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Abstract 

An offset procedure allows aircraft to fly several discrete nautical 
miles right of the course center line without informing air traffic 
control authority. On the other hand, an En-route Monitoring Agency 
(EMA) should monitor the navigation performance of aircraft, namely, 
the unintended deviation from their intended paths, for safety 
monitoring purposes. Only data available for the EMA are surveillance 
data collected for the purpose of normal air traffic control practices. 
They are the aircraft position data which are the sum of intended offset 
and unintended deviation. 

This paper introduces Expectation-Maximization (EM) algorithms and 
variational Bayesian methods to estimate the proportion of offset and 
the distribution of navigation performance simultaneously from the 
surveillance data. A numerical experiment shows that both EM 
algorithms and variational Bayesian methods provide the ability to 
estimate the parameters of the distribution model in reasonably short 
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time (in seconds). The estimation is accurate if the initial model 
parameter values or the parameters of prior distributions are 
appropriately set. 

This paper also proposes the estimation of the offset for a single 
observation of an aircraft. 

1. Introduction 

Strategic Lateral Offset Procedure (SLOP) is used by aircraft navigating 
an assigned route along an airway or between published navigational 
waypoints in an oceanic airspace. SLOP procedure allows aircraft to fly 1 
nautical mile or 2 nautical miles right of the course center line for mitigating 
mid-air collision hazard and reducing the effect of wake turbulence without 
informing Air Traffic Control (ATC) authority [1]. 

On the other hand, separation between aircraft becomes smaller to meet 
the increasing air traffic demand. The reduction of separation has a potential 
impact to mid-air collision hazard. The comprehensive monitoring of reduced 
horizontal separation practices by En-route Monitoring Agencies (EMA) 
starts on a regional basis and the monitoring of horizontal-plane (especially 
lateral) navigation performance of an aircraft is conducted in this framework 
[2]. 

The EMA can collect the position data of aircraft by means of 
surveillance systems such as radar and ADS-C (Automatic Dependent 
Surveillance - Contract. See [3, 4] for details.) We ignore the measurement 
errors of these surveillance systems in this paper. The EMA should know the 
magnitude of unintended deviation from their intended path to meet the 
monitoring purpose. It means that the EMA should also know the magnitude 
of offset. However, there are no deterministic means for the EMA to know 
whether an aircraft flying 1 nautical mile right to the published route applies 
one nautical mile SLOP. It may not apply SLOP and unintentionally deviate 
1 nautical mile right from its intended path, or it may apply 2 nautical miles 
SLOP and unintentionally deviate 1 nautical mile left from its intended path. 
We should know the magnitude of offset beforehand to know the exact value 
of unintended deviation. 
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As to the previous example of an aircraft flying 1 nautical mile right of 
its route, 1 nautical mile SLOP application is more likely than others if the 
aircraft has a good navigation performance. We may be able to estimate the 
magnitude of lateral offset if the actual navigation performance of aircraft is 
known and it is smaller than the increment of the offset values. It seems a 
circular argument. 

Even though we have no means to know the correct offset value and 
correct magnitude of unintended deviation, it is possible to simultaneously 
estimate both from observation data (the magnitude of deviation from the 
published route center line). We model unintended deviations as a 
distribution whose probability density function is ( ).xf  We employ the 

simple assumption that the navigation performance of aircraft is not 
influenced by the magnitude of offset. Then the total deviation from the route 
center line (the sum of an unintended deviation and offset) follows the 
distribution whose probability density function is the following: 

 ( ).
1
∑
=

−ω
L

l
ll oxf  (1) 

Here, the number lo  denotes the magnitude offset, and lω  is the proportion 

of offset execution whose magnitude is .lo  

The main purpose of this paper is to derive the methodology to estimate 
the parameters of the distribution model f and the proportion of offset lω  in 

equation (1) from observation data in a reasonably short time. This problem 
was already discussed by [5]. Newton’s method and a variable neighborhood 
search algorithm were used for estimating the parameters maximizing the 
likelihood function in this study. We employ other algorithms. Moreover, we 
introduce its potential operational application for estimating the offset in a 
single observation on the deviation from the published route center line. 

Well-known criteria for finding model parameters are maximum 
likelihood estimation and Bayesian update, which are introduced in Section 
3. We cannot find closed analytical solutions for both cases. Our distribution 
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defined in equation (1) has the probability density function similar to that of 
finite mixture distributions [6]. Finite mixture distributions are used in many 
areas. Multi-dimensional Gaussian distributions and Bernoulli distributions 
are used for the clustering of data in the field of data mining, machine 
learning and pattern recognition [7, 8, 6]. A numerical methodology called 
the Expectation-Maximization (EM) algorithm [10, 9] for maximum 
likelihood estimation and variational Bayesian method [11, 7, 12] for 
Bayesian updates are used for the estimation of model parameters. However, 
these algorithms for finite mixture models are not applicable directly to our 
problem. We will develop an EM algorithm and a variational Bayesian 
method applicable to our problem in this paper. 

