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Abstract

Our purpose of this paper is to show how the asymptotic method
developed in Cotton et al. [2] and Fouque et al. [7] in the context of
the Black-Scholes theory is applied to interest rates. We do this by
considering simple models of short rates (such as the Vasicek model)
and computing corrections that come from a fast mean-reverting
stochastic volatility given by a nonnegative function of a fractional
Ornstein-Uhlenbeck (fOU) process. Here, fOU process is driven by a
fractional Brownian motion (fBm) with arbitrary Hurst parameter
H < (0, 1). What is important for the asymptotic results we present is

that fOU process is characterized by o, the rate of mean-reversion, and
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has a unique invariant probability distribution N(m, V2H ), that is, the
normal distribution with mean m and variance v2H .

The asymptotic approximations we present are in the limit o — o
with vzH fixed, which we refer to as fast mean-reversion. We assume

that volatility shocks and interest rate shocks are independent.

Then we obtain the corrected price for zero-coupon bond so that it is
expanded around the usual Vasicek one-factor bond pricing function
with the averaged parameters related to stochastic volatility model

parameters.

Since for H # 1/ 2 fractional Brownian motion is neither a Markov

process, nor a semimartingale, usual stochastic calculus cannot be
applied to our model. Therefore, instead of the probabilistic
approaches such as the use of conditional expectation, standard Ito
formula and the Feynman-Kac representation, our research is made by
the fractional integration theory which is due to Hu [10] and partial
differential equation approach.

More precisely, we derive bond pricing partial differential equation by
fractional Ito formula, introduce fast-scale to model fast mean-
reversion in stochastic volatility, and hence obtain the expression for
corrected price for zero-coupon bond so that it is characterized by the
averaged parameters which are computed as the averaged values with
respect to the invariant probability distribution of the fOU process.

Here, asymptotics in the fast-scale is made by singular perturbation
expansion, analogous to these in Fouque et al. [5-7] and Narita [14-
16]. This again leads to a leading order term which is the usual
Vasicek one-factor bond pricing function with the corrected mean
level related to fOU process. Our theorem is an extension of the results
in Cotton et al. [2] and Fouque et al. [7] to a fractional Vasicek model
in the case that fluctuations in price and volatility have zero

correlation.

1. Introduction

A one-dimensional fractional Brownian motion (fBm) with Hurst

parameter H e (0, 1) is a Gaussian stochastic process with By (0) = 0 such
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that
EBH ] =0 E[Bu®Bu(s)] =5 (It +[sP —|t—s]M)

for all s, t € R. Here, E[-] denotes the mathematical expectation with respect

to the probability law py for By.
The fBm By is self-similar with self-similar index H, that is, for every
¢ > 0, the process {By (ct); t € R} is identical in distribution to {c" By (t);

t € R}. Since for H #1/2, fBm By is neither a Markov process, nor a

semimartingale, usual stochastic calculus cannot be applied to the field of the

network traffic analysis and mathematical finance. If H =1/2, then By is

one-dimensional standard Brownian motion (sBm).

In our Vasicek model, the short rate is modeled as a mean-reverting

Gaussian stochastic process (r(t));>, on a probability space (Q, F, P)
equipped with an increasing filtration (Fi),. Under the subjective

probability measure P, this process is influenced by a stochastic volatility
o(t) given by a nonnegative function f(Y(t)) of a fractional Ornstein-
Uhlenbeck (fOU) process (Y (t));>( as follows:

dr(t) = &(r,, — r(t))dt + f(Y(t))dW(t), (1.1)
dY(t) = a(m - Y (t))dt + BdBy (1) (1.2)
with a family {4, T, m, a, B} of positive constants, where f is a positive
suitably regular function on R. Here, (W(t)) is a one-dimensional sBm, and
(BH (1)) is a one-dimensional fBm with Hurst parameter H € (0, 1). (Y (t))

is called the volatility-driving process, and the factor (o(t)), where o(t) =

f(Y(t)) is called the stochastic volatility process.
Assumption 1.1. We assume the following:

(1) Throughout this paper, let the Hurst parameter H be arbitrary in
(0, 1) and fixed.
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(ii) (W(t)) and (By (t)) are independent.
(iii) f : R — R is smooth and bounded above and below:
0<cg <f<c<w
for constants ¢; > 0 and ¢, > 0, and f has bounded derivatives.

The process (Y(t)) is mean-reverting fOU process; o measures the

characteristic speed of mean-reversion of (Y (t)).

In (1.2), (Y(t)) is a process with a unique invariant probability
distribution, modeling volatility mean-reversion. In this case, the invariant

probability distribution is the normal distribution N(m, VZH) with mean m

and variance vzH , where we define

vi =ML ] Tem).
. . . _[* —E¢x-1
and T'(-) is the Gamma function, i.e., T'(x) = IO e =" dE.

Remark 1.2 (Fast-scale volatility factor driven by fBm). The asymptotic
approximations we present are in the limit oo — oo with v|2_| fixed, which we

refer to fast mean-reversion. Namely, we shall consider the fOU process
(Y(t)) given by (1.2) under the scaling

a=1/c and B=0(/e") 0<e<1.

Then, for € small enough, we shall derive a partial differential equation
(PDE) satisfied by the no-arbitrage bond price (Lemma 3.1 in Section 3 and
Lemma 4.4 in Section 4). Further, appealing to singular perturbation method,
we shall obtain asymptotics of correction for bond prices such that it is
expanded around the usual Vasicek one-factor bond pricing function with the
averaged parameters related to stochastic volatility model parameters
(Theorems 4.6 and 4.7 in Section 4).
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Remark 1.3 (Fast-scale volatility factor driven by sBm). Consider the
one-factor Vasicek model where the short rate process (r(t)) is influenced by

the stochastic volatility o(t) := f(Y(t)) as follows:

dr(t) = 4(F,, — r(t))dt + o(t)dW (t),

dY (t) = a(m = Y (t))dt + Bd(pdW (t) + V1 — p>dZ(t))

with a family {4, T, o, m, B} of positive constants. Here, (W (t)) and (Z(t))
independent standard Brownian motions (sBms). The parameter p € (-1, 1)
allows a correlation between the sBm (W (t)) driving the short rate and its

volatility. In this case, (Y(t)) has the long-run distribution which is the
normal distribution N(m, vz) with mean m and variance v2, where we

define v2 = B2/(20). Then, by singular perturbation method, Cotton et al.

[2] and Fouque et al. [7] studied asymptotic analysis and obtained corrections

for bond prices and bond option prices under the scaling
a=1/ PB= (ﬁv)/JE,

where 0<e <1 and v =0(1) (fixed). Their result is summarized as

Theorem 2.1 in the following Section 2.

As follows from Theorem 2.1, the generality of the class of models is in
not having to specify a function f; the features of this function that are needed
for the theory are captured by group parameters derived in the asymptotics
and easily calibrated from data. Such group parameters will be extended to
these for the case of the fractional Vasicek model (Theorems 4.6 and 4.7 in
Section 4).

In the present paper, we investigate a bond pricing problem by the
singular perturbation method as in Fouque et al. [5-7] and Narita [14-16].

In order to proceed to asymptotics of corrected price, we shall apply
fractional Ito formula in Appendices B and C to the total value of the
portfolio and then derive pricing partial differential equation (pricing PDE).
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Our stochastic integral is in the sense of Hu [10], where stochastic
integration theory is developed for algebraically integrable integrands by
Wiener chaos expansions; a brief comparison among several definitions of

stochastic integrals is introduced in Appendix A.
2. Stochastic Volatility Vasicek Models

For a clear understanding of the comparison between the fBm model and
the sBm model, we first describe the simple one-factor Vasicek model
(Vasicek [26]), introduce the two-factor Vasicek model (the stochastic
volatility Vasicek model) and hence review how bonds are priced under these
models in the sBm environment. We quote the following from Cotton et al.
[2] and Fouque et al. [7, Chapter 11].

