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Abstract 

We introduce a generalized Bartholdi zeta function of a bipartite 
graph, and define a generalized Bartholdi zeta function of a 
hypergraph H with three variables. Furthermore, we present three 
types of determinant expressions for the generalized Bartholdi zeta 
function of a hypergraph H. 

1. Introduction 

1.1. Zeta functions of graphs 

Graphs and digraphs treated here are finite. Let G be a connected     
graph and GD  be the symmetric digraph corresponding to G. Set ( ) =GD  

( ) ( ) ( ){ }.,,, GEuvuvvu ∈|  For ( ) ( ),, GDvue ∈=  set ( )eou =  and ( ).etv =  

Furthermore, let ( )uve ,1 =−  be the inverse of ( )., vue =  

A path P of length n in G is a sequence ( )neeP ...,,1=  of n arcs such 
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that ( ),GDei ∈  ( ) ( ) ( ).111 −≤≤= + nieoet ii  If ( )iii vve ,1−=  for ,1=i  

,...., n  then we write ( ).,...,,, 110 nn vvvvP −=  Set ,nP =  ( ) ( )1eoPo =  

and ( ) ( ).netPt =  Also, P is called an ( ) ( )( )PtPo , -path. We say that a path 

( )neeP ...,,1=  has a backtracking or a bump at ( )iet  if ii ee =−
+
1
1  for some 

( ).11 −≤≤ nii  A ( )wv, -path is called a v-cycle (or v-closed path) if 

.wv =  The inverse cycle of a cycle ( )neeC ...,,1=  is the cycle =−1C  

( )....,, 1
1

1 −− een  

We introduce an equivalence relation between cycles. Two cycles =1C  

( )mee ...,,1  and ( )mffC ...,,12 =  are called equivalent if kjj ef +=  for all 

j. The inverse cycle of C is in general not equivalent to C. Let [ ]C  be the 

equivalence class which contains a cycle C. Let rB  be the cycle obtained by 
going r times around a cycle B. Such a cycle is called a multiple of B. A 

cycle C is reduced if both C and 2C  have no backtracking. Furthermore, a 
cycle C is prime if it is not a multiple of a strictly smaller cycle. Note that 
each equivalence class of prime, reduced cycles of a graph G corresponds to 
a unique conjugacy class of the fundamental group ( )vG,1π  of G at a vertex 

v of G. 

The Ihara(-Selberg) zeta function of G is defined by 

( ) ( )
[ ]
∏ −−=

C

CttG ,1, 1Z  

where [ ]C  runs over all equivalence classes of prime, reduced cycles of      

G. Ihara [6] defined Ihara zeta functions of graphs, and showed that the 
reciprocals of Ihara zeta functions of regular graphs are explicit polynomials. 
A zeta function of a regular graph G associated with a unitary representation 
of the fundamental group of G was developed by Sunada [12, 13]. 
Hashimoto [5] generalized Ihara’s result on the zeta function of a regular 
graph to an irregular graph, and showed that its reciprocal is again a 
polynomial by a determinant containing the edge matrix. Bass [3] presented 
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another determinant expression for the Ihara zeta function of an irregular 
graph by using its adjacency matrix. 

Let G be a connected graph with n vertices and m edges. Then two 
mm 22 ×  matrices 

( ) ( ) ( )GDfefeG ∈== ,,BBB   and  ( ) ( ) ( )GDfefeG ∈== ,,00 JJJ  

are defined as follows: 

( ) ( )
⎪⎩

⎪
⎨
⎧ =

=
⎩
⎨
⎧ =

=
−

otherwise.0

,if1
otherwise,0

,if1 1

,,
effoet

fefe JB  

Theorem 1 (Hashimoto; Bass). Let G be a connected graph with n 
vertices and m edges. Then the reciprocal of the Ihara zeta function of G is 
given by 

( ) ( )( )02
1 det, JBIZ −−=− ttG m  

( ) ( )( ( )),det1 22
nGn

nm tGtt IDAI −+−−= −  

where ( )ijG d=D  is the diagonal matrix with 

( )( { })....,,deg 1 niGii vvGVvd ==  

The first identity in Theorem 1 was also obtained by Hashimoto [5]. Bass 
[3] proved the second identity by using a linear algebraic method. 

Stark and Terras [10] gave an elementary proof of this formula, and 
discussed three different zeta functions of any graph. Various proofs of Bass’ 
Theorem were given by Kotani and Sunada [7], and Foata and Zeilberger [4]. 

Let G be a connected graph. Then the cyclic bump count ( )πcbc  of a 

cycle ( )nππ=π ...,,1  is 

( ) { } ,...,,1 1
1

−
+π=π|==π iinicbc  

where .11 π=π +n  
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Bartholdi [2] introduced the Bartholdi zeta function of a graph. The 
Bartholdi zeta function of G is defined by 

( ) ( ( ) )
[ ]
∏ −−=ζ

C

CCcbc tutuG ,1,, 1  

where [ ]C  runs over all equivalence classes of prime cycles of G, and u, t are 

complex variables with tu ,  sufficiently small. 

Bartholdi [2] gave a determinant expression of the Bartholdi zeta 
function of a graph. 

Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and 
m unoriented edges. Then the reciprocal of the Bartholdi zeta function of G 
is given by 

( ) ( )( )( )02
1 1det,, JBI uttuG m −−−=ζ −  

( ( ) ) ( )( Gttu n
nm AI −−−= − det11 22  

( ) ( )( ) ).11 2tuu nG ID −−−+  

We state Amitsur Theorem which is used in the proof of Theorem 6. 
Foata and Zeilberger [4] gave a new proof of Bass’ Theorem by using the 
algebra of Lyndon words. Let X be a finite nonempty set, < be a total order in 

X, and ∗X  be the free monoid generated by X. Then the total order < on X 

derives the lexicographic order ∗<  on .∗X  A Lyndon word in X is defined to 

a nonempty word in ∗X  which is prime, i.e., not the power rl  of any other 
word l for any ,2≥r  and which is also minimal in the class of its cyclic 

rearrangements under ∗<  (see [8]). Let L denote the set of all Lyndon words 
in X. 

Foata and Zeilberger [4] gave a short proof of Amitsur’s identity [1]. 

Theorem 3 (Amitsur). For square matrices ,...,,1 kAA  
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( )( ) ( )∏
∈

−=++−
Ll

lk ,detdet 1 AIAAI  

where the product runs over all Lyndon words in { },...,,1 k  and =lA  

pii AA 1  for .1 piil =  

1.2. Zeta functions of hypergraphs 

Storm [11] defined the Ihara-Selberg zeta function of a hypergraph. A 
hypergraph ( ) ( )( )HEHVH ,=  is a pair of a set ( )HV  of hypervertices and 

a set ( )HE  of hyperedges, where the union of all hyperedges is ( ).HV  A 

hypervertex v is incident to a hyperedge e if .ev ∈  For a hypergraph H, its 

dual ∗H  is the hypergraph obtained by letting its hypervertex set be indexed 
by ( )HE  and its hyperedge set by ( ).HV  

A bipartite graph HB  associated with a hypergraph H is defined as 

follows: ( ) ( ) ( )HEHVBV H ∪=  and ( )HVv ∈  and ( )HEe ∈  are adjacent 

in HB  if v is incident to e. Let ( ) { }....,,1 nvvHV =  Then an adjacency 

matrix ( )HA  of H is defined as a matrix whose rows and columns are 

parameterized by ( ),HV  and ( )ji, -entry is the number of paths in HB  

from iv  to jv  of length 2 with no backtracking. 