Section 2 first gives the mathematical description of problems considered 
in this paper. Section 3 introduces the basic idea of the EM algorithm and the 
variational Bayesian method. Section 4 develops the EM algorithm and the 
variational Bayesian method applicable to our problem. We also discuss the 
methodologies to estimate the magnitude of offset from a single observation 
datum using the result of parameter estimations. It is discussed in Section 5. 
We implemented the algorithms introduced in Section 4 as a computer 
program. Section 6 shows the numerical experiment results. Finally, Section 
7 summarizes the paper. 

2. Description of the Problem 

Lateral navigation performance of aircraft, more precisely, lateral 
deviations from their intended path, is often modeled as a probability 
distribution symmetric to the vertical axis. Gaussian distributions, Laplace 
distributions and the mixtures of two of them are often used [13, 14]. In this 
paper, we will concentrate on the case where distribution models of lateral 
navigation performance are symmetric. 

We introduce abbreviations for the sake of later use in Section 6. The NN 
model is the mixture distribution of two Gaussian distributions. The NDE 
model is the mixture distribution of a Gaussian distribution and a Laplace 
distribution. Finally, the DDE model is the mixture distribution of two 
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Laplace distributions. They are often used for the distribution models of the 
unintended lateral deviations of aircraft from the intended path. 

In the SLOP case, the number of possible offset is 3, namely, zero 
nautical miles offset, one nautical mile offset and two nautical miles offset. 
We only consider the mixture of at most 2 distributions, namely, Gaussian 
distribution, Laplace distribution, NN model, NDE model and DDE model. 
However, these numbers 3 and 2 may change in the future operational 
environment. The algorithms applicable for arbitrary numbers are more 
useful than those applicable only for specific numbers. 

We first define our terminology. We will consider the sum of a discrete 
random variable with a random variable following the finite mixture of an 
arbitrary number of 1-dimensional Gaussian distributions and Laplace 
distributions with zero mean. We call it an offset mixture distribution (of 
Gaussian distributions and Laplace distributions) in this paper. The discrete 
random variable corresponds to the offset of the aircraft. On the other hand, 
the finite mixture distribution represents the lateral navigation performance 
of the aircraft. 

The probability density function of an offset mixture distribution is given 
by the following equation: 

( ) ( ) ( ) .,,,,,
1 1 1
∑ ∑ ∑
= = =

+ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ−π+σ−πω=|

L

l

m

k

n

k
klkmklkl oxoxxp DNλσπω  

 (2) 

Here ( )Kπππ= ...,,, 21π  are finite non-negative numbers satisfying 

,11 =π∑ =
K
k k  where .nmK +=  ( )mσσσ= ...,,, 21σ  and ( )nλλλ= ...,,, 21λ  

denote positive numbers. ( )Looo ...,,, 21=o  are real numbers. =ω  

( )Lωωω ...,,, 21  are non-negative numbers satisfying ∑ = =ωL
l l1 .1  We call 

lω  an offset mixing coefficient in this paper. The notation ( )σ,xN  denotes 

the probability density function of a 1-dimensional Gaussian distribution 
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with zero mean, and ( )λ,xD  denotes the probability density function of a 

Laplace distribution with zero mean: 

( ) ( ( )) ,
2

2exp,
22

σπ
σ−

=σ
xxN  (3) 

( ) ( ) .2
exp,

λ
λ−

=λ
xxD  (4) 

We will consider the following generalized problem in this paper. 

Problem 1. Estimate all the unknown parameters ,lω  ,kπ  iσ  and iλ  of 

an offset mixture distribution from a given data set { }Nxxx ...,,, 21=X  

under the following conditions: 

• As to the discrete variable, a finite set { }Loo ...,,1  of possible 

realization (possible magnitudes of offset) is given, but the probability 

lω  that a given number lo  is realized is unknown. 

• As to the mixture distribution, all the parameters 

{ }nmnm λλσσππ + ...,,,...,,,...,, 111  

 are unknown except the numbers m and n of mixed Gaussian 
components and Laplace components. 

3. Expectation-maximization Algorithm and Variational 
Bayesian Method 

We introduce two algorithms for estimating parameters (or posterior 
distribution of parameters) of distribution models. 

The first algorithm is the EM algorithm [10] which is an iterative method 
for finding parameters maximizing the likelihood locally. A latent variable is 
a random variable that is not directly observed but is inferred from other 
random variables. An example of a latent variable is the magnitude of offset. 
The magnitude of offset is inferred from the total deviation from the route 
center line. We first need to define latent variables appropriately for the 
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implementation EM algorithm. In the estimation of parameters, the following 
E-step and M-step are repeated till the likelihood converges. 

