎫

⎩
⎨
⎧−= ∫∫ trdssrVtrdssrE

T

t

T

t
��  

Hence we derive (2.11) using explicit formulas for the conditional mean and 
variance. 
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Applying Ito’s formula to ( )Tt,B  given by (2.11), we deduce 

 ( ) ( ) ( )
( )

( ) .ˆ
1,,

ˆ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −σ+=
−−

tdWa
edttrTtTtd

tTa
�BB  (2.16) 

This shows that the bond price volatility is given by 

( ( ) ),1ˆ
ˆ tTaea

−−−σ  

which is independent of .�r  

The yield curve is defined by 

( ) ( )τ+
τ

−=τ tttR ,log1, B  

as a function of τ, and we deduce the explicit formula 

( ) ( )( ) ( ) ,1
ˆ4ˆ

1, 2ˆ
3

2ˆ
τ−

τ−

∞∞ −
τ

σ+
τ

−−−=τ a
a

e
aa

etrRRtR  

which shows that ( )τ,tR  is an affine function of the current rate ( )tr  and so 

justifies the name affine model of term structure. Observe that, for all t, 
( )τ,tR  converges to 

2

2

ˆ2a
rR σ−=∞
�  

as .∞→τ  

We next consider the case where the short rate process ( )( )tr  is 

influenced by the volatility driving process ( )( ),tY  under the real-world 

measure ,P  as follows: 

( ) ( )( ) ( )( ) ( ),ˆ tdWtYfdttrratdr +−= ∞  

( ) ( )( ) ( ) ( )( )tdZtdWddttYmtdY ρ′+ρβ+−α=  

with a family { }βα∞ ,,,,ˆ mra  of positive constants. Here, ( )( )tW  and ( )( )tZ  
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are independent sBms, and .1 2ρ−=ρ′  The parameter ρ with 1<ρ  

allows a correlation between the sBm ( )( )tW  driving the short rate and its 

volatility. The volatility function f is assumed to be nonnegative, smooth and 
bounded above and below, and also assumed to have bounded derivatives. In 
this case, ( )( )tY  has the invariant probability distribution which is the normal 

distribution ( )2, νmN  with mean m and variance ,2ν  where we define =ν2  

( ).22 αβ  

In the risk-neutral world ( ) ,, γλ�P  the model for the short rate ( )( )tr  

becomes 

( ) ( ( )( ) ( )( ) ( )( )) ( )( ) ( ),ˆ tdWtYfdttYftYtrratdr �+λ−−= ∞  (2.17) 

( ) ( ( )( ) ( )( ) ( )( )[ ])dttYtYtYmtdY γρ′+ρλβ−−α=  

 ( ( ) ( )),tdZtdW �� ρ′+ρβ+  (2.18) 

where ( ( ))tW �  and ( ( ))tZ �  are two independent standard ( )γλ,�P -Brownian 

motions. 

The market price of risk ( )( )tYλ  may depend on ( ),tY  but we assume 

that it does not depend on the short rate ( ).tr  Similarly, the market price of 

volatility risk ( )( )tYγ  associated with the second source of randomness 

( )( )tZ  may depend on ( )tY  or may simply be a constant. The risk premium 

processes ( )( )tYλ  and ( )( )tYγ  are assumed to be bounded; the functions 

( )yλ  and ( )yγ  are also assumed to have bounded derivatives. 

The no-arbitrage price ( )TtL ,  of a zero-coupon bond maturing at time T 

is given by 

 ( ) ( ) ( )
( ) ( ) ,,;,, ,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=== ∫−γλ ytYxtreETyxtP
T
t dssr�  (2.19) 

where the expectation ( )γλ,�E  is taken with respect to the distribution of 



Stochastic Volatility Corrections for Bond Pricing 11 

( ) ( )( )tYtr ,  solution of (2.17)-(2.18) starting at time t from ( )., yx  Then P is 

a classical solution of Feynman-Kac partial differential equation 

( ) ( ( ) ( ) ( )) xPx
Pyfyxra

x
Pyft

P −
∂
∂λ−−+

∂
∂+

∂
∂

∞ˆ
2
1

2

2
2  

( ) ( ) ( )( ) 02
1

2

2
2

2
=

∂
∂Λβ−−α+

∂

∂β+
∂∂

∂βρ+ y
Pyym

y
P

yx
Pyf  (2.20) 

with the terminal condition ( ) 1;,, =TyxTP  for every x and y, where we 

define 

( ) ( ) ( ),yyy γρ′+ρλ=Λ  

the combined market price of risk. 

In the model of fast mean-reverting stochastic volatility, the rate of 
mean-reversion α in OU process ( )( )tY  driving the volatility is assumed to 

be large. Hence, we need to find asymptotic behavior of ( )TyxtP ;,,  in the 

limit ∞→α  with αβ=ν 2  remaining constant. The asymptotic analysis 

is carried out as α1  becomes small. For this purpose, we make the following 

scaling: 

,1
α

=ε  (2.21) 

,2
ε

ν=β  (2.22) 

( ) ( ) ( ) ,,;,, xtTBeytTMTyxtP −−ε −=  (2.23) 

where B is given by (2.8). The function ( )ytM ,ε  is defined by ( ) =ε ytM ,  

( )ytM ,  with M as given in the following. In (2.23), we re-label M as εM  to 

stress the dependence on the small parameter ε, while we notice that 
( ) xtTBe −−  does not depend on ε: 
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( )
( ( ))

( ) ,:,
,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

== ∫ ytYeEytM
T
t dssYsc

 

where Y  is defined by 

( ) ( ( ( )) ( ( ))) ( ),, tWddttYtbtYmtYd β+β−−α=  

on some probability space, where W  is a standard Brownian motion, and we 
define 

( ) ( ) ( ) ( ),, tTByfyytb −ρ+Λ=  (2.24) 

( ) ( ) ( ) ( ) ( ( ) ( ))yfyratTBtTByfytc λ−−−−= ∞ˆ
2
1, 22  (2.25) 

with ( )τB  as given by (2.8), and with ( ),yf  ( ),yλ  ( )yγ  and ( ) ( )yy ρλ=Λ  

( )yγρ′+  as given in (2.20); the same assumptions on these functions are 

imposed as in the preceding. Then the coefficients of Y  are bounded with 
smooth derivatives, and hence M is the unique classical solution of the 
Feynman-Kac partial differential equation: 

( ) ( )( ) ( ) ,0,,2
1

2

2
2 =+

∂
∂β−−α+

∂

∂β+
∂
∂ Mytcy

Mytbym
y
M

t
M  (2.26) 

( ) .1, =yTM  (2.27) 

Moreover, we define MP  by 

 ( ) ( ) ( ) xtTB
M eytMTyxtP −−= ,;,,  (2.28) 

with B as defined in (2.8). Then it follows from direct calculation that MP       

is a classical solution of (2.20) with terminal condition 1, and hence 
( ) ( ),;,,;,, TyxtPTyxtPM =  that is, the bond price (2.19) is given by 

formula (2.28): 

 ( ) ( )
( ) ( ) ( ) ( ) .,,, xtTBdssr

eytMytYxtreE
T
t −−−γλ =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==∫�  (2.29) 

Hence, validity of formula (2.23) is verified. 
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Then, by singular perturbation method, Cotton et al. [2] and Fouque et al. 
[7] studied asymptotic analysis and obtained corrections for bond prices 
under the scaling (2.21) and (2.22) as the following theorem: 

Theorem 2.1. Introduce the expressions 

,22 f=σ  (2.30) 

,âfrr λ−= ∞
�  (2.31) 

,
23 φ′ρεν= fV  (2.32) 

,2
22 ψ′ενρ−φ′Λεν−= fV  (2.33) 

,21 ψ′Λεν=V  (2.34) 

where ( ) ( ) ( ),1 2 yyy γρ−+ρλ=Λ  and ⋅  denotes the averaging with 

respect to the density ( )yn  of the normal distribution ( ),, 2νmN  and φ and 

ψ are specific solutions of the Poisson equations 

,22
0 ff −=φL  (2.35) 

,0 ff λ−λ=ψL  (2.36) 

( ) .2

2
2

0 yym
y ∂

∂−+
∂
∂ν=L  (2.37) 

Here, writing ,
2

0 ⎟
⎠
⎞⎜

⎝
⎛

∂
∂

∂
∂ν= ynynL  under the boundedness assumptions on f 

and λ, we can choose φ and ψ such that their first derivatives given by 

( )
( ( ) ) ( ) ,1 22

2 ∫ ∞−
−

ν
=φ′

y
dzznfzf

yn
 

( )
( ( ) ( ) ) ( )∫ ∞−

λ−λ
ν

=ψ′
y

dzznfzfz
yn

,1
2  

are bounded and φ and ψ themselves are at most linearly growing in .y  
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Further, let 

( ) ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ τ−τ−τ−τ=τ 322

3
3 ˆ

3
1ˆ

2
1

ˆ
BaBaB

a
VD  

( ) ( ) ( )( ),ˆˆ
2
1

ˆ
12

2
2 τ−τ+⎟

⎠
⎞⎜

⎝
⎛ τ−τ−τ− Ba

VBaB
a
V  (2.38) 

( ) ( ) ( ) ( ) ,;,;,0
xtTBetTATxtPTxtP −−−==  (2.39) 

( ) ( ) ( ) ( ) ,;,~
1

xtTBetTAtTDTxtP −−−−=  (2.40) 

where A and B are defined in (2.9) and (2.8), respectively. We notice that 0P  

is exactly the Vasicek one-factor bond pricing function P  with the “averaged 

parameters” ( )σ,,ˆ �ra  related to the stochastic volatility parameters in 

(2.17)-(2.18) by (2.30)-(2.31); see (2.4)-(2.5). 