For the bipartite graph HB  associated with a hypergraph H, let =1V  

( )HV  and ( ).2 HEV =  Then, the halved graph [ ]i
HB  of HB  is defined to be 

the graph with vertex set iV  and arc set { ( ),;2pathreduced: PoPP =|  

( ) }iVPt ∈  for .2,1=i  

Let H be a hypergraph. A path P of length n in H is a sequence 
( )12211 ,...,,,,, += nn veevevP  of 1+n  hypervertices and n hyperedges 

such that ( ),HVvi ∈  ( ),HEe j ∈  ,11 ev ∈  nn ev ∈+1  and 1, −∈ iii eev  for 

.1...,,2 −= ni  Set ,nP =  ( ) 1vPo =  and ( ) .1+= nvPt  Also, P is called 

an ( ) ( )( )PtPo , -path. We say that a path P has a hyperedge backtracking         
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if there is a subsequence of P of the form ( ),,, eve  where ( ),HEe ∈  

( ).HVv ∈  A ( )wv, -path is called a v-cycle (or v-closed path) if .wv =  

We introduce an equivalence relation between cycles. Two cycles 
( )12111 ,...,,,, vevevC m=  and ( )12112 ,...,,,, wfwfwC m=  are called 

equivalent if kjj vw +=  and kjj ef +=  for all j. Let [ ]C  be the equivalence 

class which contains a cycle C. Let rB  be the cycle obtained by going r 
times around a cycle B. Such a cycle is called a multiple of B. A cycle C is 

reduced if both C and 2C  have no hyperedge backtracking. Furthermore, a 
cycle C is prime if it is not a multiple of a strictly smaller cycle. 

The Ihara-Selberg zeta function of H is defined by 

( ) ( )
[ ]
∏ −−=ζ

C

C
H tt ,1 1  

where [ ]C  runs over all equivalence classes of prime, reduced cycles of H, 

and t is a complex variable with t  sufficiently small (see [11]). 

Let H be a hypergraph with ( ) { },...,,1 meeHE =  and let { }mcc ...,,1  be 

a set of m colors, where ( ) .ii cec =  Then an edge-colored graph cGH  is 

defined as a graph with vertex set ( )HV  and edge set ( ){ ;, HVwvvw ∈|  

( )},, HEewv ∈∈  where an edge vw is colored ic  if ., iewv ∈  Note that 

cGH  is the halved graph [ ]1
HB  of .HB  

Let o
cGH  be the symmetric digraph corresponding to the edge-colored 

graph .cGH  Then the oriented line graph ( )o
LL

o
L EVH ,=  associated with 

o
cGH  by 

( )o
cL GHDV =  

and 

{( ) ( ) ( ) ( ) ( ) ( ) ( )},,, jiji
o
c

o
cji

o
L eoetececGHDGHDeeE =≠|×∈=  

where ( )iec  is the color assigned to the oriented edge ( )o
ci GHDe ∈  such that 
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( ) ( ),, uvcvuc =  ( ) ( )., o
cGHDvu ∈  Also, o

LH  is called the oriented line graph 

of .cGH  The Perron-Frobenius operator ( ) ( )LL VCVCT →:  is given by 

( ) ( ) ( )( )
( )

∑
∈

=
xEe o

etfxTf ,  

where ( ) { ( ) }xeoEexE o
Lo =|∈=  is the set of all oriented edges with x as 

their origin vertex, and ( )LVC  is the set of functions from LV  to the complex 

number field C. 

Storm [11] gave two nice determinant expressions of the Ihara-Selberg 
zeta function of a hypergraph by using the results of Kotani and Sunada [7], 
and Bass [3]. 

Theorem 4 (Storm). Let H be a finite, connected hypergraph such that 
every hypervertex is in at least two hyperedges. Then 

 ( ) ( ) ( ) 11 ,det −− =−=ζ tBtTt HH ZI  

( ) ( ( ) ),det1
HBH

nm tBtt QAI +−−= −  

where ( ) ,HBVn =  ( )HBEm =  and .IDQ −= HH BB  

Let H be a hypergraph. Then a path ( )12211 ,...,,,,, += nn veevevP  has a 
(broad) backtracking or (broad) bump at e or v if there is a subsequence of P 
of the form ( )eve ,,  or ( ),,, vev  where ( ),HHe ∈  ( ).HVv ∈  Furthermore, 

the cyclic bump count ( )Ccbc  of a cycle ( )12211 ,...,,,,, veevevC n=  is 

( ) { } { } ,...,,1...,,1 11 ++ =|=+=|== iiii eenivvniCcbc  

where 11 vvn =+  and .11 een =+  

The Bartholdi zeta function of H is defined by 

( ) ( ( ) )
[ ]
∏ −−=ζ

C

CCcbc tutuH ,1,, 1  

where [ ]C  runs over all equivalence classes of prime cycles of H, and u, t are 

complex variables with ,u  t  sufficiently small. 
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If ,0=u  then the Bartholdi zeta function of H is the Ihara-Selberg zeta 
function of H. 

Sato [9] presented a determinant expression of the Bartholdi zeta 
function of a hypergraph. 

Theorem 5 (Sato). Let H be a finite, connected hypergraph. Then 

( ) ( ) 11 ,,,, −− ζ=ζ tuBtuH H  

 ( ( ) ) ( ( )H
nm Bttu AI −−−= − det11 2  

( ) ( ( ) )),11 ID utu
HB −−−+  

where ( )HBVn =  and ( ) .HBEm =  

Unfortunately, in the case that H is a graph G, the Bartholdi zeta function 

( ) ( )tuBtuH G ,,,, ζ=ζ  of G is not equal to the original Bartholdi zeta 

function ( )tuG ,,ζ  of G. 

In this paper, we present a three variable Bartholdi zeta function of a 
hypergraph H which is the original Bartholdi zeta function of a graph G in 
the case of GH =  and .0=s  

In Section 2, we introduce a generalized Bartholdi zeta function of a 
bipartite graph with three variables, and present a determinant expression of 
it. In Section 3, we introduce a generalized Bartholdi zeta function of a 
hypergraph with three variables, and present a determinant expression of it. 
In Section 4, we give a determinant expression for the generalized Bartholdi 
zeta function of a hypergraph by using a modified Perron-Frobenius 
operator. In Section 5, we present a decomposition formula for the 
generalized Bartholdi zeta function of a semiregular bipartite graph. As a 
corollary, we obtain a decomposition formula for the generalized Bartholdi 
zeta function of a ( )rd , -regular hypergraph. 

2. A Generalized Bartholdi Zeta Function of a Bipartite Graph 

Let ( )21, VVG =  be a connected bipartite graph. For ,2,1=j  the cyclic 
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bump count ( )πjcbc  of a cycle ( )nππ=π ...,,1  in G is 

( ) { ( ) } ,,...,,1 1
1 jiiij Vtnicbc ∈ππ=π|==π −
+  

where .11 π=π +n  Then the generalized Bartholdi zeta function of a bipartite 

graph G is defined by 

( ) ( ( ) ( ) )
[ ]
∏ −−=ζ

C

CCcbcCcbc tsutsuG ,1,,, 121  

where [ ]C  runs over all equivalence classes of prime cycles of G, and u, s, t 

are complex variables with ,u  ,s  t  sufficiently small. 