E-step. Find the model parameters of the distribution of latent 
parameters for fixed original model parameters. 

M-step. Find the parameter of the original distribution model 
maximizing the expected number of the log-likelihood function 
with respect to the fixed distribution of latent parameters. 

The second algorithm is the variational Bayesian method [7] which is 
also an iterative method for finding the approximation of the posterior 
distribution of model parameters and latent variables minimizing Kullback-
Leibler divergence [15]. 

Let V be a family of model parameters and latent variables. In Bayesian 
statistics, model parameters are regarded not as unknown deterministic 
values but as random variables. Let ( )Vp  be the probability density function 

of the random variables V before observation data are available. This 
distribution is called a prior distribution. The prior distribution represents the 
degree of confidence [16] before observation data are available. The degree 
of confidence changes after the observation data set { }Nxxx ...,,, 21=X  is 

obtained. The degree of confidence after the acquisition of observation data 
is modeled by a probability distribution. It is called a posterior distribution. 
Let ( )XV |p  be the probability density function of the posterior distribution. 

The following Bayes’ theorem illustrates the relationship between the prior 
distribution and the posterior distribution: 

 ( ) ( ) ( )
( ) ( )

.
∫ |

|
=|

VVVX

VVXXV
dpp

ppp  (5) 

Here, ( )VX |p  denotes the likelihood under the condition that the model 

parameters V are fixed. Bayesian update is the procedure for finding the 
posterior distribution by means of equation (5). If the analytical form of the 
prior distribution ( )Vp  is the same as that of the posterior distribution 
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( )XV |p  and the formulae for finding the posterior distribution from the 

prior distribution are available, we can iteratively apply equation (5) against 
a series of iteratively available observation data, though the EM algorithm 
requires all the observation data for the estimation of parameters. A prior 
distribution is called a conjugate prior distribution if the analytical form of 
the prior distribution ( )Vp  is the same as that of the posterior distribution 

( ).XV |p  

It is hard to find the true posterior distribution ( )XV |p  by means of 

equation (5) in our problem. The variational Bayesian method gives the 
methodology for finding an approximation distribution model ( )Vq  of the 

posterior distribution ( ).XV |p  The assumption that parameters and latent 

variables are divided into mutually independent disjoint groups is employed 
for the derivation of the variational Bayesian method. Assume that =V  
( )sVVV ...,,, 21  is a division into mutually independent disjoint groups. In 

other words, the approximation distribution model ( )Vq  of the posterior 

distribution is given by the following formula: 

 ( ) ( ).
1
∏
=

=
s

i
iqq VV  (6) 

The distribution model ( )iq V  satisfying the following equation minimizes 

Kullback-Leibler divergence when the distributions of other parameters in V 
are fixed [7]: 

 ( ) ( )[ ] constant.,lnln += ≠ VXV pq jii E  (7) 

Here, [ ]⋅≠ jiE  denotes the expectation with respect to all the variables other 

than .iV  The notation ( )VX ,p  denotes the joint probability of X and V. 

Formula (7) is repeatedly utilized till convergence. The lower bound ( )qL  

given by 

 ( ) ( ) ( )
( )∫ ⎭

⎬
⎫

⎩
⎨
⎧= VV

VXV dq
pqq ,lnL  (8) 
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is often utilized for the check of convergence because ( )qL  is easier to 

evaluate than Kullback-Leibler divergence 

 ( ) ( ) ( )
( )∫ ⎭

⎬
⎫

⎩
⎨
⎧ |

−=|| ,ln VV
XVV dq

pqpqKL  (9) 

and the sum of ( )qL  with Kullback-Leibler divergence ( )pqKL ||  is always 

the constant number ( ) ( )∫ | ,VVVX dpp  independent of the distribution 

model ( ).Vq  

Note that both the EM algorithm and the variational Bayesian method 
may estimate the model parameters which give a local minimum, but not 
global minimum of evaluation functions. 

The main difficulties for developing EM algorithms and variational 
Bayesian methods lie on the development of an appropriate definition of 
latent variables, the discovery of conjugate prior distribution models and the 
development of an appropriate assumption on the division into mutually 
independent disjoint groups. In fact, the variational Bayesian method initially 
developed by the author, which requires less memory consumption than the 
algorithm in this paper, did not converge to the appropriate value. 

Section 4 introduces the EM algorithm and the variational Bayesian 
method developed by the author. 

4. Algorithm for the Estimation of Model Parameters 

The purpose of this section is to propose the EM algorithm and the 
variational Bayesian method for solving Problem 1. Subsection 4.2 
summarizes the EM algorithm for offset mixture models and Subsection 4.3 
summarizes variational Bayesian method for them. 