Let ( )TyxtP ;,,  be the model’s bond price given by (2.19). Then the 

corrected bond price is given by 

( ) ( ) ( )TxtPTxtPTyxtP ;,~;,;,, 10 +≈  

( ) ( )[ ] ( ) xtTBetTDtTA −−−+−= 1  as ,0→ε  (2.41) 

where D is a small factor of order .1 α=ε  The error in approximation 

(2.41) is of order .1 α=ε  Thus, for any fixed ,Tt <  ,, R∈yx  

 ( ) ( ( ) ( )) ( ).;,~;,;,, 10 ε=+− OTxtPTxtPTyxtP  (2.42) 

Theorems 4.6 and 4.7 in Section 4 will show an extension of group 
parameters { }123 ,, VVV  as given by (2.32)-(2.34) to the case of the fractional 

Vasicek model. 

3. Pricing PDE 

Let us consider the interest rate model as given by (1.1) and (1.2). Then 
we shall derive bond pricing PDE by heuristic method, using fractional Ito 
formula in fractional integration theory. For simplicity of notation, we 
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rewrite equations (1.1) and (1.2), omitting the variables t, as follows: 

( ) ,dWYfdtbdr r +=  (3.1) 

,HY dBdtbdY β+=  (3.2) 

where 

 ( ) ( ).:,ˆ: Ymbrrab Yr −α=−= ∞  (3.3) 

Then equations (3.1) and (3.2) can be simplified as follows: 

 
( )

.
0

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

β
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

HY

r

B

W
d

Yf
dt

b

b

Y

r
d  (3.4) 

By Assumption 1.1(ii), since the random sources W and HB  are independent, 

we can apply both standard Ito formula and fractional Ito formula to equation 
(3.4). 

Given a time-t short rate r and time-t random sources ( ),, HBW  the 

expected change and the variance of the change in interest rate and volatility 
factor are assumed to be functions of both r and Y. Let 

( )TYrtVV ;,,:=  

be the price of the T-maturity discount bond with unit par. Then, by standard 
Ito formula and fractional Ito formula (Theorem B.3 in Appendix B and 
Lemma C.2 in Appendix C), the stochastic process of the price of the 
discount bond is given by ,VdV  where 

( )
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂+

∂
∂+

∂
∂= dtYf

r
Vdrr

Vdtt
VdV 2

2

2

2
1  

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

∂
∂+

∂
∂+ Θ

α− dtgdt
de

Y
VdYY

V
tHt

t 22
2

2

,2
1  

( )
⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂+

∂
∂+

∂
∂= Yf

r
Vbr

V
t
V

r
2

2

2

2
1  
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dtgdt
de

Y
VbY

V
tHt

t
Y

⎭
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡

∂
∂+

∂
∂+ Θ

α− 22
2

2

,2
1  

( ) .
⎭⎬
⎫

⎩⎨
⎧ β

∂
∂+

∂
∂+ HdBY

VdWYfr
V  (3.5) 

Here, 
tH ,Θ⋅  is the norm defined on the Hilbert space tH ,Θ  of integrands 

on [ ],,0 t  ,Tt ≤  associated with the induced transformation of representation 

for ( )tBH  (see Remarks B.1 and B.2 and Lemma C.2), and 

( ) [ ]( ) ( ) ( ) .0,:,: ,0 Ttueuguguug u
tt ≤≤≤β=χ= α  

Namely, 

( ) ( ) ( ) ,;,,;,,;,, HYr dBTYrtdWTYrtdtTYrtV
dV σ+σ+μ=  (3.6) 

where 

( ) ( )⎢
⎣

⎡

∂

∂+
∂
∂+

∂
∂=μ 2

2
2

2
11;,,

r
VYfr

Vbt
V

VTYrt r  

,2
1

2

2
22

, ⎥
⎦

⎤

∂

∂
⎥⎦
⎤

⎢⎣
⎡+

∂
∂+ Θ

α−

Y
Vgdt

deY
Vb

tHt
t

Y  (3.7) 

( ) ( ) r
VYfVTYrtr ∂
∂=σ 1;,,    and   ( ) .1;,, Y

V
VTYrtY ∂

∂β=σ  (3.8) 

In the following, we shall take the same argument as that in Kwok [12, 
pp. 404-406]. 

Since the short rate is not a traded security, it cannot be used to hedge 
with bond, like the role of the underlying asset in an equity option. Instead 
we try to hedge bonds of different maturities. This is possible because the 
instantaneous returns on bonds of varying maturities are correlated as there 
exists the common underlying stochastic short rate that derives the bond 
prices. In fact, we construct a portfolio as follows: Since there are two 
stochastic factors in the model, we need bonds of three different maturities to 
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form a riskless hedging portfolio. Suppose we construct a portfolio which 
contains ,1Δ  ,2Δ  3Δ  units of bonds with maturity dates ,1T  ,2T  ,3T  

respectively. Let Π denote the value of the portfolio. As usual, we follow the 
Black-Scholes approach of keeping the portfolio composition to 
instantaneously “frozen”. By (3.6), the rate of return on the portfolio over 
time dt is given by 

( ) ( ) ( )[ ]dtTTTd 332211 μΔ+μΔ+μΔ=Π  

( ) ( ) ( )[ ]dWTTT rrr 332211 σΔ+σΔ+σΔ+  

( ) ( ) ( )[ ] .332211 HYYY dBTTT σΔ+σΔ+σΔ+  (3.9) 

Here, ( ) ( )ii TYrtT ;,,: μ=μ  denotes the drift rate of the bond with maturity 

,iT ,3,2,1=i  and similar notational interpretation for ( ) ( )irir TYrtT ;,,: σ=σ  

and ( ) ( ).;,,: iYiY TYrtT σ=σ  Suppose we choose ,1Δ  2Δ  and 3Δ  such 

that the coefficients of the stochastic terms in (3.9) are zero, thus making the 
portfolio value to be instantaneously riskless. This leads to two equations for 

,1Δ  2Δ  and 3Δ  such that 

( ) ( ) ( ) ,0332211 =σΔ+σΔ+σΔ TTT rrr  (3.10) 

( ) ( ) ( ) .0332211 =σΔ+σΔ+σΔ TTT YYY  (3.11) 

Since the portfolio is now instantaneously riskless, it must earn the riskless 
short rate to avoid arbitrage, that is, 

( ) ( ) ( )[ ]dtTTTd 332211 μΔ+μΔ+μΔ=Π  

[ ] .321 dtr Δ+Δ+Δ=  

Thus, 

 ( )[ ] ( )[ ] ( )[ ] .0332211 =−μΔ+−μΔ+−μΔ rTrTrT  (3.12) 

The simultaneous linear equations (3.10), (3.11) and (3.12) for ,1Δ  2Δ  and 

3Δ  can be represented by the matrix equation as follows: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

.