Let ( )21, VVG =  be a connected bipartite graph with ν vertices and ε 

edges. Then three ε×ε 22  matrices ( ) (( ) ) ( )GDfefeG ∈== ,,BBB  and =iJ  

( ) (( ) ) ( ) ( )2,1,, == ∈ iG GDfefeii JJ  are defined as follows: 

( )
( ) ( )

( ) ( )
⎪⎩

⎪
⎨
⎧ ∈=

=
⎩
⎨
⎧ =

= +
−

otherwise,0

,andif1
otherwise,0

,if1 1
1

,,
i

feife
Veteffoet

JB  

where i is treated modulo 2. 

A determinant expression for the generalized Bartholdi function of G is 
given as follows. 

Theorem 6. Let ( )21, VVG =  be a connected bipartite graph with ν 

vertices and ε unoriented edges, nV =1  and .2 mV =  Then the reciprocal 

of the generalized Bartholdi zeta function of G is 

( ) ( ) ( )( )( )212
1 11det,,, JJBI usttsuG −−−−−=ζ ε
−  

( ( ) ( ) ) ( ( )Gttus AI −−−−= ν
ν−ε det111 2  

(( ) ( ( ) ) ( ) ( ( ) ))),1111 21
2

mVnV suust IDID −−−⊕−−−+  

where ( )ijW d=D  is the diagonal matrix with ( { })piGii vvWvd ...,,deg 1==  

for any subset W of ( ).GV  
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Proof. The argument is an analogue of Bass’ method [3]. 

Let { }nvvV ...,,11 =  and { }....,,12 mwwV =  Furthermore, let ( ) =GD  

{ }11
11 ...,,,...,, −

ε
−

ε ffff  such that ( ) ( ).11 niVfo i ≤≤∈  

Arrange arcs of G as follows: ....,,,...,, 11
11

−
ε

−
ε ffff  Furthermore, 

arrange vertices of G as follows: ....,,,...,, 11 mn wwvv  

Now, we define two ν×ε2  matrices ( ) ( ) ( )GVvGDfvf ∈∈= ;KK  and 

( ) ( ) ( )GVvGDfvf ∈∈= ;LL  as follows: 

( ) ( )

⎩
⎨
⎧ =

=
⎩
⎨
⎧ =

=
otherwise.0

,if1
:

otherwise,0
,if1

:
vfovft

vfvf LK  

Here we consider two matrices K and L under the above order. 

Now, let 

,,
2

1

2

1
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

L0
0L

L
0K

K0
K  

where ,1K  2L  are m×ε  matrices, and ,2K  1L  are n×ε  matrices. By the 

definitions of K and L, 

21 LK =   and  .12 LK =  

Thus, 

.
1

2
⎥
⎦

⎤
⎢
⎣

⎡
=

K0
0K

L  

But, we have 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

0KK
KK0BLK

22

11
t

t
t G  (1) 

and 

 ( ) .
21

12

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

0KK
KK0ALK t

t
t G  (2) 
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Furthermore, 

 .
11

22

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

KK0
0KKDKK t

t
G

t  (3) 

Note that 

 
1

deg0

0deg 1

22 V

nG

G
t

v

v
DKK =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=  (4) 

and 

 .
deg0

0deg

2

1

11 V

mG

G
t

w

w
DKK =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=  (5) 

We introduce two ( ) ( )ε+ν×ε+ν 22  matrices as follows: 

( ( ) ( ) ) ( )
( ( ) ( ) ) ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−

−−−−−

=

ε

ε

I000

0I00

KKI0

KK0I

P 11
2

22
2

1111

1111
tt

m

tt
n

tutsu

tstsu

 

and 

( )
( )

( ( ) ( ) )
( ( ) ( ) )

.

111

111

1

1

2
2

2
1

11

22

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−

−−

=

ε

ε

I00K

0IK0

KKI0

KK0I

Q

tsut

tsut

tu

ts
tt

m

tt
n

 

By (3), (4) and (5), we have 

( )

( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−

−−+

=

ε

ε

I00K

0IK0

00KKIKK

00KKKKI

PQ

at

at

tuat

ttsa
t

m
t

tt
n

2

1

11
2

21

1222
2

1

1
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( )

( )
,

1

1

2

1

2
21

12
2

2

1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−

−−+

=

ε

ε

I00K

0IK0

00DIKK

00KKDI

at

at

tuat

ttsa

Vm
t

t
Vn

 

where ( ) ( ) .111 2tsua −−−=  By (2), we have 

( ) ( ( ) ( ) ) ( ( )Gttsu AIPQ −−−−= ν
ε det111det 22  

(( ) ( ( ) ) ( ) ( ( ) ))).1111
21

2
mVnV suust IDID −−−⊕−−−+  

Furthermore, we have 

( )

( ) ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−

−−+
=

ε

ε

22
2

222

1111
2

1

1

1

KKIKK0K

KKKKIK0

00I0

000I

QP

tt

tt
m

n

tsatat

ttuaat

a

a

 

and so 

( ) ( ( ) ( ) )ν−−−= 2111det tsuQP  

( )
( )

.
1

1
det

22
2

22

1111
2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+−

−−+
⋅

ε

ε

KKIKK

KKKKI
tt

tt

tsat

ttua
 

But, 

 
( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+−

−−+

ε

ε

22
2

22

1111
2

1

1
det

KKIKK

KKKKI
tt

tt

tsat

ttua
 

( ( ) )

( ( ) ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−

−−−
=

εε

εε

IIKK

IKKI

ut

st
t

t

1

1
det

22

11  

( )

( )
.

1

1
det ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

−−

−−
⋅

εε

εε

II

II

tu

ts
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By (1), we have 

( ( ) )

( ( ) ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−

−−−

εε

εε

IIKK

IKKI

ut

st
t

t

1

1
det

22

11  

( ( ) ( ) ( ) )( ).11det 212 JJBI usGt −−−−−= ε  

Furthermore, we have 

( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

−−

−−

εε

εε

II

II

tu

ts

1

1
det  

( )

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

−−

−−
=

εε

ε

εε

εε

II

0I

II

II

tutu

ts

1
det

1

1
det  

( ( ) ( ) ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−−−
=

ε

εε

I0

II tstsu 1111
det

2
 

( ( ) ( ) ) .111 2 ε−−−= tsu  

Since ( ) ( ),detdet QPPQ =  we have 

( ( ) ( ) ) ( ( )Gttsu AI −−−− ν
ε det111 22  

(( ) ( ( ) ) ( ) ( ( ) )))mVnV suust IDID −−−⊕−−−+ 1111 21
2  

( ( ) ( ) ) ( ( ( ) ( ) ( ) )).11det111 212
2 JJBI usGttsu −−−−−−−−= ε

ν+ε  

Therefore, it follows that 

( ( ( ) ( ) ( ) ))212 11det JJBI usGt −−−−−ε  

( ( ) ( ) ) ( ( )Gttsu AI −−−−= ν
ν−ε det111 2  

(( ) ( ( ) ) ( ) ( ( ) ))).1111 21
2

mVnV suust IDID −−−⊕−−−+  

Next, let 
( ) { }ε+εε= 211 ...,,,...,, ffffGD  

such that ( ),11 ε≤≤= −
+ε iff ii  and consider the lexicographic order on 
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( ) ( )GDGD ×  derived from a total order of ( ) .: 221 ε<<< fffGD  If 

( )ji ff ,  is the rth pair under the above order, then we define the ε×ε 22  

matrix (( ) ) ε≤≤= 2,1, qpqprr TT  as follows: 