In the Vasicek model, the short rate is modeled as a mean-reverting

Gaussian stochastic process (F(t));», on a probability space (Q, F, P)
equipped with a filtration (F; )tzo' Under the real-world probability measure

P, it satisfies the linear stochastic differential equation (SDE):
dr(t) = a(r,, — r(t))dt + cdW (t) (2.1)

with constants 4 >0, T, >0 and G >0, where (W (t)),5, is a standard

P -Brownian motion. Here, G is its constant volatility, & is the rate of

mean-reversion and T, is the long-run mean.

Under an equivalent martingale (pricing) measure P*, it also follows a
linear SDE:

dr(t) = a(r* - r(t))dt + Gdw *(t), (2.2)

where (W *(t));5, is a standard P*-Brownian motion, if we assume that
market price of interest rate risk, denoted by A, to be a constant. It is

included in r* =T, — (AG)/a. In other words, in the risk-neutral world P*,

the short rate process is an Ornstein-Uhlenbeck (OU) process fluctuating

around its mean level r* with a rate of mean-reversion 4.
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The no-arbitrage price at time t of a zero-coupon bond maturing at time

T, denoted by B(t, T), is given by

e—jtT f(s)ds

B@,T)::E*{

ft} = E(t’ F(t)a T)9

(2.3)

where E* denotes the mathematical expectation with respect to P*, and the

bond pricing function P(t, x; T) satisfies the partial differential equation

(PDE)

with the terminal condition P(T, x; T) = 1.
The solution is
P(t, x; T) = AT —t)e BT-OX

where A and B satisfy the system of ordinary differential equations

B'+4B-1=0,
L T S
A+2csB ar'B=0

with A(0) =1 and B(0) = 0. This gives explicitly

1_ e—éT
B(t) = ~ ,
(=1=¢
_,ar =2 .
Ar) = exp{—{th -Ry, 1# +2 (1- e—ar)z}}’
d 48’
where
N YO
" 282 7 & 237

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

2.9)

(2.10)

This leads to an explicit formula for the zero-coupon bond price B(t, T) =

P(t, r(t); T):
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B, T)

g-a(T-1)

1- 52 _aT-
= epoRw(T —t) = (R, — F(1)) 21— t))ﬂ}.
4a

@2.11)

We observe that the solution F(t) of the SDE (2.2) of the Vasicek type is
given by
. . t .
F(t) = F(0)e @t 4 r(1—e 8 ¢ ajoe‘a(“s)dw*(s). 2.12)
Its integral is
_a(T-t)

jT F(s)ds = r*(T =)+ (r* — F(t)i—8—
t a

_ T 1 _ e_é(T_s) %
; cj T dW*(s), 2.13)
t a
which, conditional on T(t), is normally distributed with mean

E*{J: r(s)ds

and variance

o-a(T-1)

F(t)} S (T - 1)+ (- ()

2 (2.14)

T T(]_ea(T-5))?
v*{jt F(s)ds r(t)}:azjt [IETJ ds. (2.15)

Thus, using the moment generating function of a normal random variable, we

F(t)}

F(t)} + %V*{LT F(s)ds

can compute the expectation in (2.3) as

B(t, T) = E*{exp[— j tT F(s)dsj

= exp| -E* ITF(s)ds r(t);|.
t

Hence we derive (2.11) using explicit formulas for the conditional mean and

variance.
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Applying Ito’s formula to B(t, T) given by (2.11), we deduce

~&(T -t
dB(t, T) = B(t, T)(F(t)dt + 6# dW*(t)j. (2.16)

This shows that the bond price volatility is given by

S(1-e 20,

which is independent of r*.

The yield curve is defined by
R(t, 1) = —%log B(t, t+1)

as a function of 7, and we deduce the explicit formula

_ qar =2 R
R(t, 1) = Ry, = (R, = F(O) o + -2 (1- e,
4a’t

which shows that R(t, 1) is an affine function of the current rate T(t) and so

justifies the name affine model of term structure. Observe that, for all t,

R(t, T) converges to

as T —> 0.

We next consider the case where the short rate process (r(t)) is
influenced by the volatility driving process (Y(t)), under the real-world

measure P, as follows:
dr(t) = a(r, —r(t))dt + f(Y(t))dW(t),
dY(t) = a(m = Y(t))dt + Bd(pdW (t) + p'dZ(t))

with a family {4, r,,, o, m, B} of positive constants. Here, (W(t)) and (Z(t))
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are independent sBms, and p’' =4/1— pz. The parameter p with |p| <1
allows a correlation between the sBm (W(t)) driving the short rate and its

volatility. The volatility function f is assumed to be nonnegative, smooth and
bounded above and below, and also assumed to have bounded derivatives. In
this case, (Y (t)) has the invariant probability distribution which is the normal

2 2

distribution N(m, v2) with mean m and variance v*, where we define v° =

B%/(200).

In the risk-neutral world P**¥) the model for the short rate (r(t))
becomes

dr(t) = (A(T, — r(t)) = MY (X)) fF(Y(t))dt + f(Y()dW™(t), (2.17)

dY (t) = (a(m =Y (1)) = B[PA(Y (1)) + p'y(Y (D))])dlt

+ B(pdW * (1) + p'dZ* (1), (2.18)

where (W *(t)) and (Z*(t)) are two independent standard P**7)_Brownian
motions.

The market price of risk A(Y(t)) may depend on Y(t), but we assume
that it does not depend on the short rate r(t). Similarly, the market price of
volatility risk y(Y(t)) associated with the second source of randomness
(Z(t)) may depend on Y (t) or may simply be a constant. The risk premium
processes A(Y(t)) and y(Y(t)) are assumed to be bounded; the functions

My) and y(y) are also assumed to have bounded derivatives.

The no-arbitrage price L(t, T) of a zero-coupon bond maturing at time T

is given by

;
- d
P(t,x, y;T) = gx(.v) {e Ji r(s)as

rt)=xY(t)= y}, (2.19)

where the expectation E**7) s taken with respect to the distribution of
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(r(t), Y(t)) solution of (2.17)~(2.18) starting at time t from (X, y). Then P is

a classical solution of Feynman-Kac partial differential equation

oP

e (y)26 P

+ (a7 —X) - k(y)f(y))——xF’

28P

+Bpf(y)axay 2 7+ (a(m-y)- BA(y))—=0 (2.20)

with the terminal condition P(T, X, y; T) =1 for every x and y, where we

define

A(y) = pA(y) + p"v(Y),
the combined market price of risk.

In the model of fast mean-reverting stochastic volatility, the rate of
mean-reversion o in OU process (Y (t)) driving the volatility is assumed to
be large. Hence, we need to find asymptotic behavior of P(t, X, y; T) in the
limit & — o with v = B/+/20 remaining constant. The asymptotic analysis

is carried out as 1/ becomes small. For this purpose, we make the following

scaling:
g = é 2.21)
N2
=" T (2.22)
Pt X, y; T) = M5(T —t, y)e BT V%, (2.23)

where B is given by (2.8). The function M ®(t, y) is defined by Mé(t, y) =

M (t, y) with M as given in the following. In (2.23), we re-label M as M ®

stress the dependence on the small parameter e, while we notice that

e BT-UX 4oes not depend on &:



12 K. Narita

M(t, y) = E{eJ-tT c(s,Y (s))ds

Y(t) = y},

dY (t) = (a(m =Y (1)) - Bb(t, Y (t)))dt + BAW (t),

where Y is defined by

on some probability space, where W is a standard Brownian motion, and we

define

b(t, y) = A(y) +pf(y)B(T - 1), (2.24)

oft, y) = 5 H(yPB(T 1) = BT ~ )&%, - Ay f(y) ~ (225)

with B(t) as given by (2.8), and with f(y), A(y), y(y) and A(y) = pA(y)
+p'y(y) as given in (2.20); the same assumptions on these functions are

imposed as in the preceding. Then the coefficients of Y are bounded with
smooth derivatives, and hence M is the unique classical solution of the
Feynman-Kac partial differential equation:

2
M L aayl\zfl +(a(m = y) - phi(. y))%'\" ret, YM =0, (2.26)

M(T,y)=1. (2.27)
Moreover, we define Py, by
Pt %, y: T) = Mz, y)e BT (2.28)

with B as defined in (2.8). Then it follows from direct calculation that Py

is a classical solution of (2.20) with terminal condition 1, and hence
Pu(t, X, y; T)=P(t, x, y; T), that is, the bond price (2.19) is given by
formula (2.28):

E*O”’ Y){e—j: r(s)ds

r(t) = x, Y(t) = y} = M(t, y)e BT-UX  (229)

Hence, validity of formula (2.23) is verified.
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Then, by singular perturbation method, Cotton et al. [2] and Fouque et al.
[7] studied asymptotic analysis and obtained corrections for bond prices
under the scaling (2.21) and (2.22) as the following theorem:

Theorem 2.1. Introduce the expressions

52 =(f?), (2.30)
r* =1, —(Af)/4, (2.31)
vy = S (1), (2.32)
V, = - Vj; (AY) — vp~2e (F '), (2.33)
Vi = vV2e(Ay), (2.34)

where A(y) = pA(Y) + /1 - p?y(y), and (-) denotes the averaging with

respect to the density n(y) of the normal distribution N(m, v2), and ¢ and

y are specific solutions of the Poisson equations

Lop = F2—(f2), (2.35)

Loy =L — (L F), (2.36)
2

Lo =2 % +(m- y)% 2.37)

2
Here, writing £, = V—i(n i) under the boundedness assumptions on f

noy\ o

and A, we can choose ¢ and y such that their first derivatives given by

o= [ (1@ - (1)@,

Vn(y) e
L1 Y ~
w—v%wfﬁjMﬂHﬂ (L t)n(2)dz,

are bounded and ¢ and y themselves are at most linearly growing in | y|.
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Further, let

D(x) = \;g (r - B(x) - LaB(x) - %é28(1)3j
V 1. 2 V.
_ a% (T — B(1) - 7 aB(r) j + El(r - B(1)), (2.38)
Po(t, x; T) = P(t, x; T) = A(T —t)e BT-UX, (2.39)
Ri(t, x; T) = D(T —t)A(T — t)e BT-UX, (2.40)

where A and B are defined in (2.9) and (2.8), respectively. We notice that B,
is exactly the Vasicek one-factor bond pricing function P with the “averaged
parameters” (&, r*, G) related to the stochastic volatility parameters in
(2.17)-(2.18) by (2.30)-(2.31); see (2.4)-(2.5).

Let P(t, x, y; T) be the model’s bond price given by (2.19). Then the

corrected bond price is given by
Pt X ¥ T) = Ry(t, x T) + R(t, % T)
= AT -0 +DT -0)]e BT VX as g 50, (2.41)

where D is a small factor of order & = 1/~/a. The error in approximation

(2.41)is of order & = 1/a. Thus, forany fixed t <T, X, y € R,
[P X y: T) = (Rt s T)+ At x T))[ = 0().  (242)

Theorems 4.6 and 4.7 in Section 4 will show an extension of group
parameters {V3, V,, V|} as given by (2.32)-(2.34) to the case of the fractional

Vasicek model.

3. Pricing PDE

Let us consider the interest rate model as given by (1.1) and (1.2). Then
we shall derive bond pricing PDE by heuristic method, using fractional Ito
formula in fractional integration theory. For simplicity of notation, we
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rewrite equations (1.1) and (1.2), omitting the variables t, as follows:

dr = bydt + f(Y)dw, (3.1)
dY = bydt + BdB, (3.2)

where
by =4a(r, —r), by =a(m=-Y). (3.3)

Then equations (3.1) and (3.2) can be simplified as follows:

MEN
d = ' |dt+ d : (3.4)
vy) by 0 B (By

By Assumption 1.1(ii), since the random sources W and By are independent,
we can apply both standard Ito formula and fractional Ito formula to equation
(3.4).

Given a time-t short rate r and time-t random sources (W, By ), the
expected change and the variance of the change in interest rate and volatility
factor are assumed to be functions of both r and Y. Let

V=Vt rY;T)

be the price of the T-maturity discount bond with unit par. Then, by standard
Ito formula and fractional Ito formula (Theorem B.3 in Appendix B and
Lemma C.2 in Appendix C), the stochastic process of the price of the
discount bond is given by dV /V, where

_Jev oV 1%V ,»

oV 1 62 —2at d 2
+{6—YdY +§—6Y2 IiE a” Ot "®H,t:|dt
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v 102V [ _2qt d 2
+(6_YbY+§_aYz[e a"gt"caH,t} dt

oV v
+ {E F(Y)dw + =-BdByy } 3.5)

Here, |- | is the norm defined on the Hilbert space ®p ; of integrands
@ H ’t H 7t

on [0, t], t < T, associated with the induced transformation of representation

for By (t) (see Remarks B.1 and B.2 and Lemma C.2), and

9t (u) = 70,y g(u), g(u):=e“'p, 0<u<t<T.

Namely,
av
v wt, r,Y; T)dt+ o (t, r, Y; T)dW + oy (t, r, Y; T)dBy, (3.6)
where
o 1laev N 12,0V
u(t, r,Y,T)—V{at + by ar +2f (Y)arz

a_V l —2(xti 2 52V
by vt 2[e ail ot II@HJ—GYZ}, (3.7)

- Ly 1y lgav
orl(t, r’Y’T)_Vf(Y)W and oy (t, r’Y’T)_VBE}Y' (3.8)
In the following, we shall take the same argument as that in Kwok [12,

pp. 404-406].

Since the short rate is not a traded security, it cannot be used to hedge
with bond, like the role of the underlying asset in an equity option. Instead
we try to hedge bonds of different maturities. This is possible because the
instantaneous returns on bonds of varying maturities are correlated as there
exists the common underlying stochastic short rate that derives the bond
prices. In fact, we construct a portfolio as follows: Since there are two
stochastic factors in the model, we need bonds of three different maturities to
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form a riskless hedging portfolio. Suppose we construct a portfolio which

contains A;, A,, Az units of bonds with maturity dates T;, T,, Tj,

respectively. Let IT denote the value of the portfolio. As usual, we follow the
Black-Scholes approach of keeping the portfolio composition to
instantaneously “frozen”. By (3.6), the rate of return on the portfolio over

time dt is given by
dIT = [Aju(Ty) + App(Ty) + Azu(T3)]dt
+ [A1o, (T)) + Ao (To) + Azo,(T3)]dW
+[Ajoy (Ty) + Azoy (Ta) + Aoy (T3)]dBy. 3.9)

Here, u(Tj) = w(t, r, Y; T;) denotes the drift rate of the bond with maturity
Ti, i =1, 2, 3, and similar notational interpretation for o, (Tj):=oc,(t,r,Y;T;)
and oy (Tj):=oy(t, r, Y; Tj). Suppose we choose A;, A, and A3 such
that the coefficients of the stochastic terms in (3.9) are zero, thus making the

portfolio value to be instantaneously riskless. This leads to two equations for
A, A, and Aj such that

Ao (Ty) + Ayo(Ty) + Azor(T3) = 0, (3.10)
AIGY (Tl) + AZGY (Tz) + A3GY (T3) =0. (31 1)

Since the portfolio is now instantaneously riskless, it must earn the riskless

short rate to avoid arbitrage, that is,
dTT = [Ajp(Ty) + Apn(To) + Azp(Ts)]dt
=r[A; + Ay + Az]dt.
Thus,
A[u(Ty) = 1]+ Ap[u(Ty) = r]+ A3 [u(T3) - r]= 0. (3.12)