0

0

0

3

2

1

321

321

321

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

Δ

Δ

Δ

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−μ−μ−μ

σσσ

σσσ

rTrTrT

TTT

TTT

YYY

rrr

 (3.13) 

Nontrivial solutions for ,1Δ  2Δ  and 3Δ  exist when the third row in the 

above coefficient matrix can be expressed as some linear combination of the 
first and second rows. Since the maturity dates ,1T  2T  and 3T  are arbitrary, 

this leads to the following relation between the drift rate and volatility 
functions: 

 ( ) ( ) ( ),;,,;,,;,, TYrtTYrtrTYrt YYrr σλ+σλ=−μ  (3.14) 

where the multipliers rλ  and Yλ  are independent of maturity T; in general, 

rλ  and Yλ  should have dependence on r, Y and t. Here, rλ  and Yλ  are 

recognized as the respective market price of risk of the short rate r             
and volatility factor Y. Substituting the expressions for ( ),;,, TYrtμ  

( )TYrtr ;,,σ  and ( ),;,, TYrtYσ  as given by (3.7) and (3.8), into (3.14), 

we obtain the following governing equation for the bond price: 

( )⎢
⎣

⎡

∂

∂+
∂
∂+

∂
∂

2

2
2

2
11

r
VYfr

Vbt
V

V r  

r
Y
Vgdt

deY
Vb

tHt
t

Y −⎥
⎦

⎤

∂

∂
⎥⎦
⎤

⎢⎣
⎡+

∂
∂+ Θ

α−
2

2
22

,2
1  

( ) .11
Y
V

Vr
YYfV Yr ∂

∂βλ+
∂
∂λ=  

Namely, 

( )⎢
⎣

⎡

∂

∂+
∂
∂+

∂
∂

2

2
2

2
1

r
VYfr

Vbt
V

r  

rV
Y
Vgdt

deY
Vb

tHt
t

Y −⎥
⎦

⎤

∂
∂

⎥⎦
⎤

⎢⎣
⎡+

∂
∂+ Θ

α−
2

2
22

,2
1  

( ) .Y
V

r
VYf Yr ∂

∂βλ+
∂
∂λ=  
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Therefore, 

( )( ) ( ) 2

2
2

2
1

r
VYfr

VYfbt
V

rr
∂
∂+

∂
∂λ−+

∂
∂  

( ) rV
Y
Vgdt

deY
Vb

tHt
t

YY −
∂
∂

⎥⎦
⎤

⎢⎣
⎡+

∂
∂βλ−+ Θ

α−
2

2
22

,2
1  

.0=  

Combining this with Lemma C.2 in Appendix C, we obtain the following 
lemma: 

Lemma 3.1 (Bond pricing PDE). Suppose Assumption 1.1. Then the no-
arbitrage bond price satisfies the following equation: 

( )( ) ( ) 2

2
2

2
1

r
VYfr

VYfbt
V

rr
∂
∂+

∂
∂λ−+

∂
∂  

( ) rV
Y
Vgdt

deY
Vb

tHt
t

YY −
∂
∂

⎥⎦
⎤

⎢⎣
⎡+

∂
∂βλ−+ Θ

α−
2

2
22

,2
1  

0=  (3.15) 

with suitable scalars rλ  and ,Yλ  i.e., the market prices of risk with respect 

to r and Y. Here, 
tH ,Θ⋅  is the norm which is defined on the Hilbert space 

tH ,Θ  of integrands on [ ]t,0  associated with the induced transformation of 

representation for ( ),tBH  and 

( ) ( ),,ˆ Ymbrrab Yr −α=−= ∞  

( ) [ ]( ) ( ) ( ) .0,,,0 Ttsesgsgssg s
tt ≤≤≤β=χ= α  

Further, the expression for 

⎥⎦
⎤

⎢⎣
⎡

Θ
α− 22

, tHt
t gdt

de  

is obtained by applying (C.6) and (C.7) of Lemma C.2 in Appendix C, 
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according to 21>H  and ,210 << H  respectively. The terminal condition 

for V is given by ( ) .1;,, =TYrTV  

The market price of risk rλ  may depend on Y but we assume that it does 

not depend on the short rate r. Similarly, the market price of volatility risk 

Yλ  associated with the second source of randomness ( )tBH  may depend on 

Y or simply be a constant. More precisely, we assume the following: 

Assumption 3.2. In our model described by (1.1) and (1.2), we assume 
that the functions rλ  and ,Yλ  the market prices of risk with respect to r and 

Y, respectively, are expressed by 

( ),Yr λ=λ  (3.16) 

( ),2
1

Y
H

Y γα=λ
−

 (3.17) 

appealing to the Hurst parameter H. The risk premium processes ( )( )tYλ  and 

( )( )tYγ  are bounded: 

∞<′≤γλ≤′ 21 , cc  

for some constants 01 >′c  and ,02 >′c  and λ and γ have bounded derivatives. 

4. Asymptotics in the Fast-scale 

In order to model fast mean-reversion, we rescale α, rate of mean-
reversion, under the following assumption: 

Assumption 4.1. Let .10 << H  Consider ( )( )tY  as given by (1.2). 

Then we introduce the scaling as follows: 

  (i) The rate of mean-reversion α or its inverse, the typical correlation 
time of ( )( ),tY  is characterized by a small parameter 10 ε<  such that 

.1
α

=ε  
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(ii) Let 2
Hν  be the variance of the normal distribution ( )2, HmN ν  which 

is the invariant distribution of ( )( ),tY  as given by (C.4) of Lemma C.1 in 

Appendix C; 2
Hν  controls the long-run size of the volatility fluctuations. 

Then we assume this quantity remains fixed as we consider smaller and 
smaller values of ε such that 

( ) ( )
.1

2
1

2 H
H

H
H

HHHH ε⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

=⎟
⎠
⎞⎜

⎝
⎛
α⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

=β
−

 

Remark 4.2. Under Assumption 3.2, define ( )Yrtk ,,  and ( )Zrtk ,,~
 by 

( ) ( ),:,, YfbYrtk rr λ−=  

( ) .,,~
βλ−= YYbYrtk  

Then k and k~  are expressed as follows: 

( ) ( ) ( ) ( ),ˆ,, YfYrraYrtk λ−−= ∞  (4.1) 

( ) ( ) ( )βγα−−α=
−

YYmYrtk
H2

1
,,~  

( )
( )

( ).
2

11 Y
HH

Ym H γ⎟
⎠

⎞
⎜
⎝

⎛
Γ
ν

ε
−−

ε
=  (4.2) 

If ,21=H  then equations (4.1) and (4.2) coincide with the expression for 

the corrected drift term as given by Cotton et al. [2] and Fouque et al. [7], 
and with uncorrelated case where correlation coefficient 0=ρ  such that 

volatility shocks and short rate shocks are independent; see PDE (2.20) in 
Section 2. 

The following result is given in Narita [16, Lemmas 10.2 and 10.3]. 

Remark 4.3. Let .10 << H  Let ( )( )tY  be given by (1.2). Define the 

function tg  by 

( ) [ ]( ) ( ) ( ) .0,,,0 Ttueuguguug u
tt ≤≤≤β=χ= α  
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Let ,1 ε=α  where .10 ε<  Then, for ,0>t  

 ( )
⎭⎬
⎫

⎩⎨
⎧ +⎟

⎠
⎞⎜

⎝
⎛

ε
ν=⎥⎦

⎤
⎢⎣
⎡

Θ
α− 112 222

,
ogdt

de Ht
t

tH
 (4.3) 

as ;0→ε  see Lemma D.2 in Appendix D. 

Then, by Lemma 3.1 and Remarks 4.2 and 4.3, we obtain the following 
pricing PDE: 

Lemma 4.4 (Bond pricing PDE in terms of ε). Let .10 << H  Suppose 
that Assumptions 1.1, 3.2 and 4.1 hold. Denote the no-arbitrage price at          

time t of a zero-coupon bond with maturity time T by ,εtP  emphasizing 

dependence on the small parameter ε. Then { }TtPt ≤≤ε 0;  is a function of 

current price of short rate and volatility: 

( ) ( )( ).;,, TtYtrtPPt
εε =  

Moreover, for ε small enough, the function ( )TyxtP ;,,ε  when 

( ) ( ) ytYxtr == ,  

satisfies the following equation: 

( ) ( ( ) ( ) ( )) ⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂λ−−+

∂

∂+
∂
∂ ε

ε

∞

εε
xPx

Pyfyxra
x
Pyft

P ˆ
2
1

2

2
2  

( )
( )

( ) y
Py

HH
ym

y
P H

H ∂
∂

⎭
⎬
⎫

⎩
⎨
⎧

γ
ε
1⎟

⎠

⎞
⎜
⎝

⎛
Γ
ν−−

ε
+

∂
∂

⎟
⎠
⎞⎜

⎝
⎛

ε
ν+

εε

2
11

2

2
2  

0=  (4.4) 

with the terminal condition 

 ( ) .1;,, =ε TyxTP  (4.5) 

We shall find an asymptotic solution for PDE (4.4). For this purpose, we 
introduce the following operators: 
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( ) ,: 2

2
2

0 yym
y

H ∂
∂−+

∂
∂ν=L  (4.6) 

( )
( ) ,

2
:1 yy

HH
H

∂
∂γ⎟

⎠

⎞
⎜
⎝

⎛
Γ
ν−=L  (4.7) 

( ) ( ( ) ( ) ( )) .ˆ
2
1: 2

2
2

2 xxyfyxra
x

yft −
∂
∂λ−−+

∂

∂+
∂
∂= ∞L  (4.8) 

Remark 4.5. Introduce the usual one-factor Vasicek operator: 