( )

( ) ( )

( )

( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=∈==

=∈==

≠===

=
−

−

−

.otherwise0

,and,,if

,and,,if

,and,,if

1
2

1
1

1

,
ijiji

ijiji

ijjiji

qpr
ffVftfqfpst

ffVftfqfput

fffoftfqfpt

T  

Let ,1 kTTM ++=  .4 2ε=k  Then we have 

( ) ( ) ( )( ).11 21 JJBM usGt −−−−=  

Let L be the set of all Lyndon words in ( ) ( ).GDGD ×  Then we can   

also consider L as the set of all Lyndon words in { }:...,,1 k  ( )11 , ji ff  

( )qq ji ff ,  corresponds to ,21 qrrr  where ( ) ( )qpff
pp ji ≤≤1,  is the 

pr th pair. Theorem 3 implies that 

( ) ( ),detdet 22 ∏
∈

εε −=−
Lw

wTIMI  

where 

piiw TTT 1=  

for .1 piiw =  Note that ( )wTI −ε2det  is the alternating sum of the 

diagonal minors of .wT  Thus, we have 

( )
( ) ( )

⎪⎩

⎪
⎨
⎧ −

=−ε
.otherwise1

,cycleprimeaisif1
det

21

2
Cwtsu CCcbcCcbc

wTI  

Therefore, it follows that 

( ) ( ( ) ( ) )
[ ]
∏ −=ζ −

C

CCcbcCcbc tsutsuG 211,,, 1  

( ( ( ) ( ) ( ) )),11det 212 JJBI usGt −−−−−= ε  

where [ ]C  runs over all equivalence classes of prime cycles of G. ~ 
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3. A Generalized Bartholdi Zeta Function of a Hypergraph 

Let H be a hypergraph. In a path ( ),,...,,,,, 12211 += nn veevevP  

subsequences ( )eve ,,  and ( )vev ,,  are called a vertex bump and an edge 

bump, respectively. Furthermore, the vertex cyclic bump count ( )Cvcbc  and 

edge cyclic bump count ( )Cecbc  of a cycle ( )12211 ,...,,,,, veevevC n=  

are defined by 
( ) { }1...,,1 +=|== ii eeniCvcbc  

and 
( ) { } ,...,,1 1+=|== ii vvniCecbc  

respectively, where 11 vvn =+  and .11 een =+  

The generalized Bartholdi zeta function of a hypergraph H is defined by 

( ) ( ( ) ( ) )
[ ]
∏ −−=ζ

C

CCecbcCvcbc tsutsuH ,1,,, 1  

where [ ]C  runs over all equivalence classes of prime cycles of H, and u, s, t 

are complex variables with ,u  ,s  t  sufficiently small. 

If ,0== su  then the Bartholdi zeta function of H is the Ihara-Selberg 
zeta function of H. 

A determinant expression of the generalized Bartholdi zeta function of a 
hypergraph is given as follows: 

Theorem 7. Let H be a finite, connected hypergraph with n 
hypervertices and m hyperedges. Then 

( ) ( ) 11 ,,,,,, −− ζ=ζ tsuBtsuH H  

( ( ( ) ( ) ( ) ))212 11det JJBI usBt H −−−−−= ε  

( ( )( ) ) ( ( ) (( )( ( )HVH stBttsu DAI −+−−−−= ν
ν−ε 1det111  

( ) ) ( ) ( ( ) ( ) ))),111 mHEn suu IDI −−−⊕−−  

where ( )HBV=ν  and ( ) .HBE=ε  
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Proof. The argument is an analogue of Storm’s method [11]. 

Let ( )HVV =1  and ( ).2 HEV =  At first, we show that there exists a 

one-to-one correspondence between equivalence classes of prime cycles of 
length l in H and those of prime cycles of length 2l in ,HB  and ( )Cvcbc  

( ),~
1 Ccbc=  ( ) ( )CcbcCecbc ~

2=  for any prime cycle C in H and the 

corresponding cycle C~  in .HB  

Let ( )1211 ,,...,,,, vevvevC ll=  be a prime cycle of length l in H. Then 

a cycle ( ) ( ) ( )( )111111 ,,,,,,...,,,,,~ vveeevveevvC lllll=  is a prime cycle 

of length 2l in .HB  Thus, there exists a one-to-one correspondence between 

equivalence classes of prime cycles of length l in H and those of prime cycles 
of length 2l in .HB  

Let C be a prime cycle in H and C~  be a prime cycle corresponding to C 
in .HB  Then there exists a subsequence ( )vev ,,  ( ( ))eve ,,or  in C if and only 

if there exists a subsequence ( ) ( )( ) ( ) ( )( )( )eevvveevveeevv ,,,,,,or,,,,,,  

in .~C  Thus, we have ( ) ( )CcbcCvcbc ~
1=  and ( ) ( ).~

2 CcbcCecbc =  

Therefore, it follows that 

( ) ( ( ) ( ) )
[ ]
∏ −−=ζ

C

CCecbcCvcbc tsutsuH 11,,,  

( ( ) ( ) ) ( )
[ ]
∏ ζ=−= −

C
H

CCcbcCcbc tsuBtsu
~

12~~~
,,,1 21  

where [ ]C  and [ ]C~  run over all equivalence classes of prime cycles in H and 

,HB  respectively. 

By Theorem 6, we have 

( ) 1,,, −ζ tsuH  

( ( ( ) ( ) ( ) ))212 11det JJBI usBt H −−−−−= ε  
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( ( )( ) ) ( ( ) (( )( ( )HVH stBttsu DAI −+−−−−= ν
ν−ε 1det111  

 ( ) ) ( ) ( ( ) ( ) ))),111 mHEn suu IDI −−−⊕−−  

where ( )HBV=ν  and ( ) .HBE=ε  ~ 

Corollary 1. Let H be a finite, connected hypergraph. Then 

( ) ( ).,,,,,, tsuHtsuH ∗ζ=ζ  

Proof. By the fact that .∗=
HH BB  ~ 

If ,0=u  then the following result holds. 

Corollary 2. Let H be a finite, connected hypergraph with n 
hypervertices and m hyperedges. Then 

( ) ( ( ) )
[ ]
∏ −=ζ −

1

111,,0, 1

C

CCecbc tstsH  

( ( ( ) ( ) ))212 1det JJBI −−−−= ε sBt H  

( ( ) ) ( ( )HBtts AI −−−= ν
ν−ε det11  

(( ) ( ( ) ) ( ( ) ( ) ))),11 mHEnHV sst IDID −−⊕−−+  

where ( ) ,HBV=ν  ( ) ,HBE=ε  and [ ]1C  runs over all equivalence 

classes of prime cycles without vertex bumps in H. 

If ,0=s  then the following result holds. 

Corollary 3. Let H be a finite, connected hypergraph with n 
hypervertices and m hyperedges. Then 

( ) ( ( ) )
[ ]
∏ −=ζ −

2

221,0,, 1

C

CCvcbc tutuH  

( ( ( ) ( ) ))212 1det JJBI uBt H −−−−= ε  
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( ( ) ) ( ( )HBttu AI −−−= ν
ν−ε det11  

( ( ) ( ) ) ( ) ( ( ) ))),11 mHEnHV uut IDID −−⊕−−+  

where ( ) ,HBV=ν  ( ) ,HBE=ε  and [ ]2C  runs over all equivalence 

classes of prime cycles without edge bumps in H. 