The simultaneous linear equations (3.10), (3.11) and (3.12) for Ay, A, and

A5 can be represented by the matrix equation as follows:
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or(Ty) or(T2) or(T3) (A 0
oy(M)  oy(M)  oy(T3) |[Ay|=]0] (3.13)
pT)-r wm)-r n)-r)la;) (0
Nontrivial solutions for A;, A, and Aj exist when the third row in the

above coefficient matrix can be expressed as some linear combination of the

first and second rows. Since the maturity dates T;, T, and T5 are arbitrary,

this leads to the following relation between the drift rate and volatility
functions:

wt, rY;T)—r=%0c(t r,Y;T)+Ayoy(t, 1, Y;T), (3.14)

where the multipliers A, and Ay are independent of maturity T; in general,
Ar and Ay should have dependence on r, Y and t. Here, A, and Ay are

recognized as the respective market price of risk of the short rate r
and volatility factor Y. Substituting the expressions for u(t, r,Y;T),

or(t,r,Y;T) and oy (t, r,Y; T), as given by (3.7) and (3.8), into (3.14),

we obtain the following governing equation for the bond price:

1oV 6V ;2
—2at d 52V
+bY "gtll@HtaY_Q_r
1 oY oV
‘fof(Y)a 7‘Yv oy
Namely,
oV 8V
|:at + br a Z(Y)
—2qt d oV
+bY [ at ”gt”@Ht}aY }—I‘V

oV oV
= lrf(Y)ﬁ + 7LYl35—Y
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Therefore,

oV

N 1 2, 0V

d oV
oy =B Gy e Gl ol S -

=0.

Combining this with Lemma C.2 in Appendix C, we obtain the following
lemma:

Lemma 3.1 (Bond pricing PDE). Suppose Assumption 1.1. Then the no-
arbitrage bond price satisfies the following equation:

oV

2
N oo -2t L <Y>
2
N L AIE mtdngtu@m};—vz—rv
=0 (3.15)

with suitable scalars A, and Ay, i.e., the market prices of risk with respect

torand Y. Here, |- ||®H . 1s the norm which is defined on the Hilbert space

©y ¢ of integrands on [0, t] associated with the induced transformation of

representation for By (t), and

br = é(Foo - r)’ bY = OL(m —Y),

9t(s) = x[0,1()9(s),  9(s)=e*B, 0<s<t<T.

Further, the expression for

_ d 2
2ot ol |

is obtained by applying (C.6) and (C.7) of Lemma C.2 in Appendix C,
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accordingto H >1/2 and 0 < H <1/2, respectively. The terminal condition

for Visgivenby V(T, r, Y; T) = 1.

The market price of risk A, may depend on Y but we assume that it does

not depend on the short rate r. Similarly, the market price of volatility risk

Ly associated with the second source of randomness By (t) may depend on

Y or simply be a constant. More precisely, we assume the following:

Assumption 3.2. In our model described by (1.1) and (1.2), we assume

that the functions A, and Ay, the market prices of risk with respect to r and

Y, respectively, are expressed by
A = M(Y), (3.16)

1y
Ay =a?  y(Y), (3.17)

appealing to the Hurst parameter H. The risk premium processes A(Y (t)) and
7(Y(t)) are bounded:

<A y<C)<w

for some constants ¢{ > 0 and ¢5 >0, and A and y have bounded derivatives.

4. Asymptotics in the Fast-scale

In order to model fast mean-reversion, we rescale o, rate of mean-

reversion, under the following assumption:

Assumption 4.1. Let 0 < H < 1. Consider (Y(t)) as given by (1.2).

Then we introduce the scaling as follows:

(1) The rate of mean-reversion o or its inverse, the typical correlation

time of (Y(t)), is characterized by a small parameter 0 < ¢ < 1 such that
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(i) Let v be the variance of the normal distribution N(m, vf;) which
is the invariant distribution of (Y(t)), as given by (C.4) of Lemma C.1 in

Appendix C; v2H controls the long-run size of the volatility fluctuations.

Then we assume this quantity remains fixed as we consider smaller and

smaller values of ¢ such that

-H
BofvH (Lj T R
JHT(2H) Jla JHT(2H) ) ¢H
Remark 4.2. Under Assumption 3.2, define k(t, r, Y) and Iz(t, r,Z) by

K(t, 1, Y)=b, — %, f(Y),

K(t,r,Y)=by —yp.
Thenkand K are expressed as follows:

K(t, r,Y)=a(f, —r)—A(Y)f(Y), (4.1)

N 1y
kit ,Y)=a(m-Y)-aZ y(Y)B

VH (4.2)

1 1
=-(m —Y)—ﬁ(—m)ﬁ’(\()-

If H =1/2, then equations (4.1) and (4.2) coincide with the expression for

the corrected drift term as given by Cotton et al. [2] and Fouque et al. [7],

and with uncorrelated case where correlation coefficient p = 0 such that

volatility shocks and short rate shocks are independent; see PDE (2.20) in
Section 2.

The following result is given in Narita [16, Lemmas 10.2 and 10.3].

Remark 4.3. Let 0 < H < 1. Let (Y(t)) be given by (1.2). Define the
function g; by

g¢(u) = xjo,qWg(u), g(u)=e™p, O0<u<t<T,
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Let o = 1/g, where 0 < ¢ < 1. Then, for t > 0,

e—2(xt|:%" g ||éHJ - 2{(\/%' 3 + o(l)} (4.3)

as € = 0; see Lemma D.2 in Appendix D.

Then, by Lemma 3.1 and Remarks 4.2 and 4.3, we obtain the following
pricing PDE:

Lemma 4.4 (Bond pricing PDE in terms of €). Let 0 < H < 1. Suppose
that Assumptions 1.1, 3.2 and 4.1 hold. Denote the no-arbitrage price at

time t of a zero-coupon bond with maturity time T by R®, emphasizing

dependence on the small parameter €. Then {P%; 0 <t < T} is a function of

current price of short rate and volatility:
PE = PE(t, r(t), Y(t); T).
Moreover, for & small enough, the function P%(t, x, y; T) when

rt)=x, Y@{)=y

satisfies the following equation:

€ 2pe .
{%%fz(y)a (@ - ) - M F) S —XPS}

2 1)@ Ty (va )Ll oP®
+(VH e 6y2 + 8( Y) m \/EY(y) dy
=0 (4.4)
with the terminal condition
PE(T, %, y;T)=1. 4.5)

We shall find an asymptotic solution for PDE (4.4). For this purpose, we
introduce the following operators:
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2

Ly =V} % +(m- y)%, (4.6)
L= —(WJY(Y) oy 4.7

£ .=§+—f2(y)—+<a<r - IONL-x @)

Remark 4.5. Introduce the usual one-factor Vasicek operator:

v 0 1_p 02
Lyasicek (G, 1) = = A + = 50 ax—2+a(r —x)——x (4.9)

with deterministic parameters ¢ > 0 and r* >0, where & measures the
characteristic speed of mean-reversion of OU process (I(t)); see (2.1) and

(2.2) in Section 2. Then £, is viewed as
L5 = Lyasicek (T, ™)
with constant levels taken by

=1y, r" =0, -y f(y)a

In Theorem 4.7 further, the y-dependent parameters are computed as the

averaged values with respect to the density n(y) of the invariant probability

distribution of (Y(t)), and hence main operator (£, ) is obtained as follows:

(£2) = Lvasicek (O r*)
with deterministic parameters
G=(f(y), r"=r, -y f(y))/a
Here and hereafter, (h(y)) denotes the average of h on R with respect to the

density n(y) of the normal distribution N(m, v#;) (see (C.3) of Lemma C.1
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in Appendix C), the invariant distribution of fOU process (Y (t)):

_ o y=mp?
n(y)—JZMZH p{ ) j

(h(y))

(h) —_“jo h(y)n(y)dy = \/7'[ h(y)exp( (y- ) de

PDE (4.4) is equivalent to the following singularly perturbed equation:

1 1
—Lo+—=L+L jPE:() 4.10
(8 ot =k 2 (4.10)

with the terminal condition (4.5).