4.1. Latent variable 

We need to define an appropriate latent variable for the development of 
the algorithms. In our algorithms, the latent variable ( )iklz=Z  is defined as 

follows. The variable iklz  takes the value 1 if the ith observation data ix  is 
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generated from the model experiencing the offset lo  and generated by kth 

Gaussian/Laplace component, and 0 otherwise. 

4.2. Expectation-maximization 

The following is an EM algorithm for an offset mixture model (2). The 
input and output parameters are described in Table 1. We omit the derivation 
of this algorithm. 

Table 1. Input/output parameters of EM algorithm 

Parameters Description 
   
Input  

{ }Nxxx ...,,, 21=X  Observation data 

( )Looo ...,,, 21=o  Possible realizations of the discrete random variable 
(magnitudes of offset) 

m The number of Gaussian components mixed in 
( )λσπω ,,,|Xp  

n The number of Laplace components mixed in 
( )λσπω ,,,|Xp  

ε  Small positive number used for defining the stop 
condition of the algorithm 

Output  

( )Lωωω= ...,,, 21ω  Offset mixing coefficients 

( )Kπππ=π ...,,, 21  Mixing coefficients 

kσ  Standard deviations of Gaussian distributions 
( )mk ...,,1=  

kλ  Scale parameters of Laplace distributions 
( )Kmk ...,,1+=  
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ALGORITHM 

Initialization. Initialize variables ,ω  ,π  ( )mσσ= ...,,1σ  and =λ  

( )....,,1 nλλ  Set .−∞=L  

E-step. Evaluate lkir ,,  and lkis ,,  by means of the following 

equations: 

( )

( ) ( )
,

,,

,

1 1 1

,,

∑ ∑ ∑
= =′ =′

′′+′′ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
σ−π+σ−π

σπω
= L

l

m

k

n

k
klikmklik

kikl
lki

oxox

xr

DN

N  (10) 

( )

( ) ( )
.

,,

,

1 1 1

,,

∑ ∑ ∑
= =′ =′

′′+′′

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
σ−π+σ−π

λπω
= L

l

m

k

n

k
klikmklik

kimkl
lki

oxox

xs

DN

D  (11) 

M-step. Update σπω ,,  and λ  by means of the following equations: 

,1 1 1 ,,,,

N

sr
N
i

m
k

n
k lkilki

l
∑ ∑ ∑= = = ⎟

⎠
⎞⎜

⎝
⎛ +

=ω  (12) 

( )

( )⎩
⎨
⎧

+=

=
=π

− ,...,,1

,...,,1

nmkNN

mkNM

mk

k
k  (13) 

( )
,1 1

2
,

k

N
i

L
l liki

k M
oxr∑ ∑= =

−
=σ  (14) 

.1 1 ,

k

N
i

L
l liki

k N
oxs∑ ∑= =

−
=λ  (15) 

Here, ∑∑
= =

=
N

i

L

l
lkik rM

1 1
,,  and ∑∑

= =
=

N

i

L

l
lkik sN

1 1
,, .  

Evaluation of log-likelihood. Evaluate the log-likelihood ( )qL  by 
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means of the following equation. If ( ) ,ε>− LqL  set ( )qL=L  and return 

back to E-step: 

( ) ( ) ( ) .,,ln
1 1 1 1
∑ ∑ ∑ ∑
= = = =

+ ⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
σ−π+σ−πω=

N

i

L

l

m

k

m

k
klikmklikl oxoxqL DN  

 (16) 

4.3. Variational Bayesian method 

We introduce a variational Bayesian method for the offset mixture model 
(2). A new variable ( )Kηηη= ...,,, 21η  defined by 

 

( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≤+
λ

≤≤
σ

=η

−
Kkm

mk

mk

k
k

11

,11
2

 (17) 

is introduced. Table 2 describes the assumption on the prior distribution of 
parameters. The approximations ( )Vq  of the posterior distributions ( )XV |p  

also belong to the same families as those in Table 2. The input and output 
parameters of the variational Bayesian method are described in Table 3. 

The following is the algorithm of the variational Bayesian method for 
offset mixture distribution: 

ALGORITHM 

Initialization. Set ,0pp =  ,0αα =  ,,0 kk aa =  ( )Kkbb kk ...,,1,0 ==  

and .−∞=L  

E-step. Evaluate lkir ,,  by means of the following equations. Here, 

( )⋅ψ  is a digamma function, ∑ = α= K
k k1α̂  and :ˆ 1∑ == L

l lpp  

( ) ( ) ( ) ( )p̂ˆln ,, ψ−ψ+ψ−αψ=ρ lklki pα  
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( ) ( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

>−−−−ψ

≤⎟
⎠
⎞

⎜
⎝
⎛ −−π−−ψ

+
,if2lnln

,if2lnln2
1 2

mkoxb
aba

mkoxb
aba

li
k
k

kk

li
k
k

kk
 (18) 

.

