A GENERALIZED BARTHOLDI ZETA FUNCTION FOR A HYPERGRAPH

Iwao Sato
Oyama National College of Technology
Oyama, Tochigi 323-0806, Japan
e-mail: isato@oyama-ct.ac.jp

Abstract

We introduce a generalized Bartholdi zeta function of a bipartite graph, and define a generalized Bartholdi zeta function of a hypergraph H with three variables. Furthermore, we present three types of determinant expressions for the generalized Bartholdi zeta function of a hypergraph H.

1. Introduction

1.1. Zeta functions of graphs

Graphs and digraphs treated here are finite. Let G be a connected graph and D_{G} be the symmetric digraph corresponding to G. Set $D(G)=$ $\{(u, v),(v, u) \mid u v \in E(G)\}$. For $e=(u, v) \in D(G)$, set $u=o(e)$ and $v=t(e)$.

Furthermore, let $e^{-1}=(v, u)$ be the inverse of $e=(u, v)$.
A path P of length n in G is a sequence $P=\left(e_{1}, \ldots, e_{n}\right)$ of n arcs such © 2013 Pushpa Publishing House 2010 Mathematics Subject Classification: 05C50, 15A15.
Keywords and phrases: zeta function, hypergraph, oriented line graph, bipartite graph.
This research was partially supported by Grant-in-Aid for Science Research (C).
Communicated by K. K. Azad
Received March 29, 2013
that $e_{i} \in D(G), t\left(e_{i}\right)=o\left(e_{i+1}\right)(1 \leq i \leq n-1)$. If $e_{i}=\left(v_{i-1}, v_{i}\right)$ for $i=1$, \ldots, n, then we write $P=\left(v_{0}, v_{1}, \ldots, v_{n-1}, v_{n}\right)$. Set $|P|=n, o(P)=o\left(e_{1}\right)$ and $t(P)=t\left(e_{n}\right)$. Also, P is called an $(o(P), t(P))$-path. We say that a path $P=\left(e_{1}, \ldots, e_{n}\right)$ has a backtracking or a bump at $t\left(e_{i}\right)$ if $e_{i+1}^{-1}=e_{i}$ for some $i(1 \leq i \leq n-1)$. A (v, w)-path is called a v-cycle (or v-closed path) if $v=w$. The inverse cycle of a cycle $C=\left(e_{1}, \ldots, e_{n}\right)$ is the cycle $C^{-1}=$ $\left(e_{n}^{-1}, \ldots, e_{1}^{-1}\right)$.

We introduce an equivalence relation between cycles. Two cycles $C_{1}=$ $\left(e_{1}, \ldots, e_{m}\right)$ and $C_{2}=\left(f_{1}, \ldots, f_{m}\right)$ are called equivalent if $f_{j}=e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let [C] be the equivalence class which contains a cycle C. Let B^{r} be the cycle obtained by going r times around a cycle B. Such a cycle is called a multiple of B. A cycle C is reduced if both C and C^{2} have no backtracking. Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the fundamental group $\pi_{1}(G, v)$ of G at a vertex v of G.

The Ihara(-Selberg) zeta function of G is defined by

$$
\mathbf{Z}(G, t)=\prod_{[C]}\left(1-t^{|C|}\right)^{-1},
$$

where [C] runs over all equivalence classes of prime, reduced cycles of G. Ihara [6] defined Ihara zeta functions of graphs, and showed that the reciprocals of Ihara zeta functions of regular graphs are explicit polynomials. A zeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed by Sunada [12, 13]. Hashimoto [5] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial by a determinant containing the edge matrix. Bass [3] presented
another determinant expression for the Ihara zeta function of an irregular graph by using its adjacency matrix.