 ( ) ( ) .ˆ
2
1:, 2

2
2 xxxra

xtrVasicek −
∂
∂−+

∂

∂σ+
∂
∂=σ ��L  (4.9) 

with deterministic parameters 0>σ  and ,0>�r  where â  measures the 

characteristic speed of mean-reversion of OU process ( )( );tr  see (2.1) and 

(2.2) in Section 2. Then 2L  is viewed as 

( )�LL rVasicek ,2 σ=  

with constant levels taken by 

( ) ( ) ( )( ) .ˆ, ayfyrryf λ−==σ ∞
�  

In Theorem 4.7 further, the y-dependent parameters are computed as the 
averaged values with respect to the density ( )yn  of the invariant probability 

distribution of ( )( ),tY  and hence main operator 2L  is obtained as follows: 

( )�LL rVasicek ,2 σ=  

with deterministic parameters 

( ) ( ) ( )( ) .ˆ, ayfyrryf λ−==σ ∞
�  

Here and hereafter, ( )yh  denotes the average of h on R  with respect to the 

density ( )yn  of the normal distribution ( )2, HmN ν  (see (C.3) of Lemma C.1 
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in Appendix C), the invariant distribution of fOU process ( )( ):tY  

 ( ) ( ) ,
2

exp
2

1
2

2

2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ν

−−
πν

=
HH

myyn  

 ( ) ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞− ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ν

−−
πν

=== .
2

exp
2

1:: 2

2

2
dymyyhdyynyhhyh

HH

 

PDE (4.4) is equivalent to the following singularly perturbed equation: 

 011
210 =⎟
⎠
⎞⎜

⎝
⎛ +

ε
+

ε
εPLLL  (4.10) 

with the terminal condition (4.5). 

In the following, we shall find asymptotic expansion for εP  with respect 

to the small parameter ε. For this purpose, we shall assume that εP  can be 

expanded by powers of ε  as follows: 

( ) ( ) ( ) ( ) "+ε+ε+=ε TyxtPTyxtPTyxtPTyxtP ;,,;,,;,,;,, 210  

 (4.11) 

for small ε, where ...,, 10 PP  are functions of ( )yxt ,,  to be determined by 

the terminal conditions 

 ( ) ( ) 0;,,,1;,,0 == TyxTPTyxTP i   for  .1≥i  (4.12) 

Recall that the volatility factor associated with ε corresponds to the fast 
volatility factor ( ).tY  In the case of the fast mean-reverting stochastic 

volatility, such an expansion in powers of ε  is considered in Cotton et al. 
[2] and Fouque et al. [7], and the references therein, where the singular 
perturbation analysis for financial markets with stochastic volatilities is 
taken under the sBm environment; see (2.20)-(2.23) and Theorem 2.1 in 
Section 2. 

Our theorem (Theorem 4.6 in Section 4) is an extension of the precedent 
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result in Cotton et al. [2] and Fouque et al. [7] to the stochastic volatility 
interest rate model under the fBm environment. 

In the following, we shall find the solution εP  of the form (4.11). 
Substituting the expansion (4.11) into (4.10), we can write as follows: 

( )"+ε+ε+⎟
⎠
⎞⎜

⎝
⎛ +

ε
+

ε 210210
11 PPPLLL  

0210
11 P⎟

⎠
⎞⎜

⎝
⎛ +

ε
+

ε
= LLL  

"+⎟
⎠
⎞⎜

⎝
⎛ +

ε
+

ε
ε+⎟

⎠
⎞⎜

⎝
⎛ +

ε
+

ε
ε+ 22101210

1111 PP LLLLLL  

.0=  

Therefore, 

( ) ( )021120011000
11 PPPPPP LLLLLL ++++
ε

+
ε

 

( ) "+++ε+ 122130 PPP LLL  

.0=  (4.13) 

For equation above, step by step, the terms of order ...,1,1 εε  will be 

studied. 

Term of order .ε1  At order ,1 ε  we have 

 .000 =PL  (4.14) 

The operator 0L  contains partial derivatives with respect to y but no 

derivatives with respect to x. Hence 0P  must be a constant with respect to the 

variable y, which implies 

 ( )TxtPP ;,00 =  (4.15) 

with terminal condition ( ) .1;,0 =TxTP  
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Term of order .ε1  At order ,1 ε  we have 

 .00110 =+ PP LL  (4.16) 

Notice that 0P  only depends on t and x and that the operator 1L  involves the 

derivative with respect to y. Then we have that ,001 =PL  and hence (4.16) 

is reduced to .010 =PL  The operator 0L  involves derivatives with respect 

to y. Thus, 1P  must be a constant with respect to y, which implies =1P  

( )TxtP ;,1  with the terminal condition ( ) .0;,1 =TxTP  

Thus, we note that the term 10 PP ε+  in (4.11) will not depend on y. 

Zeroth order-term. At order 1, we have 

 .0021120 =++ PPP LLL  (4.17) 

The discussion above implies that 0P  and 1P  only depend on ( )xt,  and that 

1L  and 0L  involve derivatives with respect to y. Thus, ,011 =PL  and hence 

(4.17) is reduced to 

 .00220 =+ PP LL  (4.18) 

Here, 0P  only depends on t and x. When regarding x as fixed, 02PL  only 

depends on y. Hence equation (4.18) is a Poisson equation for 2P  with 

respect to ,0L  that is, .0220 PP LL −=  

In order to have a solution to the Poisson equation (4.18), 02PL  must be 

in the orthogonal complement of the null space of ,0
∗L  where ∗

0L  is the 

adjoint operator of 0L  such that 

 ( )( ) 2

2
2

0 y
ppymyp H

∂

∂ν+−
∂
∂−=∗L  (4.19) 

for ( ).2 RCp ∈  This solvability condition is equivalent to saying that 20PL  

has mean zero with respect to the invariant distribution, which yields 
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 [ ] ( )∫
∞

∞−
=== ,0020202 dyynPPPE LLL  (4.20) 

where ( ),yn  the density of the normal distribution ( ),, 2
HmN ν  solves 

.00 =∗nL  Namely, the solvability condition above implies that .002 =PL  

Since 0P  does not depend on y, the solvability condition is reduced to 

 ,002 =PL  (4.21) 

which is exactly the partial differential equation 

 ( ) 0ˆ
2
1

0
0

2
0

2
20

02 =−
∂
∂

−+
∂

∂
σ+

∂
∂

= ∗ xPx
Pxra

x
P

t
PPL  (4.22) 

with the coefficients 

 22 : f=σ   and  farr λ−= ∞ ˆ
1:�  (4.23) 

and with the same terminal condition ( ) .1;,0 =TxTP  We recall that equation 

(4.22) is the same as equation (2.4) for the one-factor Vasicek model. This 
implies that PP =0  with the function P  as given by (2.5), where constant 

parameters σ  and �r  are replaced by (4.23). 

In equations above and below, we notice that the averaged quantity ⋅  

does not depend on ε. 

The change of variable tT −=τ  is again convenient, and we obtain 

 ( ) ( ) ( ) ,;,0
xBeATxTP τ−τ=τ−  (4.24) 

where ( )τA  and ( )τB  are given explicitly by formulas (2.9) and (2.8) in 

Section 2, respectively, except that σ  and �r  are given by (4.23). 

Observe the equation 

 .0220 PP LL −=  (4.25) 
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Apply the same solvability condition as given in equation (4.20). Then, since 
,002 =PL  we see that 02PL  in the right-hand side of (4.25) can be written 

as 

 ( )0202020202 PPPPP LLLLL −=−=  

( ( ) ) ( ) .2
1 0

2
0

2
22

x
Pff

x
Pfyf

∂
∂

λ−λ−
∂

∂
−=  

Recall that .0220 PP LL −=  Then we have 

 ( ) ( ) .2
1 0

2
0

2
22

20 x
Pff

x
PffP

∂
∂

λ−λ+
∂

∂
−−=L  (4.26) 

The solution of the Poisson equation (4.26) is given by 

 ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

λ−λ+
∂

∂
−−= −

x
Pff

x
PffP 0
2
0

2
221

02 2
1L  

{( )} ( ){ } x
Pff

x
Pff

∂
∂

λ−λ+
∂

∂
−−= −− 01

02
0

2
221

02
1 LL  

( ) ( ){ } ( ) ( ){ } .,,2
1 0

2

2
0

2

x
Pxtdy

x
Pxtcy

∂
∂

+ψ+
∂

∂
+φ−=  (4.27) 

Here, ( )yφ  and ( )yψ  are specific solutions of the Poisson equations 

 ( ) 22
0 fyf −=φL   and  ( ) ( ) ,0 fyfy λ−λ=ψL  (4.28) 

and ( )xtc ,  and ( )xtd ,  are constants that may depend on ( )., xt  In fact, 0L  

does only involve the variable y and 0P  does not depend on y, and hence we 

obtain (4.27). We shall go into detail about specific solutions φ and ψ in the 
proof of Theorem 4.7 in Section 4; see (4.48) and (4.49). 