1 1 ,,

,,
,,

∑ ∑= =
ρ

ρ
= K

k
L
l lki

lki
lkir  (19) 

M-step. Update ( ),...,,, 21 Kppp=p  ( ),...,,, 21 Kααα=α  kα  and 

kb  by means of the following equations: 

( ),...,,, 21 Kppp=p  (20) 

,,0 lll Tpp +=  (21) 

( ),...,,, 21 Kααα=α  (22) 

,,0 kkk R+α=α  (23) 

⎪⎩

⎪
⎨
⎧

≤≤+

≤≤
+=

,1

,12,0
KkmR

mkR
aa

k

k
kk  (24) 

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤+−

≤≤
−

+=

∑∑

∑∑

= =

= =

.1

,12

1 1
,,

1 1

2
,,

,0

Kkmoxr

mk
oxr

bb
N

i

L

l
lilki

N

i

L

l

lilki

kk  (25) 

Here, ∑ ∑= == N
i

L
l lkik rR 1 1 ,,  and ∑ ∑= == N

i
K
k lkil rT 1 1 ,, .  

Evaluation of lower bound. Evaluate the lower bound ( )qL  by means 

of the following equation. If ( ) ,ε>− LL q  set ( )qLL =  and return back 

to E-step: 
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( ) ∑∑∑ ∑ ∑
= = = = +=

−π−−=
N

i

K

k

L

l

m

k

K

mk
kklkilki RRrrq

1 1 1 1 1
,,,, 2ln2

2lnlnL  

( ( ) ( ))∑∑∑
===

Γ−Γ−
⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
Γ−

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
Γ+

L

l
ll

L

l
l

L

l
l pppp

1
,0

11
,0 lnlnlnln  

( ( ) ( ))∑∑∑
===

αΓ−αΓ−
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
αΓ−

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
αΓ+

K

k
kk

K

k
k

K

k
k

1
,0

11
,0 lnlnlnln  

( ) ( ( ) ( )).lnlnlnln
1 1

,0,0,0∑ ∑
= =

Γ−Γ−−+
K

k

K

k
kkkkkk aababa  (26) 

We give a short summary on the derivation of this algorithm. We 
assumed that the latent variable Z and the other parameters ( )ηπω ,,  are 

independent. We used equation (7) for the derivation of E-step and M-step. 
E-step is derived from the assumption that ( )ηπω ,,  are fixed. On the other 

hand, M-step is derived from the assumption that Z is fixed. The derivation 
shows that ( )Zq  is of the form 

 ( ) ∏∏∏
= = =

=
N

i

K

k

L

l

z
lki

iklrq
1 1 1

,, .Z  (27) 

Table 2. Assumption on the prior distribution of parameters 

Parameter Prior distribution 

π  Dirichlet distribution ( )0απ |Dir  

kη  Gamma distribution ( )kkk ba ,0,0 ,Gam |η  

ω  Dirichlet distribution ( ),Dir 0π p|  where 

( )Kppp ,02,01,0 ...,,,=0p  
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Table 3. Input/output parameters of variational Bayesian method 

Parameter Description 
  
Input 

{ }Nxxx ...,,, 21=X  Observation data 

( )Looo ...,,, 21=o  Possible realizations of the discrete random 
variable (magnitudes of offset) 

m The number of Gaussian components mixed in 
( )λσπω ,,,|Xp  

n The number of Laplace components mixed in 
( )λσπω ,,,|Xp  

0p  Parameters of the prior distribution ( )0ω p|Dir  of 

the offset mixing coefficients ω  

0α  Parameters of the prior distribution ( )0απ |Dir  of 

the mixing coefficients π  

ka ,0  and kb ,0  Parameters of the prior distribution 
( )kkk ba ,0,0 ,Gam |η  of precision parameters η  

of Gaussian/Laplace distribution ( )Kk ...,,1=  

ε  Small positive number used for defining the stop 
condition of the algorithm 

Output  

p Parameters of the posterior distribution ( )p|ωDir  

of the offset mixing coefficients ω  

α  Parameters of the posterior distribution ( )απ |Dir  

of the mixing coefficients π  

ka  and kb  Parameters of the posterior distribution 
( )kkk ba ,Gam |η  of precision parameters η  of 

Gaussian/Laplace distribution ( )Kk ...,,1=  
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5. Estimation of Offset 

We discuss the problem to estimate the magnitude of offset in a single 
observation x of deviation from the route center line. We assume that the 
output of the algorithms discussed in Section 4 is already available. The 
probability ( )( )lox =OPr  that the magnitude of offset equals to lo  is first 

discussed in this section. Here, ( )xO  denotes the latent random variable 

which represents the magnitude of offset in the observation x. It does not 
make sense for frequentists (non-Bayesian) to consider such probability 
because the magnitude of applied offset is a deterministic single value even 
though the ground does not know its value. However, the estimated 
magnitude of offset may be useful information for air traffic controllers, even 
if the estimation is a Bayesian probability, which only represents the degree 
of confidence. 