In the following, we shall find asymptotic expansion for P® with respect
to the small parameter €. For this purpose, we shall assume that P® can be

expanded by powers of Ve as follows:
Pt X, y; T) = Po(t, X, ¥; T) + VeR(t, X, y; T) +ePy(t, X, y; )+
(4.11)

for small €, where Py, P, ... are functions of (t, X, y) to be determined by

the terminal conditions
P(T, %, y;T)=1 RB(T,x y;T)=0 for i>1. (4.12)

Recall that the volatility factor associated with & corresponds to the fast

volatility factor Y(t). In the case of the fast mean-reverting stochastic

volatility, such an expansion in powers of e is considered in Cotton et al.
[2] and Fouque et al. [7], and the references therein, where the singular
perturbation analysis for financial markets with stochastic volatilities is
taken under the sBm environment; see (2.20)-(2.23) and Theorem 2.1 in
Section 2.

Our theorem (Theorem 4.6 in Section 4) is an extension of the precedent
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result in Cotton et al. [2] and Fouque et al. [7] to the stochastic volatility

interest rate model under the fBm environment.

In the following, we shall find the solution P® of the form (4.11).

Substituting the expansion (4.11) into (4.10), we can write as follows:

(%Co +%£1 +£2)(P0 +JeP +ePy + )

1 1
=|-Ly+—=L+ L, |PR
(g 0 \/g 1 2) 0
+'\/E(l£0 +LE1+E2)P1 +8(l£0 +L£1+£2jpz+“'
€ Ve € Ve
=0.

Therefore,

lﬁol:’o +L(£0Pl + L1Py) + (LoPy + L1R + L)Ry)
€ Je

+ '\/g(ﬁol% + £1P2 + ,CQP]) + -
- 0. (4.13)

For equation above, step by step, the terms of order 1/e, 1/«/5 , ... will be
studied.

Term of order 1/¢. Atorder 1/¢, we have
LoPy = 0. (4.14)

The operator L contains partial derivatives with respect to y but no
derivatives with respect to X. Hence Pj must be a constant with respect to the

variable y, which implies
Py =PRy(t, x; T) (4.15)

with terminal condition Py(T, x; T) = 1.
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Term of order 1/v/e. At order 1/+/e, we have
‘COPI + [’IPO =0. (4.16)

Notice that P, only depends on t and X and that the operator £; involves the
derivative with respect to y. Then we have that £;F, = 0, and hence (4.16)
is reduced to LyP, = 0. The operator L involves derivatives with respect
to y. Thus, P, must be a constant with respect to y, which implies P, =

R(t, x; T) with the terminal condition P(T, x; T) = 0.
Thus, we note that the term B, + Je P in (4.11) will not depend on y.
Zeroth order-term. At order 1, we have
LoP, + LB + L,P) =0. 4.17)
The discussion above implies that Py and P only depend on (t, X) and that

L; and L involve derivatives with respect to y. Thus, £;P, = 0, and hence
(4.17) is reduced to

£0P2 + ‘CZPO = 0. (418)

Here, P, only depends on t and X. When regarding X as fixed, £,P, only

depends on y. Hence equation (4.18) is a Poisson equation for P, with
respect to L, thatis, LyP, = -L,F,.

In order to have a solution to the Poisson equation (4.18), £,F, must be

in the orthogonal complement of the null space of E;, where EB is the

adjoint operator of £, such that
* 0 2 62p
£0D=—a((m—y)p)+VH—2 (4.19)
oy

for p e CZ(R). This solvability condition is equivalent to saying that £yP,

has mean zero with respect to the invariant distribution, which yields
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E[£,Py] = (L2Py) = _[_OO L,Pon(y)dy = 0, (4.20)

where n(y), the density of the normal distribution N(m, v ), solves
Ly = 0. Namely, the solvability condition above implies that (£,Py) = 0.
Since P, does not depend on Yy, the solvability condition is reduced to

(L)Py =0, (4.21)
which is exactly the partial differential equation

P 2Py s P
(£2>P0:%+%322X_20+a(r —x)%—)?—xP():O (4.22)

with the coefficients

5% = <f2> and r* =T, - =(Af) (4.23)

| —

and with the same terminal condition Py(T, x; T) = 1. We recall that equation
(4.22) is the same as equation (2.4) for the one-factor Vasicek model. This
implies that Py = P with the function P as given by (2.5), where constant

parameters G and r* are replaced by (4.23).

In equations above and below, we notice that the averaged quantity (-)

does not depend on &.
The change of variable T = T —1t is again convenient, and we obtain
Po(T =1, % T) = A(r)e BIX, (4.24)
where A(t) and B(t) are given explicitly by formulas (2.9) and (2.8) in
Section 2, respectively, except that G and r* are given by (4.23).

Observe the equation

LoPs = —L,P. (4.25)
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Apply the same solvability condition as given in equation (4.20). Then, since
(L,Py) = 0, we see that L£,P, in the right-hand side of (4.25) can be written

as

LyPy = LoPy = (LyPy) (= L2Py = (L2)Ry)

62P0 P,

=3 (0P ~{PD= D1 - () ZD

Recall that £yP, = —£,P,. Then we have

a2 PO

1 oP,
£0P2=—§(f2—( 2 I 9.

+f (1) Zr (4.26)

The solution of the Poisson equation (4.26) is given by

02 PO

P2=£51{—§<f2—< Rlws O =0T }

2
R AU Ry CURI

82P0

=~ {oly) + ot x)} +u(y) +d(t, 0

(4.27)

Here, ¢(y) and y(y) are specific solutions of the Poisson equations

Lod =Ty =(f?) and Loy =My)f(y)-(AF),  (4.28)

and c(t, x) and d(t, x) are constants that may depend on (t, x). In fact, £
does only involve the variable y and P, does not depend on Y, and hence we

obtain (4.27). We shall go into detail about specific solutions ¢ and  in the
proof of Theorem 4.7 in Section 4; see (4.48) and (4.49).

Term of order ve. At order Ve , we have

LoP; + L1P, + LoP = 0. (4.29)
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This is a Poisson equation for Py with respect to £y, which is written by

LoP; =—(L1P, + L5P). (4.30)
Again, applying the same solvability condition as given in equation (4.20),
we obtain
(L1P, + L,B) = 0.
Hence

(LoR) = =(L£1Py), (4.31)

where P, is already known by (4.27). In the following, we investigate
(L,P). Notice that P; does not depend on y and consider that (£,) is the

one-factor Vasicek operator as given by (4.22) and (4.23). Then we have that
the left-hand side of equation (4.31) is equal to (£,)P. Observe the right-

hand side of (4.31) with P, replaced by (4.27). Then we find

2
~{E1Pa) = 3 {C1(60y) + ot 0) 2~ (£ (v(y) + dit ) TP
2
= (L) 2 - (L) P 432

where ¢ and y are specific solutions of the Poisson equations (4.28), and we
used that £c(t, X) =0 and £;d(t, x) = 0, since £; does only involve the
variable y. Hence, by (4.31) and (4.32), we obtain

(Lo)P =—(LiPy)

2
= (e 2 - (i) S

——i[v—'*j< o) 2
2 rem )T e

0P,
o (4.33)

+ (ﬁj (r(w'(y))
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where

VH 0
L) =—-| /— —.
: ( HF(2H)JY(y)5V
According to Fouque et al. [7, Chapter 11], we denote the first correction by
Pt x; T)=VeR(t, &T), (4.34)

where & = 1/a, and introduce the expressions

1 VH

E(Wj (v(Y)9'(y)),

V, = e (4.35)

v, (4.36)

v v (V).
| Farem r(Mw'(y)
Further, we define the operator A by

0? )

Then, by (4.33), we observe that the function ISI is a solution of
(L) = ARy (4.38)
with the terminal condition P(T, x; T) = 0.