Term of order .ε  At order ,ε  we have 

 .0122130 =++ PPP LLL  (4.29) 
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This is a Poisson equation for 3P  with respect to ,0L  which is written by 

 ( ).122130 PPP LLL +−=  (4.30) 

Again, applying the same solvability condition as given in equation (4.20), 
we obtain 

.01221 =+ PP LL  

Hence 

 ,2112 PP LL −=  (4.31) 

where 2P  is already known by (4.27). In the following, we investigate 

.12PL  Notice that 1P  does not depend on y and consider that 2L  is the 

one-factor Vasicek operator as given by (4.22) and (4.23). Then we have that 
the left-hand side of equation (4.31) is equal to .12 PL  Observe the right-

hand side of (4.31) with 2P  replaced by (4.27). Then we find 

( ) ( )( ) ( ) ( )( ) x
Pxtdy

x
PxtcyP

∂
∂

+ψ−
∂

∂
+φ=− 0

12
0

2

121 ,,2
1 LLL  

( ) ( ) ,2
1 0

12
0

2

1 x
Py

x
Py

∂
∂

ψ−
∂

∂
φ= LL  (4.32) 

where φ and ψ are specific solutions of the Poisson equations (4.28), and we 
used that ( ) 0,1 =xtcL  and ( ) ,0,1 =xtdL  since 1L  does only involve the 

variable y. Hence, by (4.31) and (4.32), we obtain 

 2112 PP LL −=  

( ) ( ) x
Py

x
Py

∂
∂

ψ−
∂

∂
φ= 0

12
0

2

12
1 LL  

( )
( ) ( ) 2

0
2

22
1

x
Pyy

HH
H

∂

∂
φ′γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

−=  

 
( )

( ) ( ) ,
2

0
x

Pyy
HH

H
∂
∂

ψ′γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

+  (4.33) 
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where 

( )
( ) .

21 yy
HH

H
∂
∂γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

−=L  

According to Fouque et al. [7, Chapter 11], we denote the first correction by 

 ( ) ( ),;,;,~
11 TtPTxtP εε=  (4.34) 

where ,1 α=ε  and introduce the expressions 

( )
( ) ( ) ,

22
1

2 yy
HH

V H φ′γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

ε−=  (4.35) 

( )
( ) ( ) .

21 yy
HH

V H ψ′γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

ε=  (4.36) 

Further, we define the operator A  by 

 .12

2
2 xV

x
V

∂
∂+

∂

∂=A  (4.37) 

Then, by (4.33), we observe that the function 1
~P  is a solution of 

 012
~ PPL A=  (4.38) 

with the terminal condition ( ) .0;,~
1 =TxTP  

Finally, we want to find the explicit form of the solution 1
~P  to (4.38). Let 

0P  be given by ,0 PP =  where P  has the form (2.5) in Section 2, except 

that constant parameters σ  and �r  are expressed by (4.23). Then the change 
of variable tT −=τ  for 0P  is again convenient; ( ) =τ− TxTP ;,0  

( ) ( ) xBeA τ−τ  as shown by (4.24). Observe expression (4.37) for .A  Then 

equation (4.38) becomes 

( ) ( ) ( ) ( ( ) ( ))τ+τ−τ+−
∂
∂

−+
∂

∂
σ=

τ∂
∂ τ− BVBVeAPxx

Pxra
x
PP xB

1
2

21
1

2
1

2
21 ~~

ˆ
~

2
1

~
�  

 (4.39) 
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with the terminal condition ( ) ;0;,0~
1 =− TxTP  ( )τA  and ( )τB  are expressed 

by (2.9) and (2.8) in Section 2, respectively, where constant parameters σ  

and �r  are given by (4.23). 

We now try to find a solution of the form 

 ( ) ( ) ( ) ( ) ,;,~
1

xBeADTxTP τ−ττ=τ−  (4.40) 

which leads to the following equation for ( ):τD  

 ( ) ( ) ( ).1
2

2 τ+τ−=τ′ BVBVD  (4.41) 

Here, we have used the differential equation (2.7) in Section 2, satisfied by 
( ).τA  Since ( ) 00 =D  and ( ) ,10 =A  we obtain an explicit expression for 

( ),τD  written here as a function of ( ) ( ) :ˆ1 ˆ aeB aτ−−=τ  

 ( ) ( ) ( ) ( )( ).ˆˆ
2
1

ˆ
12

2
2 τ−τ+⎟

⎠
⎞⎜

⎝
⎛ τ−τ−τ−=τ Ba

VBaB
a
VD  (4.42) 

Substitute equations (4.24) and (4.40) together with (4.42) into the expansion 
(4.11). Then we get the bond price with stochastic correction as follows: 

( ) ( ) ( )TxTPTxTPTyxTP ;,~;,;,, 10 τ−+τ−≈τ−  

( )( ) ( ) ( ) xBeAD τ−ττ+= 1  

for ε small enough. Therefore, the corrected bond price is given by 

( ) ( ) ( )TxtPTxtPTyxtP ;,~;,;,, 10 +≈  

( )( ) ( ) ( ) xtTBetTAtTD −−−−+= 1  (4.43) 

for ε small enough. Here, D is a small factor of order .1 α=ε  The error 

in the approximation (4.43) is of order .1 α=ε  

Theorem 4.6. Let .10 << H  Suppose Assumptions 1.1, 3.2 and 4.1. Let 

0P  and 1
~P  be given as follows: 

( ) ( ) ( ) ,;,0
xtTBetTATxtP −−−=  (4.44) 
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( ) ( ) ( ) ( ) ,;,~
1

xtTBetTAtTDTxtP −−−−=  (4.45) 

where ( )τA  and ( )τB  are given explicitly by formulas (2.9) and (2.8) in 

Section 2, respectively, and ( )τD  is given by (4.42). Here, the “averaged” 

parameters ( )�r,σ  appearing in ( ),τA  ( )τB  and ( )τD  are redefined by 

(4.23). Further, ( )τD  is a small factor of order α=ε 1  as “group 

parameters” ( )12, VV  in equations (4.35) and (4.36) imply. Then, for any 

fixed ,Tt <  ,, R∈yx  

( ) ( ( ) ( )) ( )ε=+− OTxtPTxtPTyxtP ;,~;,;,, 10  

for ε small enough, where ( )TyxtP ;,,  is the model’s bond price. 

In order to illustrate how the fundamental parameters ( )12, VV  in 

equations (4.35) and (4.36) are related to the model parameters, we can 
compute 2V  and 1V  by using the definition of ( )yφ′  and ( ),yψ′  the 

derivatives of the functions ( )yφ  and ( )yψ  which are the solutions of the 

Poisson equations (4.28), i.e., 

( ) ( ) ( ) ,, 0
22

0 fyfyfyf λ−λ=ψ−=φ LL  

where ⋅  denotes the averaging with respect to the density 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ν

−−
πν

= 2

2

2 2
exp

2

1

HH

myyn  

of the normal distribution ( )., 2
HmN ν  We first notice 

( ) ( ) ( )
⎟
⎠
⎞⎜

⎝
⎛ =′⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ν

−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ν

−−
πν

=′
dy
dmymyyn

HHH
2

2

22 2
exp

2

1  

 ( ) ( ),2 ynmy

Hν

−−=  
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and hence 

( ) ( )
( ) .2 yn

ynym

H

′
=

ν
−  

Since 0L  has the form (4.6), the equation above implies 

( ) ( ) ( )yymyH φ′−+φ′′ν=φ 2
0L  

( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φ′

ν
−+φ′′ν= yymy
H

H 2
2  

( ) ( )
( ) ( )⎟

⎠
⎞⎜

⎝
⎛ φ′

′
+φ′′ν= yyn

ynyH
2  

( ) ( ) ( ) ( ) ( )( )yynyynyn
H φ′′+φ′′ν=
2

 

( ) ( ) ( )( ) .
2 ′φ′ν= yynyn
H  

Therefore, we have the following relations: 

 ( ) ( ) ( ) ( )( ) ( ) 22
2

22
0 fyfyynynfyf H −=′φ′ν⇔−=φL  

( ) ( ) ( )( ) ( ( ) )22
2
11 fyfyynyn
H

−
ν

=′φ′⇔  

( ) ( )( ) ( ( ) ) ( ).1 22
2 ynfyfyyn
H

−
ν

=′φ′⇔  

Integrating the both sides of the last equation above, we have 

( ) ( ) ( ( ) ) ( )∫ ∞−
−

ν
=φ′

y

H
dzznfzfyyn ,1 22

2  

and hence 

 ( )
( )

( ( ) ) ( )∫ ∞−
−

ν
=φ′

y

H
dzznfzf

yn
y .1 22

2  (4.46) 



K. Narita 34 

Replacing φ and 2f  by ψ and ,fλ  we take the same argument as taken 

in the preceding. Then we get 

 ( )
( )

( ) ( )( ) ( )∫ ∞−
λ−λ

ν
=ψ′

y

H
dzznfzfz

yn
y .1

2  (4.47) 

Here, we notice that under the boundedness assumptions on f and λ (see 
Assumption 1.1(iii) and Assumption 3.2), we can choose φ and ψ such that 
their first derivatives are bounded and φ and ψ themselves are at most 
linearly growing in .y  

The sV ′  are complicated functions of the model parameters, including 

market prices of risk, and the volatility function f. By (4.36) and (4.47), we 
notice that a market price of risk such that fλ  is a constant implies 0=ψ′  

and hence 

( )
( ) ( ) .0

21 =ψ′γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

ε= yy
HH

V H  

Using (4.46), the formula of ( ),yφ′  we can find the explicit expression 

for 2V  as given by (4.35): 

( )
( ) ( ) .