We first consider the case where we only have point estimates of 
parameters, for instance, the case where we apply the EM algorithm for the 
estimation of model parameters. We will identify ( )λσπω ,,,,xp |Z  with 

the probability that the magnitude of offset equals to lo  and the 

Gaussian/Laplace component used for the generation of this datum x is the 
kth component. Here, Z is the latent variable defined in Section 4. The 
probability ( )( )lox =OPr  is given by the following formula: 

 
( ) ( )

( ) ( )
.

,,

,,

1 1 1

1 1

∑ ∑ ∑
∑ ∑

= = = +

= = +

⎟
⎠
⎞⎜

⎝
⎛ λ−π+σ−πω

⎟
⎠
⎞⎜

⎝
⎛ λ−π+σ−πω

L
l

m
k

n
k klkmklkl

m
k

n
k klkmklkl

oxox

oxox

DN

DN
 (28) 

We next consider the case where a posterior distribution for each 
parameter is available, for instance, the case where we apply the variational 
Bayesian algorithm for the estimation of model parameters. In this case, we 
simply apply the variational Bayesian algorithm in Subsection 4.3 for a 
single observation x. The distribution ( )Zp  of Z gives the probability that 

the magnitude of applied offset equals to lo  and the Gaussian/Laplace 
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component used for the generation of this datum is the kth component, say 

.,,1 lkr  Therefore, the probability ( )( )lox =OPr  is simply ∑ =
K
k lkr1 ,,1 .  

We can consider various algorithms for the estimation of the magnitude 
of offset lo  from a single observation datum x using the probability 

( )( ).Pr lox =O  A simple algorithm is to choose lo  maximizing the 

probability ( )( ).Pr lox =O  However, this algorithm returns some value lo  

even if the probability ( )( )lox =OPr  is small. Information with weak 

confidence may create a confusion in the real operational environment. This 
algorithm does not seem appropriate. 

An alternative algorithm is to choose the value lo  satisfying the 

following condition: 

 ( )( ) .Pr Tox l >=O  (29) 

Here, T is the pre-determined threshold. This algorithm returns the output 
‘unknown’ when no lo  satisfies the above condition. We will investigate the 

accuracy of this algorithm through a numerical experiment in Subsection 6.2. 

6. Numerical Experiment 

We implemented the algorithms discussed in Section 4 as a Java 
program. This section introduces the result of a numerical experiment. A 
computer having a single Intel Pentium 4 CPU (2.8GHz) was used for the 
experiment. 

Offset mixture distributions whose finite mixture distribution component 

( ) ( )∑ ∑
= =

+ λ−π+σ−π
m

k

n

k
klkmklk oxox

1 1
,, DN  

is an NN model, NDE model and DDE model are called an offset NN model, 
an offset NDE model and an offset DDE model for short. 
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Figure 1. Histogram of offset mixture distribution (logarithmic scale in 
vertical axis), large offset increment case. 

6.1. Estimation of model parameters 

Consider the case where the scale parameters σ  and λ  are much smaller 
than the increment of offset values. Figure 1 illustrates the relative frequency 
of pseudo-random numbers generated from an offset NDE model in 
logarithmic scale. The model parameters of these distributions are ,3=L  

,01 =o  ,1002 =o  ,2003 =o  ,6.01 =ω  ,3.02 =ω  ,1.03 =ω  ,1=m  ,1=n  

,95.01 =π  ,05.02 =π  11 =σ  and 101 =λ  in the notations defined in 

Section 2. 

The pseudo-random numbers which have a fixed magnitude of offset 
make a mountain-shape around the given magnitude in the graph. Almost all 
data are concentrated around the possible magnitudes of offset 0, 100 and 
200. Very few are on the intermediate region among offset values. The 
magnitude of offset chosen by aircraft is intuitively trivial for many 
observation data, and we can estimate the unintended deviation for each 
observation with strong confidence. It is relatively easy to estimate the model 
parameters in this case. The numerical experiment showed the significant 
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coincidence of the model parameter estimations by our algorithm with the 
true parameter values even in the case where the initial parameter values used 
in the algorithms are far from the true values. 