In the case of ,us =  we also obtain Theorem 5. 

Next, in the case that GH =  is a graph, we show that ( ) =ζ tuG ,0,,  

( )tuBG ,0,,ζ  is equal to the original Bartholdi zeta function ( )tuG ,,ζ  of 

G. 

Corollary 4. Let GH =  be a finite, connected graph with n vertices and 
m edges. Then 

( ) ( ).,,,0,, tuGtuG ζ=ζ  

Proof. Let GH =  be a connected graph, ( ) { }nvvGV ...,,1=  and ( ) =GE  

{ }....,,1 mee  Furthermore, let GB  be the bipartite graph with ν vertices and ε 

edges corresponding to G. Then we have ,2m=ε  ,nm +=ν  and 

( ) ( ) .2, mGEGGV IDDD ==  

By Corollary 3, we have 

( ) ( ( ) ) ( ) ( ( )G
nmm BttutuG AI −−−=ζ ν

+−− det11,0,, 21  

(( ( ) ) ( ) )).11 mnG uut IID −⊕−−+  

Let ( ) ( ) ( )GEeGVvveh ∈∈= ;H  be the incidence matrix of G: 

⎩
⎨
⎧

=
otherwise.0

incident,areandif1 ev
hve  

Then we have 

( ) .⎥
⎦

⎤
⎢
⎣

⎡
=

0H

H0
A tGB  
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Thus, 

( ( ) (( ( ) ) ( ) ))mnGG uutBt IIDAI −⊕−−+−ν 11det  

( ( ) )

( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+−

−−−+
=

m
t

nGn

tut

tut

IH

HIDI

11

1
det  

( ( ) ) ( )( )

( )( )
.

11

111
det ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+

−−+−−−+
=

m

t
nGn

tu

ttutut

I0

HHHIDI
 

Since 

( ) ,G
t G DAHH +=  

we have 

( ( ) (( ( ) ) ( ) ))mnGG uutBt IIDAI −⊕−−+−ν 11det  

( ( ) ) (( ( ) ) ( ) ( ) )Gn
nm tuGttutu DAI 222 111det11 −+−−−−+= −  

( ( ) ) ( ( ) ( ) ( ( ) )).11det11 2
nGn

nm utuGttu IDAI −−−+−−+= −  

Therefore, it follows that 

( ) 1,0,, −ζ tuG  

( ( ) ) ( ( ) ( ) (( ( ) ))nGn
nm utuGttu IDAI −−−+−−−= − 11det11 222  

( ) .,, 1−ζ= tuG  ~ 

In the case of ,0== us  Theorem 7 implies Storm Theorem. 

4. Two New Determinant Expressions of the Generalized Bartholdi 
Zeta Function of a Hypergraph 

Let ( ) ( )( )HEHVH ,=  be a hypergraph, ( ) { }nvvHV ...,,1=  and ( )HE  

{ }....,,1 mee=  Let HB  have ν vertices and ε edges, where .mn +=ν  Then 

we have 



Iwao Sato 112 

( ) {( ) ( ) ( ) ( )}.,,,, HEeHVvveevBD H ∈∈|=  

Let εff ...,,1  be arcs in HB  such that ( ) ( )HVfo i ∈  for each ,1=i  

...., ε  Then two ε×ε  matrices ( )ijX=X  and ( )ijY=Y  are defined as 

follows: 

( )
⎩
⎨
⎧

=
−−

otherwise0
,pathreducedais,,thatsucharcanexiststhereif1 11

jkik
ij

ffffX  

and 

( )
⎩
⎨
⎧

=
−−

otherwise.0
,pathreducedais,,thatsucharcanexiststhereif1 11

jkik
ij

ffffY  

Furthermore, let 

( ) .21 ⎥
⎦

⎤
⎢
⎣

⎡
=−−

0G

F0
JJB HB  

Theorem 8. Let H be a finite, connected hypergraph. Set ( ) .HBE=ε  

Then 

( ) ( )( )εε
− +++−=ζ IGFXI ussuttsuH det,,, 1  

( )( ).det εε +++−= IGFYI ussut  

Proof. Let ( ) ( )( )HEHVH ,=  be a hypergraph, ( ) { }nvvHV ...,,1=  and 

( ) { }....,,1 meeHE =  Let HB  have ν vertices and ε edges. By Theorem 7, 

we have 

( ) ( ( ( ) ( ) ( ) )).11det,,, 212
1 JJBI usBttsuH H −−−−−=ζ ε
−  

Arrange arcs of HB  as follows: ....,,,...,, 11
11

−
ε

−
ε ffff  We consider 

three matrices ( ),HBB  1J  and 2J  under this order. Then we have 

( ) ( ) ( ) .11 21 ⎥
⎦

⎤
⎢
⎣

⎡

+

+
=−−−−

ε

ε

0IG

IF0
JJB

u

s
usBH  
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It is clear that both F and G are symmetric, but .GF t≠  Furthermore, 

 XFG =   and  .YGF =  (6) 

Thus, we have 

( ( ( ) ( ) ( ) ))212 11det JJBI usBt H −−−−−ε  

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−

+−
=

εε

εε
IIG

IFI
ut

stdet  

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ +−++−
=

ε

εεεε
I0

IFIGIFI stustdet  

( ( )) ( )( )εεεε +++−=+++−= IGFXIIGFFGI ussutussut detdet  

( ( )) ( )( ).detdet εεεε +++−=+++−= IGFYIIGFGFI ussutussut  

Therefore, the result follows. ~ 

For the bipartite graph HB  corresponding to a hypergraph H with n 

hypervertices and m hyperedges, let ( )HVV =1  and ( ).2 HEV =  Then, the 

broad halved graph ( )i
HB  of HB  is defined to be the graph with vertex set iV  

and arc set ( ) ( ){ }iVPtPoPP ∈=| ,;2path:  for .2,1=i  Furthermore, 

let { }mcc ...,,1  be a set of m colors such that ( ) ii cec =  for ....,,1 mi =  We 

color each arc of ( )1
HB  as follows: 

( ) ( )ecPc =  for ( ) ( ( ) ).,, 1
HBDwevP ∈=  

Then the line digraph ( ( ) )i
HBL  of ( ) ( )2,1=iB i

H  is defined as follows: 

( ( ( ) )) ( ( ) ),i
H

i
H BDBLV =  and ( ) ( ( ( ) ))i

HBLAQP ∈,  if and only if ( ) ( )QoPt =  

in .HB  
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Let HB  have ν vertices and ε edges, and 