22
1

2 yy
HH

V H φ′γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

ε−=  

We first calculate the value of :φ′γ  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ν
γ=φ′γ ∫

⋅

∞−
nff

nH

22
2
1  

( )
( )

( ( ) ) ( ) ( )∫ ∫
∞

∞− ∞−
⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ν
γ= dyyndzznfzf

yn
y

y

H

22
2

1  

( ) ( ( ) ) ( )∫ ∫
∞

∞− ∞−
⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ν
γ= dydzznfzfy

y

H

22
2
1  
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( ) ( ( ) ) ( ) .1 22
2 ∫ ∫

∞

∞− ∞−
⎟
⎠
⎞

⎜
⎝
⎛ −γ

ν
= dydzznfzfy

y

H
 (4.48) 

Denote by ( )yG  the primitive function of ( ),yγ  that is, 

( ) ( )∫ γ= .dyyyG  

Put 

( ) ( ( ) ) ( )∫ ∞−
−=

y
dzznfzfyM ,22  

where ( ) ( )∫
∞

∞−
= .22 dyynyff  Then, integrating by parts, from (4.48), 

we have 

( ) ( )∫
∞

∞−
′

ν
=φ′γ dyyMyG

H
2
1  

[ ( ) ( )] ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ′−

ν
= ∫

∞

∞−
∞
∞− dyyMyGyMyG

H
2
1  

( ) ( ) ( ) ( )( )01
2 =∞−=∞

⎭
⎬
⎫

⎩
⎨
⎧ ′−

ν
= ∫

∞

∞−
MMdyyMyG

H
∵  

( ) ( ( ) ) ( )∫
∞

∞−
−

ν
−= dyynfyfyG

H

22
2
1  

( ) .1 22
2 ffG
H

−
ν

−=  (4.49) 

Replacing ( )2yf  by ( ) ( ),yfyλ  we take the same argument as taken in 

the preceding. Then we get 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ λ−λ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ν
γ=ψ′γ ∫

⋅

∞−
nff

nH
2
1  
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( )ffG
H

λ−λ
ν

−= 2
1  (4.50) 

with ( ) ( )∫ γ= ,dyyyG  the primitive function of ( ).yγ  

Therefore, substituting (4.49) and (4.50) into (4.35) and (4.36), 
respectively, we obtain the following theorem: 

Theorem 4.7. Let .10 << H  Suppose that assumptions in Theorem 4.6 
hold. Let 2V  be defined by (4.35) and 1V  by (4.36). Consider the 

approximated expansion 

( ) ( )( ) ( ) ( ) xtTBetTAtTDTyxtP −−−−+≈ 1;,,  

as shown in Theorem 4.6. Then the function ( )τD  is given by (4.42) in terms 

of 2V  and .1V  Moreover, 2V  and 1V  have the explicit expressions as follows: 

( )
φ′γ⎟

⎠

⎞
⎜
⎝

⎛
Γ
νε−=

HH
V H

22
1

2  

( )
( ) ,

2
1

2
1 22 ffG

HHH
−⎟

⎠

⎞
⎜
⎝

⎛
Γν

ε=  (4.51) 

( )
ψ′γ⎟

⎠

⎞
⎜
⎝

⎛
Γ
νε=

HH
V H

21  

( )
( ) ,

2
11 ffG

HHH
λ−λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γν

ε−=  (4.52) 

where ( ) ( )∫ γ= dyyyG  and .1 α=ε  

Remark 4.8. Under standard Brownian motion environment, Cotton et 
al. [2] and Fouque et al. [7] obtained the corrected bond price in terms of          
the group market parameters ( )123 ,, VVV  in the general case, where the 

parameter ρ with ( )1,1−∈ρ  allows a correlation between volatility shocks 

and interest rate shocks; see (2.32)-(2.34) of Theorem 2.1 in Section 2. If 
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21=H  is formally substituted into (4.51) and (4.52), then the 

representations coincide with these of Theorem 2.1, where 0=ρ  and .03 =V  

Appendix 

A. Stochastic integral 

Here, we begin to introduce stochastic integration theory. For given ∈H  
( ),1,21  define +→×φ RRR:  by 

( ) ( ) .,,12:, 22 R∈−−=φ − tstsHHts H  

Let RR →:f  be Borel measurable such that 

( ) ( ) ( )∫ ∫ ∞<φ=φ R R
.,:2 dsdttstfsff  

Then the stochastic integral with respect to fBm HB  is well-defined to be a 

Gaussian random variable. It follows from Gripenberg and Norros [8] and 

Nualart [22] that for any deterministic integrand ( ) ( ),,, 12 RRRR LLf ∩∈  

( ) ( ) ,0
0

=⎥⎦
⎤

⎢⎣
⎡∫

∞

�
tdBtfE H  

( ) ( ) ( ) ( ) ( )∫ ∫∫ φ=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ∞

R R�
.,

2

0
dsdttstfsftdBtfE H  

In this paper, we shall follow the stochastic integration theory with 
respect to fBm HB  by Hu [10, Chapters 6-7]; Hu [10] extended the integral 

above to the general integrands under arbitrary Hurst parameter ( ).1,0∈H  

Remark A.1 (Pathwise integral). There are several definitions of 
stochastic integrals for general integrands with respect to fBm .HB  One of 

them is the fractional pathwise integral which is taken by the limit of the 
usual Riemann sum as defined using pointwise products. However, this 
integral does not have expectation zero. Further, Rogers [24] showed that 
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arbitrage is possible when the risky asset has a log-normal price driven by an 
fBm if stochastic integrals are defined using pointwise product. 

Remark A.2 (Wick-Ito integral). In the white noise approach, the Wick 
product is used instead of the ordinary product in the Riemann sums in order 
to define the stochastic integrals. The Wick product for F and G is written by 

;GF ◊  here commutative law, associative law and distributive law hold. If 

at least one of F and G is deterministic, e.g., ,0 R∈= aF  then the Wick 

product coincides with the ordinary product in the deterministic case. Such 
an integral is called Wick-Ito integral or fractional Ito-integral. 

In BS model, a risky asset is often formulated by a geometric Brownian 
motion (gBm) which is a solution of linear stochastic differential equation 
(SDE). For an application of Wick calculus to option pricing, for instance, 
we can refer to Necula [21] and Narita [17, 18]; here risky asset is formulated 
by a fractional geometric Brownian motion which is a solution of SDE 
driven by fBm HB  with Hurst parameter ( ).1,21∈H  For the details of an 

application of the Wick calculus to SDEs, we can also refer to Biagini et al. 
[1], Holden et al. [9], Narita [19, 20] and the references therein. 

Remark A.3 (Fractional calculus). Another definition of stochastic 
integrals with respect to fBm HB  for general integrands is given by 

fractional calculus for arbitrary Hurst parameter ( ).1,0∈H  In this case, the 

stochastic integration theory is based on both the left- and right-sided 
Riemann-Liouville fractional integral and the left- and right-sided Riemann-
Liouville fractional derivative. A risky asset in BS model can be formulated 
by a fractional gBm which is a solution of SDE driven by fBm HB  under 

fractional calculus. We can refer to Mishura [13], Nualart [22] and the 
references therein for the existence of pathwise solutions and the uniqueness 
in law for SDEs driven by fBm .HB  

In general, quadratic variations of stochastic integrals with respect to 
fBm HB  for general integrands have abstract and complicated expression, 

and hence there is difficulty in application of Ito formula. 
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Remark A.4 (Stochastic integral in the sense of Hu [10]). In this paper, 
we shall take the stochastic integral in the sense of Hu [10, Chapters 6-7]       
(Hu integral, for short). This is the stochastic integral with respect to 

( )( )1,0∈HBH  for algebraically integrable integrands; the integration 

theory is developed by using Wiener chaos expansion and an idea of creation 
operator from quantum field theory. If ,121 << H  then the Hu integral 

coincides with the Wick-Ito integral in the sense of Duncan et al. [3]. If 
,10 << H  then the Hu integral for deterministic integrands coincides with 

the stochastic integral of variation in the sense of Hu [10, Definition 6.11] 
and Nualart-Pardoux [23]. 