The navigation performance requirement for aircraft flying in oceanic 
airspace is not so severe [17], and the scale parameters σ  and λ  may not be 
smaller than the increment of offset values. Figure 2 also illustrates the 
relative frequency of pseudo-random numbers generated from an offset NDE 
model in logarithmic scale. In this case, the model parameters of these 
distributions are ,3=L  ,01 =o  ,12 =o  ,23 =o  ,6.01 =ω  ,3.02 =ω  

,1.03 =ω  ,1=m  ,1=n  ,95.01 =π  ,05.02 =π  1.01 =σ  and .11 =λ  These 

parameters look more realistic than previous ones. 

 

Figure 2. Histogram of offset mixture distribution (logarithmic scale in 
vertical axis), small offset increment case. 

The feet of the two mountains in Figure 1 seem not to overlap. On the 
contrary, the feet in Figure 2 overlap. It makes it hard to estimate the 
magnitude of offset of a datum in the intermediate region in the latter case, 
and as a result, the estimation of model parameters becomes hard. We will 
apply our algorithms to this difficult case in this numerical experiment. 



Masato Fujita 20 

We consider an offset NN model, an offset NDE model and an offset 
DDE model in the numerical experiment. We generate 10,000 pseudo-
random numbers for each model, and estimate the model parameters by 
means of the EM algorithm and the variational Bayesian method. The 
number of available observations is generally determined by operational 
environments and the duration of observation periods. Experiences show that 
it is several thousands, and the number 10,000 is not so unrealistic. Two 
computations (#1 and #2) were conducted for the variational Bayesian 
parameter estimation in different settings. We employed a prior distribution 
which is far from the true distribution in the first case. In the latter case, we 
employed a prior distribution whose point estimation coincides with the 
model parameters of the original models used for the generation of pseudo-
random numbers. 

Table 4 summarizes the result of model parameter estimations. The 
possible magnitudes of offset are 0, 1 and 2 in this experiment. The ‘original 
dist.’ column summarizes model parameters of the distribution generating 
pseudo-random numbers. We employed MAP (maximum a posteriori 
probability) estimates for the point estimation of model parameters from their 
posterior distribution in the variational Bayesian case. In MAP estimation, 
the point estimation of a model parameter is the mode of the posterior 
distribution. 

Table 5 and Table 6 give the parameters of prior and posterior 
distributions used for the numerical experiments ‘variational Bayes #1 and 
#2’ in Table 4. 

The computation times are in 1-8 seconds in all the cases. The 
estimations of offset NDE model parameters by means of the EM algorithm 
are far from the true values. It is because the EM algorithm is trapped into a 
local minimum. The software gave a reasonable estimation when we ran the 
same software against the same data with appropriate initial parameter 
values. The EM algorithm should be run several times changing initial 
parameter values to avoid being trapped into a local minimum. Table 4 also 
shows that the EM algorithm gives good estimations unless it is trapped into 
local minima. 
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Table 4. Parameter estimation result 

                Algorithm 

 Parameter 

Original 
dist. 

EM 
initial

EM result Variational 
Bayes #1 

Variational 
Bayes #2 

      
Offset NN model      

1ω  0.6 0.5 0.5974 0.5974 0.5974 

2ω  0.3 0.3 0.3011 0.3016 0.3011 

3ω  0.1 0.2 0.1016 0.1011 0.1015 

1π  0.95 0.5 0.9594 0.9580 0.9546 

2π  0.05 0.5 0.0456 0.0420 0.0454 

1σ  0.1 10 0.1016 0.1012 0.0996 

2σ  1 20 1.0077 1.1830 1.0101 

Log-likelihood –1820.8  –1819.3 –1825.2 –1819.2 

Execution time   4.209 sec 1.608 sec 1.348 sec 

Offset NDE model      

1ω  0.6 0.5 0.5945 0.5966 0.5967 

2ω  0.3 0.3 0.3065 0.3057 0.3055 

3ω  0.1 0.2 0.0990 0.0977 0.0977 

1π  0.95 0.5 0.0209 0.9580 0.9543 

2π  0.05 0.5 0.9791 0.0420 0.0457 

1σ  0.1 10 2.2112 0.1011 0.0995 

1λ  1 20 0.0845 1.2151 1.0420 

Log-likelihood –1912.5  –2254.9 –1914.5 –1910.2 

Execution time   2.368 sec 1.456 sec 1.198 sec 

Offset DDE model      

1ω  0.6 0.5 0.5958 0.5952 0.5958 

2ω  0.3 0.3 0.3033 0.3036 0.3033 
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3ω  0.1 0.2 0.1010 0.1011 0.1009 