( ) { }11
11 ...,,,...,, −

ε
−

ε= ffffBD H  

such that ( ) ( )HVfo i ∈  for each ....,,1 ε=i  Let R  ( )Sor  be the set of 

reduced paths P in HB  with length two such that ( ) ( ) ( )HVPtPo ∈,  (or 

( ) ( ) ( ))., HEPtPo ∈  Set R=r  and .S=s  Furthermore, let R′  ( )S′or  

be the set of paths P in HB  with length two such that ( ),Po  ( ) ( )HVPt ∈  

( )( ).or HE∈  Next, let ( ),,
kk jik evf =  ( )

kkk ijik vevP ,,=  and =kQ  

( )
kkk jij eve ,,  for each ....,,1 ε=k  Then we have 

{ }ε=′ PP ...,,1∪RR   and  { }....,,1 ε=′ QQ∪SS  

Furthermore, we have (( ( ) )),1
HBD=′R  (( ( ) )),2

HBD=′S  ε+=′ rR  and 

.ε+=′ sS  

Now, we introduce an ( ) ( )ε+×ε+ rr  matrix ( ) R′∈′′′′=′ PPPPT ,T  for 

the line digraph ( ( ) )1
HBL  of the halved graph ( )1

HB  is defined as follows: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

′≠∈′′=

′≠=′∈′=

′=∈′∈′=

′==′∈′=

′≠∈′=′=

′≠=′=′=

′=∈′=′=

ε==′=′=

=′′ ′

otherwise.0

,and,,if1

,and,,if1

,and,,if

,and,,if

,and,,if

,and,,if

,and,,if

,...,,1somefor,if

PcPcPPPoPt

PcPcPPPPoPt

PcPcPPPoPtu

PcPcPPPPoPtu

PcPcPPPPoPts

PcPcPPPPPoPts

PcPcPPPPoPtus

iPPPPoPtus

T

i

i

i

ji

i

i

PP

R

R

RR

R

R

R

 

We present another new determinant expression for the Bartholdi zeta 
function of a hypergraph. 
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Theorem 9. Let H be a finite, connected hypergraph. Set ( )HBE=ε  

and .R=r  Then 

( ) ( ).det,,, 1 TI ′′−=ζ ε+
− ttsuH r  

Proof. Let ( ) ( )( )HEHVH ,=  be a hypergraph, ( ) { }nvvHV ...,,1=  

and ( ) { }meeHE ...,,1=  such that ( ) ( ) ( ).1 ε≤≤∈ iHVfo i  Let HB  have ν 

vertices and ε edges, and ( ) { }....,,,...,, 11
11

−
ε

−
ε= ffffBD H  Furthermore, 

let ( )SR or  be the set of reduced paths P in HB  with length two such that 

( ) ( ) ( ) ( ) ( ) ( )( ).,or, HEPtPoHVPtPo ∈∈  Set R=r  and .S=s  For 

a path ( )zyxP ,,=  of length two in ,HB  let 

( ) ( ) ( ) ( ),,,, zyPteyxPoe ==  

where ( ) ( )wevzyx ,,,, =  or ( ) ( ) ( ) ( )( ).,;,,,,, HEfeHVwvfvezyx ∈∈=  

Now, we introduce two ε×r  matrices ( ) ε≤≤∈−= jRPPf j
K 1;1K  and =L  

( ) ε≤≤∈ jRPPf j
L 1;  are defined as follows: 

( ) ( )

⎩
⎨
⎧ =

=
⎪⎩

⎪
⎨
⎧ =

=
−

−
otherwise.0

,if1

otherwise,0

,if1 1
1

j
Pf

j
Pf

fPoe
L

fPte
K

jj
 

Furthermore, two ε×s  matrices ( ) ε≤≤∈−= jSQQf j
M 1;1M  and =N  

( ) ε≤≤∈ jSQQf jN 1;  are defined as follows: 

( ) ( )

⎩
⎨
⎧ =

=
⎪⎩

⎪
⎨
⎧ =

=
−

−
otherwise.0

,if1

otherwise,0

,if1 1
1

j
Qf

j
Qf

fQte
N

fQoe
M

jj
 

Then we have 

 FLK =t   and  .GMN =t  (7) 

Arrange elements of R′  and S′  are as follows: 

.,...,,;,...,, 11 SR εε QQPP  
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Then we introduce two ( ) ε×ε+r  matrices ( ) ε≤≤′∈−′=′ jPPf j
K 1;1 RK  and 

( ) ε≤≤′∈′=′ jPPf jL 1;RL  are defined as follows: 

( ) ( ) ( )
( ) ( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

≠=

=′ −−

−−

−

,otherwise0

,if

,andif1
11

11

1 j

j

Pf fPtePtes

PtePtefPte

K
j

 

( )

⎩
⎨
⎧ =

=′
.otherwise0

,if1 j
Pf

fPoe
L j  

Furthermore, two ( ) ε×ε+s  matrices ( ) ε≤≤′∈−′=′ jQQf j
M 1;1 SM  and =′N  

( ) ε≤≤′∈′ jQQf j
N 1;S  are defined as follows: 

( )
⎪⎩

⎪
⎨
⎧ =

=′
−

−
,otherwise0

,if1 1
1

j
Qf

fQoe
M

j
 

( ) ( ) ( )
( ) ( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

≠=

=′ −

−

.otherwise0

,if

,andif1
1

1

j

j

Qf fQteQteu

QteQtefQte

N
j

 

But, we have 

⎥
⎦

⎤
⎢
⎣

⎡
=′⎥

⎦

⎤
⎢
⎣

⎡
=′⎥

⎦

⎤
⎢
⎣

⎡
=′ εεε

M

I
M

L

I
L

K

I
K ,,

s
 and .⎥

⎦

⎤
⎢
⎣

⎡
=′ ε

N

I
N

u
 

Thus, we have 

.
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
=′′′′ ε

LMNKLKMNKK

LMNLMNI
LNMK

tttt

tttt
tt

uu

sussus
 

A nonzero element of ,εIus  MNts  ,Ltus  ,LMN tts  ,Ku  ,MNK t  LK tu  

and LMNK tt  corresponds to a sequence of eight paths of length two, 
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respectively: 

( ( ) ( ));; jijiiii PcPcPQPPQP ≠→→→→  

( ) ( )( ) ( ( ) ( ));; RcPcRQPRcPcRQP iiiii ≠→→=→→  

( ) ( )( ) ( ) ( )( );; iiiii PcPcPQPPcPcPQP ≠→→=→→  

( ) ( )( ) ( ) ( )( ),; RcPcRQPRcPcRQP i ≠→→=→→  

where ,, R∈RP  ,S∈Q  ,...,,1 ε=i  and the notation QP →  implies that 

( ) ( )QoePte =  in .HB  Therefore, it follows that 

 .TLNMK ′′=′′′′ tt  (8) 

By (6) and (7), we have 

.XGFIMNLKMNLKINMKL +++=+++=′′′′ εε suussuus tttttt  (9) 

But, it is known that, for an nm ×  matrix A and an mn ×  matrix B, 

 ( ) ( ).detdet BAIABI +=+ nm  (10) 

By (8) and (9), it follows that 

 ( ) ( ( )).detdet εεε+ +++−=′′− IGFXITI ussuttr  ~ 

If ,0== su  then Theorem 9 implies the first formula of Theorem 4. 

Corollary 5. Let H be a finite, connected hypergraph such that every 
hypervertex is in at least two hyperedges. Set .R=r  Then 

( ) ( ).det1 TI tt rH −=ζ −  

Proof. Set ( )HBE=ε  and .0== su  By Theorem 9 and the definition 

of ,T ′′  we have 

( ) ( ) ( ).detdetdet1 TI
TIMNK

0I
TI t

tt
tt r

r
trH −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

−−
=′′−=ζ ε

ε+
−  

 ~ 
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5. Bartholdi Zeta Functions of ( )rd , -regular Hypergraphs 

At first, we state a decomposition formula for the generalized Bartholdi 
zeta function of a semiregular bipartite graph. Hashimoto [5] presented a 
determinant expression for the Ihara zeta function of a semiregular bipartite 
graph. We generalize Hashimoto’s result on the Ihara zeta function to the 
generalized Bartholdi zeta function. 