Finally, we want to find the explicit form of the solution ISI to (4.38). Let
Py be given by By = P, where P has the form (2.5) in Section 2, except
that constant parameters G and r* are expressed by (4.23). Then the change
of variable t=T -t for P, is again convenient; Py(T — 1, x;T) =

A(t)e_B(T)X as shown by (4.24). Observe expression (4.37) for A. Then

equation (4.38) becomes

- S
R _150R

A(r* — a_lsl_ D -B(t)x/_ 2
ot 2 ox2 a(r X) ox xP + A(t)e (-V,B(7)” +V;B(1))

(4.39)
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with the terminal condition B (T — 0, x; T) = 0; A(t) and B(r) are expressed
by (2.9) and (2.8) in Section 2, respectively, where constant parameters G

and r* are given by (4.23).
We now try to find a solution of the form
P(T -1, T) = D(t) A(z)e BOX, (4.40)
which leads to the following equation for D(t):
D'(t) = —V,B(1)? +V;B(). (4.41)

Here, we have used the differential equation (2.7) in Section 2, satisfied by

A(t). Since D(0) =0 and A(0) =1, we obtain an explicit expression for

D(t), written here as a function of B(t) = (1 — e )/a:
D(t) = — 2 (- B(r)- L aB(1} |+ L(r - B()).  (442)
a2 2 a

Substitute equations (4.24) and (4.40) together with (4.42) into the expansion
(4.11). Then we get the bond price with stochastic correction as follows:
PT -t % ¥;T)~Py(T -7, x; T)+P(T -1, x;T)
= (1+ D(x)) A(x)e B
for € small enough. Therefore, the corrected bond price is given by
P(t, X, y; T) = Py(t, x; T) + B(t, x; T)

= (1+ D(T - t))A(T —t)e BT~ (4.43)
for € small enough. Here, D is a small factor of order Je = 1/ Vo The error
in the approximation (4.43) is of order & = 1/a..

Theorem 4.6. Let 0 < H < 1. Suppose Assumptions 1.1, 3.2 and 4.1. Let

P, and P} be given as follows:

Po(t, x; T) = AT —t)e BT -0x (4.44)
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R(t, x; T) = D(T — t) AT —t)e BT DX, (4.45)
where A(t) and B(r) are given explicitly by formulas (2.9) and (2.8) in
Section 2, respectively, and D(t) is given by (4.42). Here, the “averaged”
parameters (G, r*) appearing in A(t), B(t) and D(z) are redefined by
(4.23). Further, D(t) is a small factor of order e =1/~Jo as “group
parameters” (V,, V) in equations (4.35) and (4.36) imply. Then, for any
fixedt <T, X,y e R,

| P(t %, v T) = (Ro(t, x; T) + Bi(t, ; T)) | = O(e)

for € small enough, where P(t, x, y; T) is the model’s bond price.

In order to illustrate how the fundamental parameters (V,,V)) in

equations (4.35) and (4.36) are related to the model parameters, we can

compute V, and V; by using the definition of ¢'(y) and y'(y), the
derivatives of the functions ¢(y) and wy(y) which are the solutions of the

Poisson equations (4.28), i.e.,

Lod = T(y)? =(f2), Loy =r(y) f(y) - (rf),

where (-) denotes the averaging with respect to the density

_(y—m)zj

1
R
27'CV|2_| 2VZH

of the normal distribution N(m, v|2_| ). We first notice

e L [-m) [ (y-mP| [ _d
n(y)_\/2nw2.|( V2H j p[ 2V2H J (_dy)

- om > ™ n(y),

VH
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and hence

(m-y) _n(y)
v n(y)

Since L) has the form (4.6), the equation above implies

Lod = vEH"(y) + (M= y)d'(y)

—V} (q)”(y) w = . y)cb(y)J
H
— (60 + 6]
2
= %(n(y)cb”(y) +(y)§(y)

n(y)( (V)

Therefore, we have the following relations:

Lo = fy? —(f}) = )<n<y)¢(y»—f(y>2 (12)

n(y
1 oy 1
= i) MO = (1) (1)
& () = == (F(y)? = (F2)n(y).
VH
Integrating the both sides of the last equation above, we have
E =5 [ (1@ ~(F)n()dz,
VH * %

and hence

Ol IR L O (4.46)
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Replacing ¢ and (f 2) by v and (Af), we take the same argument as taken
in the preceding. Then we get
1

vin(y)

Here, we notice that under the boundedness assumptions on f and A (see

v(y) = [ cot@-omn@e @4

Assumption 1.1(iii) and Assumption 3.2), we can choose ¢ and y such that
their first derivatives are bounded and ¢ and y themselves are at most

linearly growing in | y|.

The V's are complicated functions of the model parameters, including

market prices of risk, and the volatility function f. By (4.36) and (4.47), we

notice that a market price of risk such that Af is a constant implies y' = 0

and hence

Vp =Ve| —H— (y)) = 0.
| [ HF(2H)J<Y(y)W(y»

Using (4.46), the formula of ¢'(y), we can find the explicit expression
for V, as given by (4.35):

1 VH

> (m} ()9 (y)).-

We first calculate the value of (y¢'):

(v} = <v(vénJU_'w (2 —<f2>)nj>

[ y(y>[ 1 j[j_yw(f(z)2—<f2>>n(z)dzjn(y>dy

vin(y)

-~ y(y{iju_yw (f(2)° —<f2>>n<z>dzjdy

V, = —e
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| y 2 2
= [ (1@ (2 )n(2)dz |dy. (4.48)
VH —00 —0
Denote by G(Yy) the primitive function of y(y), that is,

G(y) = [ ¥(y)dy.

Put

M) = [ (F@ = (12)n()dz,

where (fz) = J-fooo f(y)zn(y)dy. Then, integrating by parts, from (4.48),

we have
1 o0
N= — G'(y)M(y)d
(v¢') %) J_w (Y)M(y)dy

- LMo - [ smmme|

) -

= L7 G(y)M(y)dy} (- M(e0) = M(=0) = 0)
v%.{j—w YIM(y y}
=== e = ()n(yay

VH —®©

- L (G(12 - (f2)). (4.49)
VH

Replacing f(y)? by A(y)f(y), we take the same argument as taken in
the preceding. Then we get

o))
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1
- _E@(m — (A f))) (4.50)

with G(y) = I y(y)dy, the primitive function of y(y).

Therefore, substituting (4.49) and (4.50) into (4.35) and (4.36),
respectively, we obtain the following theorem:

Theorem 4.7. Let 0 < H < 1. Suppose that assumptions in Theorem 4.6
hold. Let V, be defined by (4.35) and V; by (4.36). Consider the
approximated expansion

P(t, X, y; T) = (1+ D(T —t)) A(T —t)e BT VX

as shown in Theorem 4.6. Then the function D(z) is given by (4.42) in terms

of V, and V;. Moreover, V, and V; have the explicit expressions as follows:

1 % ,
= ~Ve3 iy o

_ 1 1 2 /2
_JEZVH (\/Hr(zH)j(G(f (£, (4.51)

V) =

o et ow)

1

1
£ (Wj@(ﬂ - (A5,

where G(y) = [y(y)dy and & = I/a.

(4.52)

Remark 4.8. Under standard Brownian motion environment, Cotton et
al. [2] and Fouque et al. [7] obtained the corrected bond price in terms of
the group market parameters (V3,V,,V;) in the general case, where the
parameter p with p € (-1, 1) allows a correlation between volatility shocks

and interest rate shocks; see (2.32)-(2.34) of Theorem 2.1 in Section 2. If
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H =1/2 is formally substituted into (4.51) and (4.52), then the

representations coincide with these of Theorem 2.1, where p =0 and V3 = 0.

Appendix

A. Stochastic integral

Here, we begin to introduce stochastic integration theory. For given H €
(1/2, 1), define ¢ : RxR — R, by

o(s,t)=H@H -1)[s—t]?" 2 s teR
Let f : R —» R be Borel measurable such that

£ = j RJR £(s) f (£)4(s, t)dsdt < oo.