1π  0.95 0.5 0.9499 0.9596 0.9504 

2π  0.05 0.5 0.0501 0.0404 0.0496 

1λ  0.1 10 0.0996 0.1013 0.0997 

2λ  1 20 1.0256 1.2808 1.0319 

Log-likelihood –4251.8  –4251.8 –4254.9 –4251.3 

Execution time   7.081 sec 2.419 sec 2.859 sec 

Table 5. Parameters of prior distributions and posterior distributions #1 

                    Model 

   Parameter 

Offset NN 
model 

Offset NDE 
model 

Offset DDE 
model 

    
Prior distribution    

1,0p  0.5 0.5 0.5 

2,0p  0.3 0.3 0.3 

3,0p  0.2 0.2 0.2 

1,0α  0.8 0.8 0.8 

2,0α  0.2 0.2 0.2 

1,0a  1 1 1 

1,0b  1 1 1 

2,0a  10 10 10 

2,0b  50 50 50 

Posterior distribution    

1p  5972.83 5965.20 5951.96 

2p  3015.68 3057.01 3036.26 

3p  1011.50 977.79 1011.78 
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1α  9574.41 9578.98 9595.55 

2α  420.59 421.02 404.45 

1a  4790.30 4790.09 9595.75 

1b  49.08 48.99 972.39 

2a  220.20 430.82 414.25 

2b  306.78 522.28 529.30 

Lower-bound –1950.21 –2043.48 –4297.95 

On the other hand, Table 4 shows the sensitivity of choice of prior 
distributions in variational Bayesian method. We can get a good estimation 
when the prior distributions are appropriately set. A heuristic solution for 
choosing prior distribution is to run EM algorithm first and determine the 
model parameters of prior distributions based on the output of EM algorithm. 

6.2. Estimation of offset 

We discussed methodologies for the estimation of applied offset in 
Section 5. We generated one thousand pseudo-random numbers from an 
offset NN model, an offset NDE model and an offset DDE model, 
respectively. The estimated model parameters and the distributions of model 
parameters in Table 4, Table 5 and Table 6 were used for this study. (The 
parameter re-estimated with appropriate initial values was used only in the 
‘Offset NDE model vs EM algorithm’ case.) Table 7 shows the accuracy of 
the estimation against the given threshold values. The accuracy of estimation 
seems high, and the algorithm seems effective. 
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Table 6. Parameters of prior distributions and posterior distributions #2 

                      Model 

   Parameter 

Offset NN 
model 

Offset NDE 
model 

Offset DDE 
model 

    
 Prior distribution    

1,0p  0.6 0.6 0.6 

2,0p  0.3 0.3 0.3 

3,0p  0.1 0.1 0.1 

1,0α  0.95 0.95 0.95 

2,0α  0.05 0.05 0.05 

1,0a  100 100 10 

1,0b  1 1 1 

2,0a  10 10 10 

2,0b  10 10 10 

 Posterior distribution 

1p  5973.52 5966.68 5957.43 

2p  3010.82 3055.35 3032.84 

3p  1015.66 977.98 1009.73 

1α  9544.77 9541.92 9502.97 

2α  455.23 458.08 497.03 

1a  4871.91 4870.49 9512.02 

1b  48.33 48.17 948.06 

2a  237.59 468.03 506.98 

2b  241.38 486.64 522.11 

Lower-bound –1838.20 –1929.00 –4272.55 
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Table 7. Summary of offset probability estimation 

                Threshold 

     Method 
99% 95% 90% 70% 50% 

      
 Offset NN model      

EM algo. 72.2% 94.7% 96.3% 98.5% 98.8% 

Variational Bayes # 1 74.2% 94.5% 96.4% 98.4% 98.8% 

Variational Bayes # 2 72.3% 94.7% 96.4% 98.5% 98.8% 

 Offset NDE model      

EM algo. 89.2% 96.5% 96.6% 97.7% 98.1% 

Variational Bayes # 1 79.7% 95.4% 96.1% 97.4% 97.7% 

Variational Bayes # 2 78.4% 95.2% 95.9% 97.4% 97.7% 

 Offset DDE model      

EM algo. 66.9% 92.6% 95.8% 98.0% 98.2% 

Variational Bayes # 1 72.6% 94.3% 96.3% 98.0% 98.2% 

Variational Bayes # 2 67.2% 92.7% 95.8% 98.0% 98.2% 

7. Conclusion 

We introduced EM algorithms and variational Bayesian methods for 
navigation performance and offset simultaneously in Section 4. Section 5 
remarked that the same algorithm can be applied to the problem of estimating 
the offset from a single observation when Bayesian distributions of model 
parameters are available. We also gave a formula for the case where a point 
estimation of model parameters is only available. Numerical experiments in 
Section 6 showed that computations finish in seconds. The estimations of 
model parameters by means of EM algorithms and variational Bayesian 
methods are accurate when the initial parameters or the model parameters of 
prior distributions are appropriately set. They also showed the applicability 
of the algorithm for estimating the offset discussed in Section 5. 
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