The Hu integral with respect to fBm ( )( )1,0∈HBH  has expectation 

zero and can be concretely evaluated in the case of deterministic integrands. 
This enables us to apply Ito formula to linear SDE of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1,0∈+= HtdBtXtbdttXtatdX H  

with deterministic coefficients ( )ta  and ( ).tb  

In the following, we shall introduce the Hilbert space, denoted by =ΘH  

[ ]( ),,0 THΘ  for the sake of understanding of the stochastic integrals. 

Let ( )tW  be a standard Brownian motion (sBm). Then a fractional 

Brownian motion (fBm) with Hurst parameter H, ,10 << H  can be 

represented in terms of sBm ( )tW  as follows: 

 ( ) ( ) ( )∫ ∞<≤=
t

HH tsdWstZtB
0

,0,,  (A.1) 

where 

( )stZH ,  
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⎥
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HHHH

H
H dusuusHsts

t
2
1

2
3

2
1

2
12

1

2
1  
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and 

( )HH

HH
H

222
1

2
32

−Γ⎟
⎠
⎞⎜

⎝
⎛ +Γ

⎟
⎠
⎞⎜

⎝
⎛ −Γ

=κ  

with the Gamma function ( ) ∫
∞ −−=Γ
0

1 .duuex xu  If we formally differentiate 

(A.1) with respect to t, then we have 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫===
t t

HHHH dssWstZdt
dsdWstZdt

dtBdt
dtB

0 0
.,, ��  

Let 0>T  be arbitrary and fixed. Let us consider functions over the        
interval [ ].,0 T  Then we can introduce the following integro-differential 

transformation: 

 ( ) ( ) ( )∫ <<=
t

HTH TtdssfstZdt
dtf

0, .0,,Γ  (A.2) 

In the case of no ambiguity, we use ,,THH ΓΓ =  and hence .HH BW �� =Γ  

The inverse operator of TH ,Γ  can be defined by ,,THB  satisfying 

,,, ITHTH =BΓ  

where I is the identity operator. The transpose of TH ,Γ  and TH ,B  is, 

respectively, denoted by ∗
TH ,Γ  and .,

∗
THB  

Let { },:: , SA ∈= ∗ ffTHB  where S denotes the set of all functions on 

[ ]T,0  whose derivatives are bounded. If ,0, ≡∗ fTHB  then ff THTH
∗∗= ,, BΓ  

.0=  This means that ∗
TH ,B  is a bijection from S to A. For any two elements 

in A, say 1,1 fg TH
∗= B  and ,2,2 fg TH

∗= B  define 

 ( ) ( ) ( ) ( )∫ ∫ ∗∗
Θ ==

T T
THTH dttgtgdttftfgg

H 0 0 2,1,2121 .:, ΓΓ  (A.3) 
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Then A is a pre-Hilbert space with respect to the above scalar product. The 
completion of A with respect to the scalar product 

HΘ⋅⋅,  is denoted by 

[ ]( ),,0 THΘ  which is a Hilbert space. Since 0>T  is fixed, we use HΘ  to 

denote [ ]( ).,0 THΘ  AS →∗ :,THB  can be extended to an isometry from 

the Hilbert space [ ]( )TL ,02  to the Hilbert space .HΘ  Its inverse is the 

extension of the ∗
TH ,Γ  to .HΘ  We continue to use ∗

TH ,B  and ∗
TH ,Γ  to 

denote their extensions. 

Remark A.5 (Induced transformations). The following is due to Hu [10]: 

[ ]( ) HTH TL Θ→∗ ,0: 2
,B  is an isometry from the Hilbert space [ ]( )TL ,02  

to the Hilbert space .HΘ  The value of ∗
TH ,B  on smooth function space S is 

given by explicit formulas. The inverse of ∗
TH ,B  is an isometry, denoted by 

[ ]( ).,0: 2
, TLHTH →Θ∗Γ  The value of ∗

TH ,Γ  on smooth function space S 

is also given by explicit formulas. 

By (A.2), we observe 

( ) ( ) ( ) ,0,, TttWtB THH ≤≤= �� Γ  

and hence 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫==
T T T

THHH dttWtfdttBtftdBtf
0 0 0 , �� Γ  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∗∗ ==
T T

THTH tdWtfdttWtf
0 0 ,, .ΓΓ �  

Therefore, we can use the identity above to define our stochastic integral for 
deterministic integrands. 

Let .Hf Θ∈  Then it is known from (A.3) and Remark A.5 that =g  

[ ]( ).,02
, TLfTH ∈∗Γ  Thus ( ) ( )∫

T
tdWtg

0
 is well-defined. This implies that 
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stochastic integral can be defined as follows: for ,Hf Θ∈  

 ( ) ( ) ( ) ( ) ( )∫ ∫ ∗=
T T

THH tdWtftdBtf
0 0 , .: Γ  (A.4) 

Hu [10] explained as follows: It seems that (A.4) suggests stochastic integral 
for general integrands. If we use formula (A.4), then the integrand on the 
right-hand side of (A.4) should be a functional of sBm. However, the 
probability laws of sBm and fBm are mutually singular and a functional of 
sBm may not be well-defined as a functional of fBm and vice versa. This 
means that a functional of fBm (a random variable on the probability space 
of fBm) may not be well-defined as a functional of sBm. Moreover, even if 

the right-hand side of (A.4), i.e., ( ) ( ) ( )∫ ∗T
TH tdWtf

0 ,Γ  is well-defined, then 

it is not straightforward to consider it as a functional of fBm. Hence the 
definition of stochastic integral needs to be improved. 

Hu [10] mainly used the integral kernels ( )stZH ,  and ( )stH ,η  which 

are, respectively, related to expressions for operators TH ,Γ  and ,THB  i.e., 

the fact that the fBm can be represented by sBm and the sBm can also be 
represented by fBm by explicit formulas. Hu [10] extended this 
correspondence to between nonlinear functionals of fBm and nonlinear 
functionals of sBm, and hence obtained the stochastic integral for 
algebraically integrable integrands. 

B. Ito formula 

Let [ ]( )THH ,0Θ=Θ  be the Hilbert space as defined in Hu [10, 

Chapter 5]; HΘ  is the space of integrands associated with the induced 

transformation of representation for fBm ( ).tBH  Let ( )sf  be given over 

[ ].,0 T  Let .0 Tts ≤≤≤  Then, considering the functions ( )sft  restricted to 

[ ],,0 t  that is, ( ) ( ) [ ]( ),,0 ssfsf tt χ=  we shall use tH ,Θ  to denote [ ]( ),,0 tHΘ  

where the norm 
tHtf ,Θ  is well-defined. According to Hu [10, pp. 102-

103], we summarize expression for 
tHtf ,Θ  in the following remarks: 
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Remark B.1. Let .21>H  Then 

( ) ( ) ( )∫ ∫ −
Θ −−=

t t H
t dudvvfufuvHHf

tH 0 0
222 .12

,
 

If f is continuous in [ ],,0 T  then 
tHtf ,Θ  is differentiable and 

( ) ( ) ( )∫ ≤≤−−= −
Θ

t H
t TtduufuttfHHfdt

d
tH 0

222 .0,122
,

 (B.1) 

Remark B.2. Let 210 << H  and let f be continuously differentiable. 