Then the stochastic integral with respect to fBm By is well-defined to be a
Gaussian random variable. It follows from Gripenberg and Norros [8] and

Nualart [22] that for any deterministic integrand f e L*(R, R) N L'(R, R),

m

j: f(t)dBH(t)} _o,

m

© 2
fOd®| |=[ [ f6)f®els, dsdt
[ 00 ] [t e
In this paper, we shall follow the stochastic integration theory with
respect to fBm By by Hu [10, Chapters 6-7]; Hu [10] extended the integral

above to the general integrands under arbitrary Hurst parameter H e (0, 1).

Remark A.1 (Pathwise integral). There are several definitions of
stochastic integrals for general integrands with respect to fBm By . One of
them is the fractional pathwise integral which is taken by the limit of the
usual Riemann sum as defined using pointwise products. However, this
integral does not have expectation zero. Further, Rogers [24] showed that
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arbitrage is possible when the risky asset has a log-normal price driven by an
fBm if stochastic integrals are defined using pointwise product.

Remark A.2 (Wick-Ito integral). In the white noise approach, the Wick
product is used instead of the ordinary product in the Riemann sums in order
to define the stochastic integrals. The Wick product for F and G is written by
F ¢ G; here commutative law, associative law and distributive law hold. If

at least one of F and G is deterministic, e.g., F = a; € R, then the Wick

product coincides with the ordinary product in the deterministic case. Such
an integral is called Wick-Ito integral or fractional Ito-integral.

In BS model, a risky asset is often formulated by a geometric Brownian
motion (gBm) which is a solution of linear stochastic differential equation
(SDE). For an application of Wick calculus to option pricing, for instance,
we can refer to Necula [21] and Narita [17, 18]; here risky asset is formulated
by a fractional geometric Brownian motion which is a solution of SDE
driven by fBm By with Hurst parameter H e (1/2, 1). For the details of an
application of the Wick calculus to SDEs, we can also refer to Biagini et al.
[1], Holden et al. [9], Narita [19, 20] and the references therein.

Remark A.3 (Fractional calculus). Another definition of stochastic
integrals with respect to fBm By for general integrands is given by
fractional calculus for arbitrary Hurst parameter H e (0, 1). In this case, the
stochastic integration theory is based on both the left- and right-sided
Riemann-Liouville fractional integral and the left- and right-sided Riemann-
Liouville fractional derivative. A risky asset in BS model can be formulated
by a fractional gBm which is a solution of SDE driven by fBm By under
fractional calculus. We can refer to Mishura [13], Nualart [22] and the
references therein for the existence of pathwise solutions and the uniqueness
in law for SDEs driven by fBm By .

In general, quadratic variations of stochastic integrals with respect to

fBm By for general integrands have abstract and complicated expression,

and hence there is difficulty in application of Ito formula.
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Remark A.4 (Stochastic integral in the sense of Hu [10]). In this paper,
we shall take the stochastic integral in the sense of Hu [10, Chapters 6-7]
(Hu integral, for short). This is the stochastic integral with respect to
By (H € (0, 1)) for algebraically integrable integrands; the integration

theory is developed by using Wiener chaos expansion and an idea of creation

operator from quantum field theory. If 1/2 < H <1, then the Hu integral

coincides with the Wick-Ito integral in the sense of Duncan et al. [3]. If
0 < H <1, then the Hu integral for deterministic integrands coincides with

the stochastic integral of variation in the sense of Hu [10, Definition 6.11]
and Nualart-Pardoux [23].

The Hu integral with respect to fBm By (H € (0, 1)) has expectation

zero and can be concretely evaluated in the case of deterministic integrands.
This enables us to apply Ito formula to linear SDE of the form

dX(t) = a(t) X (t)dt + b(t) X (t)dBy (t) (H € (0, 1))
with deterministic coefficients a(t) and b(t).

In the following, we shall introduce the Hilbert space, denoted by @y =
Oy ([0, T]), for the sake of understanding of the stochastic integrals.

Let W(t) be a standard Brownian motion (sBm). Then a fractional
Brownian motion (fBm) with Hurst parameter H, 0 < H <1, can be

represented in terms of sBm W (t) as follows:

By (1) = j;zH(t, $)AW(s), 0 <t <, (A1)
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and

3
2HF(§—H)

F(H ; %)r(z _2H)

KH

with the Gamma function I'(x) = I ;o e Uu*"du. If we formally differentiate

(A.1) with respect to t, then we have
. d d rt d rt )
Bir (1) = g B (D) = G | Zn(t )W (s) = | Zu (b s)W ().

Let T >0 be arbitrary and fixed. Let us consider functions over the
interval [0, T]. Then we can introduce the following integro-differential

transformation:
d t
FH,Tf(t)zaJ.OZH(t, s)f(s)ds, 0<t<T. (A2)

In the case of no ambiguity, we use I'y = I'y 1, and hence ryW = By.

The inverse operator of I'yj 1 can be defined by By 1, satisfying

Iy Byt =1,

where | is the identity operator. The transpose of I'y v and By 1 is,
respectively, denoted by FT—LT and BT—LT-

Let A = {BT—LT f : f €S}, where S denotes the set of all functions on
[0, T] whose derivatives are bounded. If By 1 f =0, then f =T} 1B} 1 f
= 0. This means that B}, _T 1s a bijection from S to A. For any two elements

in A, say g = BT—I,T fy and g, = IB%]:,T f,, define

T T * *
(91: 92)g,, = .[o fi(t) fo(t)dt = Io 'y 7191(OTH T92(Ddt. (A3)
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Then A is a pre-Hilbert space with respect to the above scalar product. The
completion of A with respect to the scalar product (., -)®H is denoted by

Oy ([0, T]), which is a Hilbert space. Since T > 0 is fixed, we use Oy to
denote ® ([0, T]). B 1 :S —> A can be extended to an isometry from

the Hilbert space L2([0, T]) to the Hilbert space ®p. Its inverse is the

extension of the rT—I,T to ®@y. We continue to use BT—LT and rT—I,T to

denote their extensions.

Remark A.5 (Induced transformations). The following is due to Hu [10]:
Bh T : L2([0, T]) > ©y is an isometry from the Hilbert space L([0, T])

to the Hilbert space ®p. The value of BT—I,T on smooth function space S is
given by explicit formulas. The inverse of BT—I,T is an isometry, denoted by

T'y1:04 > L2([0, T]). The value of I'ly.1 on smooth function space S

is also given by explicit formulas.

By (A.2), we observe
By () =Th rW)(t), 0<t<T,

and hence

ij(t)dB (t)—ij(t)B (t)dt—ij(t)r (W)(t)dt
0 H = 0 H = 0 H, T

T . . T .
= [ Tl HOWE = [ @ HHaw.

Therefore, we can use the identity above to define our stochastic integral for
deterministic integrands.

Let f € ®y. Then it is known from (A.3) and Remark A.5 that g =

* T . .. .
ytfe L2([0, T]). Thus .[0 g(t)dW(t) is well-defined. This implies that
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stochastic integral can be defined as follows: for f € O,

JTf(t)dB (t)-—J'T(r* £)(6)dW (t) (A4)
0 HD= ) ThT : :

Hu [10] explained as follows: It seems that (A.4) suggests stochastic integral
for general integrands. If we use formula (A.4), then the integrand on the
right-hand side of (A.4) should be a functional of sBm. However, the
probability laws of sBm and fBm are mutually singular and a functional of
sBm may not be well-defined as a functional of fBm and vice versa. This
means that a functional of fBm (a random variable on the probability space

of fBm) may not be well-defined as a functional of sBm. Moreover, even if
T .
the right-hand side of (A.4), i.e., .[0 (T, 1 f)(t)dW (1) is well-defined, then

it is not straightforward to consider it as a functional of fBm. Hence the
definition of stochastic integral needs to be improved.