A graph G is called bipartite, denoted by ( )21, VVG =  if there exists              

a partition ( ) 21 VVGV ∪=  of ( )GV  such that the vertices in iV  are 

mutually nonadjacent for .2,1=i  A bipartite graph ( )21, VVG =  is called 

( )2,1 11 ++ qq -semiregular if 1deg += iG qv  for each ( ).2,1=∈ iVv i  

Then [ ]1G  is ( ) 21 1 qq + -regular, and [ ]2G  is ( ) 12 1 qq + -regular. 

A determinant expression for the generalized Bartholdi zeta function of a 
semiregular bipartite graph is given as follows. For a graph G, let ( )GSpec  

be the set of all eigenvalues of the adjacency matrix of G. 

Theorem 10. Let ( )21, VVG =  be a connected ( )1,1 21 ++ qq -

semiregular bipartite graph with ν vertices and ε edges. Set nV =1  and 

( ).2 mnmV ≤=  Then 

( ) ( ( ) ( ) ) ( ( ) ( ) ) nmt tsqutsutsuG −ν−ε− +−+−−−=ζ 2
2

2 11111,,,  

( ( ( ) ( ) ( ) ( ))∏ =
+−−+−−λ−×

n
j j tsquuqs

1
2

21
2 111  

( ) ( ) ( ) ( ) )4
2111 tsquqsu ++−−+  

( ( ) ( ) ) ν−ε−−−= 2111 tsu  

( ( ) ( ) ) ( ( [ ]12
2 det11 AI −+−+⋅ −

n
nmtsqu  

( ) ( )( ) ) 2
212 2111 tusuqsqq nI−−−−−−−  

( ) ( ) ( ) ( ) )ntsquqsu I4
2111 ++−−+  
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( ( ) ( ) ) ( ( ) ( ) ) ( m
mntuqstsu Idet11111 2

1
2 −ν−ε +−+−−−=  

( [ ] ( ) ( )( ) ) 2
211

2 2111 tusuqsqq mIA −−−−−−−−  

( ) ( ) ( ) ( ) ),11 4
21 mtsquqsu I++−−+  

where ( ) { }0...,,0,...,,1 nGSpec λ±λ±=  and [ ] ( [ ]) ( ).2,1== iG ii AA  

Proof. The argument is an analogue of Hashimoto’s method [5]. 

By Theorem 6, we have 

( ) ( ( ) ( ) ) ( ( )GttsutsuG AI −−−−=ζ ν
ν−ε− det111,,, 21  

(( ) ( ) ( ) ( ) )).11 21
2

mn squuqst II +−⊕+−+  

Let { }nvvV ...,,11 =  and { }....,,12 mwwV =  Arrange vertices of G are 

as follows: ;...,,1 nvv  ....,,1 mww  We consider the matrix ( )GAA =  under 

this order. Then, let 

,⎥
⎦

⎤
⎢
⎣

⎡
=

0E

E0
A t  

where Et  is the transpose of E. 

Since A is symmetric, there exists an orthogonal matrix ( )mO∈W  such 

that 

[ ] .

00

0001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

μ

μ

==

n

0REW  

Now, let 

.⎥
⎦

⎤
⎢
⎣

⎡
=

W0
0I

P n  
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Then we have 

.
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
00R
0R0

PAP tt  

Furthermore, we have 

( ) ( ) ( ) ( )( )PIIP mn
t squuqs +−⊕+− 21 11  

( ) ( ) ( ) ( ) .11 21 mn squuqs II +−⊕+−=  

Thus, 

( ) 1,,, −ζ tsuG  

( ( ) ( ) ) ( ( ) ( ) ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

−

−
+−+−−−= −ν−ε

n
t
nnm

bt

ta
tsqutsu

IR

RI
det11111 2

2
2  

( ( ) ( ) ) ( ( ) ( ) ) nmtsqutsu −ν−ε +−+−−−= 2
2

2 11111  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

−−
⋅ − RRIR

0I
t

n
t
n

tabt

a
21det  

( ( ) ( ) ) ( ( ) ( ) ) ( ),det11111 22
2

2 RRI t
n

nm tabtsqutsu −+−+−−−= −ν−ε  

where ( ) ( ) 2
111 tuqsa +−+=  and ( ) ( ) .11 2

2 tsqub +−+=  

Since A is symmetric, RRt  is symmetric and positive semi-definite, i.e., 

the eigenvalues of RRt  are of form: 

( ).0...,,...,, 1
22

1 ≥λλλλ nn  

Therefore, it follows that 

( ) 1,,, −ζ tsuG  

( ( ) ( ) ) ( ( ) ( ) ) ( ).11111
1

222
2

2 ∏
=

−ν−ε λ−+−+−−−=
n

j
j

nm tabtsqutsu  
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But, we have 

( ) ( )RRIAI tnm −λλ=−λ − 2detdet  

and so 

( ) { }.0...,,0,...,,1 nSpec λ±λ±=A  

Thus, there exists an orthogonal matrix S such that 

,,

00

0

0

1

2

2
1

2

2
1

2
⎥⎦
⎤

⎢⎣
⎡

∗
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

λ

λ
λ

λ

=
0

0S
SSSA

n

n

t  

where 1S  is an nn ×  matrix. Furthermore, we have 

,2
2

GDAA +=  

where (( ) ) ( )GVvuuv ∈= ,22 AA  is given as follows: 

( ) =uv2A  the number of reduced ( )vu, -paths with length 2. 

By the definition of the graphs [ ] ( ),2,1=iG i  

[ ] ( )
[ ] ( )

,
1

1

2
2

1
1

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
=

m

n

q

q

IA0

0IA
A  

where [ ] ( [ ]) ( ).2,1== iG ii AA  Thus, 

[ ] ( )
.

111
11

12

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∗

++
=

−

0

0ISAS
SSA nt q
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Therefore, it follows that 

[ ]
( )

( )
.

10

01

1
2

1
2
1

1
11

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−λ

+−λ

=−

q

q

n

SAS  

Hence 

( ( [ ] ( ) ) ) ( )∏
=

λ−=++−
n

j
jnn tabtqab

1

222
1

1 .1det IAI  

Thus, the second equation follows. 

Similarly to the proof of the second equation, the third equation is 
obtained. ~ 

A hypergraph H is a ( )rd , -regular if every hypervertex is incident to d 

hyperedges, and every hyperedge contains r hypervertices. If H is a ( )rd , -

regular hypergraph, then the associated bipartite graph HB  is ( )rd , -

semiregular. Let ( ),1 HVV =  ( )HEV =2  and .rd ≥  Set 1Vn =  and 

.2Vm =  Then we have [ ] ( )HAA =1  and [ ] ( ).2 ∗= HAA  By Theorems 7 

and 10, we obtain the following result. Let ( )BSpec  be the set of all 

eigenvalues of the square matrix B. 

Theorem 11. Let H be a finite, connected ( )rd , -regular hypergraph 

with .rd ≥  Set ( )HVn =  and ( ) .HEm =  Then 

( ) 1,,, −ζ tsuH  

( ( ) ( ) ) ( ( ) ( ) ) nmtsrutsu −ν−ε +−−+−−−= 111111  

( ( ( ) ( ) ( ) ( ))∏ =
+−−−+−−−λ−×

n
j j tsruuds

1
2 11111  

( ) ( ) ( ) ( ) )21111 tsrudsu +−+−−−+  
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( ( ) ( ) ) ( ( ) ( ) ) nmtsrutsu −ν−ε +−−+−−−= 111111  

( ( ( ) ( ) ( )( ) )tusursdrH nn IAI 2222det −−−−−−−−×  

( ) ( ) ( ) ( ) )ntsrudsu I21111 +−+−−−+  

( ( ) ( ) ) ( ( ) ( ) ) mntudstsu −ν−ε +−−+−−−= 111111  

( ( ( ) ( ) ( )( ) )tusursddH mm IAI 2222det −−−−−−−−× ∗  

( ) ( ) ( ) ( ) ),1111 2
mtsrudsu I+−+−−−+  

where ,mrnd ==ε  mn +=ν  and ( )( ) { }.0...,,0,...,,1 nHBSpec λ±λ±=A  

In the case of ,0== us  we obtain Theorem 16 in [11]. 