Then 

( ) ( ) ( ) ( )∫ ∫ −−
Θ −+=

t t HH
t dvvfvttHfdvvfvHff

tH 0 0
12122 0

,
 

( ) ( ) ( )∫ ∫ ′−−+ −t t H dudvvfufuvuvH
0 0

12 .sign  

Making substitution ,ξ= tu  we have 

( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ξξξ−=⎟

⎠
⎞

⎜
⎝
⎛ − ∫∫ −− 1

0
122

0
12 1 dtftdt

dduufutdt
d HHt H  

 ( ) ( )∫ ξξξ−= −− 1

0
1212 12 dtfHt HH  

( ) ( )∫ ξξ′ξξ−+ −1

0
122 .1 dtft HH  

Hence 

( ) ( ) ( ) ( ) ( )∫ ξξξ−+= −−−
Θ

1

0
12122122 120

,
dtftftHtffHtfdt

d HHH
t tH

 

( ) ( ) ( )∫ ξξ′ξξ−+ −1

0
122 1 dtftfHt HH  

( ) ( ) ( )∫ ′−+ −t H duufuttHf
0

12 .  (B.2) 
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Hu [10, p. 103] showed Ito formula for general deterministic f and Hurst 
parameter ( )1,0∈H  as follows: 

Theorem B.3 (Ito formula). Let 10 << H  and let ∩THf ,Θ∈  

[ ]( )TL ,02  be a deterministic function. Denote ( ) ( ) [ ]( ),,0 ssfsf tt χ=  

.0 Tts ≤≤≤  Suppose that tHtf ,Θ∈  and 
tHtf ,Θ  is continuously 

differentiable as a function of [ ].,0 Tt ∈  Denote 

 ( ) ( ) ( ) ( ) ( )∫ ∫ ≤≤++=
t t

H TtsdBsfdssgXtX
0 0

,0,0  (B.3) 

where ( )0X  is a constant, g is deterministic with ( )∫ ∞<
T

dssg
0

.  Let F be 

an entire function of order less than 2. Namely, 

( ) ( ) KA

rz
f rCezfrM <=

=
sup:  for all r, 

where K is a positive number less than 2 and C is a constant. Then 

( )( ) ( )( ) ( )( ) ( )( ) ( )∫ ∫ ∂
∂+

∂
∂+=

t t
sdXsXsx

FdssXss
FXFtXtF

0 0
,,0,0,  

( )( )∫ ≤≤⎥⎦
⎤

⎢⎣
⎡

∂

∂+ Θ
t

s Ttdsfds
dsXs

x
F

sH0
2

2

2
.0,,2

1
,

 (B.4) 

Here, the stochastic integral in (B.4) is in the sense of the Hu integral. 

Equation (B.4) is rewritten by the stochastic differentials as follows: 

( )( ) ( )( ) ( )( ) ( )tdXtXtx
FdttXtt

FtXtdF ,,,
∂
∂+

∂
∂=  

( )( ) .,2
1 2

2

2

,
dtfdt

dtXt
x
F

tHt ⎥⎦
⎤

⎢⎣
⎡

∂

∂+ Θ  

Let .1≡f  Then ,
,

H
t tf

tH
=Θ  hence .1

,
−

Θ = H
t Htfdt

d
tH

 Therefore, 

we have the following: 
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Corollary B.4. Let 10 << H  and let F satisfy the conditions of 
Theorem B.3. Then 

( )( ) ( ) ( )( ) ( )( ) ( )∫ ∫ ∂
∂+

∂
∂+=

t t
HHH sdBsBsx

FdssBss
FFtBtF

0 0
,,0,0,  

 ( )( )∫ ≤≤
∂

∂+ −t H
H TtdsssBs

x
FH

0
12

2

2
.0,,  (B.5) 

C. Fractional Ornstein-Uhlenbeck process 

By Narita [16, Lemmas 8.1 and 8.8], we note the following: 

Lemma C.1 (Property of fractional OU process). Let .10 << H  Let 
( )tY  be the fractional OU process given by 

 ( ) ( )( ) ( ) ( ) R∈=β+−α= 00, yYtdBdttYmtdY H  (C.1) 

with constants ,0>α  0>β  and .0>m  Then ( )tY  is the pathwise unique 

solution of (C.1) with the following form: 

 ( ) ( ) ( ).
00 ∫ αα−α− β+−+=
t

H
stt sdBeemyemtY  (C.2) 

Further, ( )tY  is a Gaussian stochastic process and has the long-run 

distribution which is the normal distribution ( )2, HmN ν  with mean m and 

variance 2
Hν  such that the density is given by 

 ( ) ( ) ,
2

exp
2

1
2

2

2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ν

−−
πν

=
HH

myyn  (C.3) 

where 

 ( ),21 2
22 HH

H
H Γ⎟

⎠
⎞⎜

⎝
⎛
α

β=ν  (C.4) 

and ( )⋅Γ  is the Gamma function, i.e., ( ) ∫
∞ −ξ− ξξ=Γ
0

1 .dex x  
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Let ( )tY  be the solution of (C.1). Let ( )ytF ,  be a function in 

[ ]( ).,02,1 R×TC  Define ( )tX  by 

( ) ( ) ( )∫ ∫ +β+α= ααt t
H

ss ysdBedsmetX
0 0 0. 

Then we notice that ( ) ( ).tXetY tα−=  For the function ( ),, ytF  define the 

function ( )xtG ,  by ( ) ( ).,:, xetFxtG tα−=  Then we notice that 

( )( ) ( ( )) ( )( ).,,, tXtGtXetFtYtF t == α−  

Applying Theorem B.3 to ( )xtG ,  and ( )tX  and using the change of the 

variable such that ,xey tα−=  Narita [16, Lemmas 8.3 and 8.7] obtained the 

following Ito formula for ( ):tY  

Lemma C.2. Let .10 << H  Let ( )tY  be the solution of (C.1). Let 

( )ytF ,  be a function in [ ]( ).,02,1 R×TC  Then 

( )( ) ( )( ) ( )( ) ( )tdYtYty
FdttYtt

FtYtdF ,,,
∂
∂+

∂
∂=  

( )( ) ,,2
1 22

2

2

,
dtgdt

detYt
y
F

tHt
t

⎥⎦
⎤

⎢⎣
⎡

∂

∂+ Θ
α−  (C.5) 

where 

( ) ( ) [ ]( ) ( ) .0,,,0 Ttueuguugug u
tt ≤≤≤β=χ= α  

Further, Remarks B.1 and B.2 yield the explicit form of 

⎥⎦
⎤

⎢⎣
⎡

Θ
α− 22

, tHt
t gdt

de  

as follows: 
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  (i) If ,21>H  then 

 ( ) .12
12

12222
, ⎭

⎬
⎫

⎩
⎨
⎧

α⎟
⎠
⎞⎜

⎝
⎛
α

+β=⎥⎦
⎤

⎢⎣
⎡

−
−α−

Θ
α− tBteHgdt

de
H

Ht
t

t
tH

 (C.6) 

(ii) If ,210 << H  then 

tH
t

t etHgdt
de

tH
α−−

Θ
α− β=⎥⎦

⎤
⎢⎣
⎡ 12222

,
 

( )tBtH
H

α⎟
⎠
⎞⎜

⎝
⎛
α

β+ −
2

122 12  

( ) ( )
⎭⎬
⎫

⎩⎨
⎧ α⎟

⎠
⎞⎜

⎝
⎛
α

−α⎟
⎠
⎞⎜

⎝
⎛
α

αβ+ − tCttBtH
H 11 2

12  

( ).1 2
2 tBH

H
α⎟

⎠
⎞⎜

⎝
⎛
α

αβ+  (C.7) 

Here, 

( ) ( )∫ ∫ −−− ==
x x zHzH dzezxCdzezxB

0 0
212 .,  

D. Fast-scale 

Let us consider the model described by (C.1) and (C.2). 

Assumption D.1. Let .10 << H  Then we assume the following: 

  (i) The rate of mean-reversion α or its inverse, the typical correlation 
time of ( )( ),tY  is characterized by a small parameter ε such that 

.1
α

=ε  

(ii) Let 2
Hν  be given by (C.4), which controls the long-run size of the 

volatility fluctuations. Then we assume this quantity remains fixed as we 
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consider smaller and smaller values of ε such that 

( ) ( )
.1

2
1

2 H
H

H
H

HHHH ε⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

=⎟
⎠
⎞⎜

⎝
⎛
α⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ
ν

=β
−

 

The following result is given in Narita [16, Lemmas 10.2 and 10.3]. 

Lemma D.2. Let .10 << H  Let ( )( )tY  be given by (C.2). Define the 

function tg  by 

( ) [ ]( ) ( ) ( ) .0,,,0 Ttueuguguug u
tt ≤≤≤β=χ= α  

Under Assumption D.1, consider the multiplier of the second derivative 
22 yF ∂∂  in (C.5) of Lemma C.2. Then, for ,0>t  

 ( )
⎭⎬
⎫

⎩⎨
⎧ +⎟

⎠
⎞⎜

⎝
⎛

ε
ν=⎥⎦

⎤
⎢⎣
⎡

Θ
α− 112 222

,
ogdt

de Ht
t

tH
 (D.1) 

as ,0→ε  where .1 α=ε  Hence, for ,0>t  

( )( ) ⎥⎦
⎤

⎢⎣
⎡

∂
∂

Θ
α− 22

2

2

,
,2

1
tHt

t gdt
detYt

y
F  

 ( )( ) ( )⎥⎦
⎤

⎢⎣
⎡ +⎟

⎠
⎞⎜

⎝
⎛

ε
ν

∂
∂= 11, 2

2

2
otYt

y
F

H  (D.2) 

as .0→ε  
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