Hu [10] mainly used the integral kernels Zy (t, s) and ny (t, s) which
are, respectively, related to expressions for operators I'y 1 and By T, ie.,

the fact that the fBm can be represented by sBm and the sBm can also be
represented by fBm by explicit formulas. Hu [10] extended this
correspondence to between nonlinear functionals of fBm and nonlinear
functionals of sBm, and hence obtained the stochastic integral for

algebraically integrable integrands.
B. Ito formula

Let Oy = 0Oy ([0, T]) be the Hilbert space as defined in Hu [10,
Chapter 5]; @y is the space of integrands associated with the induced
transformation of representation for fBm By (t). Let f(S) be given over
[0, T]. Let 0 < s <t <T. Then, considering the functions f;(s) restricted to
[0, t], that is, f¢(s) = (S)x[o,1](S), we shall use @ y to denote O ([0, t]),
where the norm | f ||®H,t is well-defined. According to Hu [10, pp. 102-

103], we summarize expression for | f; ||®H t in the following remarks:
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Remark B.1. Let H > 1/2. Then
tet
2 2H-2
| ft ||®H,t = H(Q2H —I)IOIO |[v—-u] f(u) f(v)dudv.
If f is continuous in [0, T], then | f; ||®H  is differentiable and
d 2 t 2H-2
Gl i, , =2HCH —1)f(t)IO lt-uPP2fu)du, 0<t<T. (B.D)

Remark B.2. Let 0 < H < 1/2 and let f be continuously differentiable.
Then

t t
2 _ 2H -1 oy 12H-1
13, , = Hf(o)jO VT (v)dv + Hf(t)j0 lt—v P £ (v)dv

bt 2H-1 . ,
+H o |[v—u] sign(v —u) f'(u) f(v)dudv.
Making substitution U = t§, we have

%U; (t—u)?i-t f(u)duj = %(IZH J.;(l . f(tg)dg)
- 2Ht2H_II;(l —e)?M i (te)de

2H (1 p2H-1g ¢
[ - e e
Hence

SIRI3, = HEH O 1@+ 2H2CH T [ (- 22 f e

FHE T [ 0-ePH e )i

+ Hf (t)I; t—-u)?" () du. (B.2)
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Hu [10, p. 103] showed Ito formula for general deterministic f and Hurst

parameter H < (0, 1) as follows:
Theorem B.3 (Ito formula). Let 0 <H <1 and let f e®y 1/

L?([0, T]) be a deterministic function. Denote f;(s) = f()xj0,41(8),

0<s<t<T. Suppose that f; € @y and | f; ||®H . Is continuously

differentiable as a function of t € [0, T]. Denote
t t
X(t) = X(0) + jog(s)ds + IO f(s)dBy(s), 0<t<T, (B3)

: : o eT
where X(0) is a constant, g is deterministic with .[0 | g(s)|ds < . Let F be

an entire function of order less than 2. Namely,

M¢(r) = sup| f(z)| < CeX forallr,

| z|=r

where K is a positive number less than 2 and C is a constant. Then

F(t X (1) = FO. XO)+ [ Z (s, x(@)ds + [ F(s, X(5)dx(s)

1 (to’F d 2
[ R XO|EI 6, |6 0<t=T. ®a)

Here, the stochastic integral in (B.4) is in the sense of the Hu integral.

Equation (B.4) is rewritten by the stochastic differentials as follows:

dF(t, X (1)) = %(t, X (t))dt + %(t, X () dX ()

| 0%F d ¢ 2
"3 O XO) gl G, Jor

Let f =1. Then || f; ||®H’t —t", hence %" fy ||®H’t = Ht" 1. Therefore,

we have the following:
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Corollary B4. Let 0 <H <1 and let F satisfy the conditions of
Theorem B.3. Then

E(t, By (1)) = F(0, 0) + j;%—';(s, By (s))ds + jot%—';(s, By (s))dB(s)

to’F 2H-1
4 Hj 9" (s, By (s)s2Hlds, 0<t<T. (B.5)
0 ox?

C. Fractional Ornstein-Uhlenbeck process
By Narita [16, Lemmas 8.1 and 8.8], we note the following:

Lemma C.1 (Property of fractional OU process). Let 0 < H < 1. Let
Y (t) be the fractional OU process given by

dY (t) = a(m - Y(t)dt + BdBy (t), Y(0) =y, e R (C.1)

with constants o > 0, B> 0 and m > 0. Then Y(t) is the pathwise unique
solution of (C.1) with the following form:

Y(t)=m+e Xy —m)+ Be_o‘tj.oteasdBH (s). (C.2)

Further, Y(t) is a Gaussian stochastic process and has the long-run
distribution which is the normal distribution N(m, vﬁ) with mean m and

variance vﬁ such that the density is given by

2
n(y) = ;exp{— WJ (C.3)
2nv2H 2VH
where
2H
v = BzH(éj I(2H), (C4)

and I°(-) is the Gamma function, i.e., T'(x) = f;oe_aéx_ldé.
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Let Y(t) be the solution of (C.1). Let F(t, y) be a function in
cb2([0, T]x R). Define X(t) by

t t
X(t) = J.o e* (am)ds + _[0 e“*BdBH () + Y.
Then we notice that Y (t) = e X (t). For the function F(t, y), define the
function G(t, X) by G(t, X) := F(t, e *'x). Then we notice that

F(t, Y(t)) = F(t, e X (1)) = G(t, X(t)).

Applying Theorem B.3 to G(t, x) and X(t) and using the change of the

variable such that y = e_atx, Narita [16, Lemmas 8.3 and 8.7] obtained the

following Ito formula for Y (t):

Lemma C.2. Let 0 < H <1. Let Y(t) be the solution of (C.1). Let
F(t, y) be a function in C"2([0, T]x R). Then

dF(t, Y (1)) = %(t, Y(t))dt + %(t, Y (0)dY (t)

1 0%F ~2at| d 2
"3 Y lold, e ©9)

where

ge(u) = 9o, q(u). gu)=e™p, O<u<t<T.

Further, Remarks B.1 and B.2 yield the explicit form of

~2at| d 2
2ot Slocl3, |

as follows:
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() If H >1/2, then

—2at| d 2 ) —aty2H -1 1
[ Sha |-l (L)

(i) If 0 < H < 1/2, then

2H-1

B(at)}. (C.6)

—2qt| d 2 2,2H -1, .—at
2t o lB, |- HpAH e

£ 2H Zszt‘l(éjm B(at)

+ Hath_l(éTH {tB(at) - (&jC(at)}
; Hasz(am B(at). (C.7)
Here,
B(x) = IOXZZH_le_Zdz, C(x) = on 22He~2dz.

D. Fast-scale
Let us consider the model described by (C.1) and (C.2).
Assumption D.1. Let 0 < H < 1. Then we assume the following:

(1) The rate of mean-reversion a or its inverse, the typical correlation

time of (Y(t)), is characterized by a small parameter € such that

(i1) Let v2H be given by (C.4), which controls the long-run size of the

volatility fluctuations. Then we assume this quantity remains fixed as we



48 K. Narita

consider smaller and smaller values of € such that

VH 1 VH L

() (i

The following result is given in Narita [16, Lemmas 10.2 and 10.3].

Lemma D.2. Let 0 < H < 1. Let (Y(t)) be given by (C.2). Define the
function g; by
9t(u) = %0,y g(u), gu)=e*p, 0<u<t<T.

Under Assumption D.1, consider the multiplier of the second derivative
azF/ay2 in (C.5) of Lemma C.2. Then, for t > 0,

e_2°‘t[%|| 9 ||éHJ - 2{( 2 3 + o(l)} (D.1)

as ¢ —> 0, where ¢ = 1/a. Hence, for t > 0,

1 &°F —2at| d 2
an—z(t, Y(t)e [ﬁ" Ot ||®H,t}

_ (j;—';(t, Y (1) [(VZH 3 " o(l)} (D.2)

as ¢ —> 0.
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