Corollary 6 (Storm). Let H be a finite, connected ( )rd , -regular 

hypergraph with .rd ≥  Set ( ) ,HVn =  ( )HEm =  and ( )( ).11 −−= rdq  

Then 

( ) ( ) ( )( ) ( ( )( ) )21 2det111 qttrHtrtt n
nm

H ++−−−+−=ζ −ν−ε− AI  

 ( ) ( )( ) ( ( ( ) ) ),2det111 2qttdHtdt m
mn ++−−−+−= ∗−ν−ε AI  

where mrnd ==ε  and .mn +=ν  

6. Example 

Let ( )21, VVG =  be the bipartite graph with { },,, 3211 vvvV =  =2V  

{ }654 ,, vvv  and 

( ) { }.,,,,,, 63536242615141 vvvvvvvvvvvvvvGE =  

Then we have ,3== mn  ,7=ε  6=ν  and 
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( ) ,
200
020
003

,

000111
000101
000011
110000
101000
111000

1
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= VG DA  

.
300
020
002

2
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=VD  

By Theorem 6, we have 

( ) 1,,, −ζ tsuG  

( ( ) ( ) ) ( ( )Gttus AI −×−−−= ν
ν−ε det111 2  

(( ) ( ( ) ) ( ) ( ( ) )))mVnV suust IDID −−−⊕−−−+ 1111 21
2  

( ( ) ( ) )2111 tus −−−=  

,

100
0100
0010

0100
0010

001

det

2

2

2

2

2

2

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−−−
+−−

+−−
−−+
−−+
−−−+

×

dtttt
cttt

cttt
ttbt
ttbt
tttat

 

where ( ) ( ),21 usa +−=  ( ) ( ),11 usb +−=  ( ) ( )suc +−= 11  and =d  

( ) ( ).21 us +−  Thus, we obtain 

( ) ( ( ) ( ) ) ( ( ) ( ) ( ) )422221 11211111,,, tsutustustsuG −−+−+−−−=ζ −  

{ ( ) ( ( )suuuutusus 222 313441 ++−+−−−+++−×  

( ) ) ( ) ( ) ( 2422 2111633 uusutsuu ++−−−++−+  
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( ) ( ) ) 6222 4717122 tsuusuu ++++++  

( ) ( ) ( ) ( ) ( ) ( ) }.212111 822 tssuuus ++++−−+  

Now, let H be the hypergraph with ( ) { }321 ,, vvvHV =  and ( ) =HE  

{ },,, 321 eee  where { },, 211 vve =  { }312 , vve =  and { }.,, 3213 vvve =  Then 

the above bipartite graph G is the bipartite graph HB  associated with H, 

where ( )HVV =1  and ( ).2 HEV =  By Theorem 7, we have 

 ( ) ( ) 11 ,,,,,, −− ζ=ζ tsuGtsuH  

( ( ) ( ) ) ( ( ) ( ) ( ) )222 11211111 tsutustus −−+−+−−−=  

{ ( ) ( ( )suuuutusus 22 313441 ++−+−−−+++−×  

( ) ) ( ) ( ) ( 2222 2111633 uusutsuu ++−−−++−+  

( ) ( ) ) 3222 4717122 tsuusuu ++++++  

( ) ( ) ( ) ( ) ( ) ( ) }.212111 422 tssuuus ++++−−+  

If ,0=u  then 

( ) ( ( ) ) ( ( ) )221 1111,,0, tsttstsH −++−−=ζ −  

( ( ) ( ) ( ) 3222 11341 tsstssst +−−−−−+−×  

( ) ( ) ( ) ).2112 42 tsss ++−+  

In the case of ,0=s  we have 

( ) ( ( ) ) ( ( ) )221 1111,0,, tuttutuH −++−−=ζ −  

( ( ) ( ) ( ) 3222 11341 tuutuuut +−−−−−+−×  

( ) ( ) ( ) ).2112 42 tuuu ++−+  
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Furthermore, let .us =  Then 

( ) ( ) ( ( ) ) ( ( ) ( ) )2222211 121111,,,,, tutututuHtuuH −+−+−−=ζ=ζ −−  

( ( ) ( ) 2432 665242121 tuuuutuu +−−−−++−×  

( ) ( ) 34322 41414411 tuuuuu ++++−−  

( ) ( ) ( ) ).211 4224 tuuu ++−+  

If ,0== us  then we have 

( ) ( ) ( ) ( ) ( ).44111,,0,0, 432211 tttttttHtH +−−++−=ζ=ζ −−  

Next, let ( ),, 111 evf =  ( ),, 212 evf =  ( ),, 313 evf =  ( ),, 124 evf =  =5f  

( ),, 32 ev  ( )236 , evf =  and ( )., 337 evf =  Then we have 

( ) { }....,,,...,, 1
7

1
171

−−= ffffBD H  

Three matrices X, F and G are given as follows: 

,

0001011
0000101
0100011
0000110
0101000
1000000
0010000

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=X  

,

0010100
0000010
1000100
0000001
1010000
0100000
0001000

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=F  
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.

0100000
1000000
0001000
0010000
0000011
0000101
0000110

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=G  

Then it is certain that .XFG =  

Furthermore, 

,

111

0011

111

0011

11

100

001

7

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=+++

ussuu

susu

uussu

susu

uuusss

ususs

ussus

ussu IGFX  

and so, we have 

( )( ) ( ) .,,,det 1
77

−ζ=+++− tsuHussut IGFXI  

Finally, we consider arcs of ( ).1
HB  Let 

( ),,, 2111 vevR =  ( ),,, 3212 vevR =  ( ),,, 2313 vevR =  

( ),,, 3314 vevR =  ,1
15
−= RR  ,1

36
−= RR  ( ),, 3327 vevR =  

,1
28
−= RR  ,1

49
−= RR  ,1

710
−= RR  

and ( ) ( ).71, 1 ≤≤= − iffP iii  Arrange elements of ( ( ) )1
HBD=′R  are as 
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follows: ,...,, 71 PP  ....,, 101 RR  We consider the matrix T ′′  under this order, 

and then, we have 

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=′′

00001000

11000011

1000011

00100000

11000011

1000011

00100000

00001000

00100000

00001000

0000000

0000000

0000000

0000000

0000

0000

0000

u

u

uu

u

u

uu

u

u

u

u

uss

sus

uss

sus

ssusss

usssuss

susssus

T
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.

000100

000000

00000011

100000

000000

00000011

100000

000100

1100000

0001100

00000

00000

00000

00000

000000

000000

000000

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

uu

uu

uu

uu

uu

uu

u

u

ususs

ssus

ususs

ssus

usus

ss

ss

 

By Theorem 9, we have 

( ) ( ) .,,,det 1
17

−ζ=′′− tsuHt TI  
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