Let G be a connected graph with n vertices and m edges. Then two $2 m \times 2 m$ matrices

$$
\mathbf{B}=\mathbf{B}(G)=\left(\mathbf{B}_{e, f}\right)_{e, f \in D(G)} \text { and } \mathbf{J}_{0}=\mathbf{J}_{0}(G)=\left(\mathbf{J}_{e, f}\right)_{e, f \in D(G)}
$$

are defined as follows:

$$
\mathbf{B}_{e, f}=\left\{\begin{array}{ll}
1 & \text { if } t(e)=o(f), \\
0 & \text { otherwise },
\end{array} \quad \mathbf{J}_{e, f}= \begin{cases}1 & \text { if } f=e^{-1} \\
0 & \text { otherwise }\end{cases}\right.
$$

Theorem 1 (Hashimoto; Bass). Let G be a connected graph with n vertices and m edges. Then the reciprocal of the Ihara zeta function of G is given by

$$
\begin{aligned}
\mathbf{Z}(G, t)^{-1} & =\operatorname{det}\left(\mathbf{I}_{2 m}-t\left(\mathbf{B}-\mathbf{J}_{0}\right)\right) \\
& =\left(1-t^{2}\right)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-t \mathbf{A}(G)+t^{2}\left(\mathbf{D}_{G}-\mathbf{I}_{n}\right)\right),
\end{aligned}
$$

where $\mathbf{D}_{G}=\left(d_{i j}\right)$ is the diagonal matrix with

$$
d_{i i}=\operatorname{deg}_{G} v_{i}\left(V(G)=\left\{v_{1}, \ldots, v_{n}\right\}\right) .
$$

The first identity in Theorem 1 was also obtained by Hashimoto [5]. Bass [3] proved the second identity by using a linear algebraic method.

Stark and Terras [10] gave an elementary proof of this formula, and discussed three different zeta functions of any graph. Various proofs of Bass’ Theorem were given by Kotani and Sunada [7], and Foata and Zeilberger [4].

Let G be a connected graph. Then the cyclic bump count $\operatorname{cbc}(\pi)$ of a cycle $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is

$$
\operatorname{cbc}(\pi)=\left|\left\{i=1, \ldots, n \mid \pi_{i}=\pi_{i+1}^{-1}\right\}\right|
$$

where $\pi_{n+1}=\pi_{1}$.

Bartholdi [2] introduced the Bartholdi zeta function of a graph. The Bartholdi zeta function of G is defined by

$$
\zeta(G, u, t)=\prod_{[C]}\left(1-u^{c b c(C)} t^{C C}\right)^{-1},
$$

where [C] runs over all equivalence classes of prime cycles of G, and u, t are complex variables with $|u|,|t|$ sufficiently small.

Bartholdi [2] gave a determinant expression of the Bartholdi zeta function of a graph.

Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and m unoriented edges. Then the reciprocal of the Bartholdi zeta function of G is given by

$$
\begin{aligned}
\zeta(G, u, t)^{-1}= & \operatorname{det}\left(\mathbf{I}_{2 m}-t\left(\mathbf{B}-(1-u) \mathbf{J}_{0}\right)\right) \\
= & \left(1-(1-u)^{2} t^{2}\right)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-t \mathbf{A}(G)\right. \\
& \left.+(1-u)\left(\mathbf{D}_{G}-(1-u) \mathbf{I}_{n}\right) t^{2}\right) .
\end{aligned}
$$

We state Amitsur Theorem which is used in the proof of Theorem 6. Foata and Zeilberger [4] gave a new proof of Bass’ Theorem by using the algebra of Lyndon words. Let X be a finite nonempty set, < be a total order in X, and X^{*} be the free monoid generated by X. Then the total order $<$ on X derives the lexicographic order $<^{*}$ on X^{*}. A Lyndon word in X is defined to a nonempty word in X^{*} which is prime, i.e., not the power l^{r} of any other word l for any $r \geq 2$, and which is also minimal in the class of its cyclic rearrangements under $<^{*}$ (see [8]). Let L denote the set of all Lyndon words in X.

Foata and Zeilberger [4] gave a short proof of Amitsur's identity [1].
Theorem 3 (Amitsur). For square matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}$,

$$
\operatorname{det}\left(\mathbf{I}-\left(\mathbf{A}_{1}+\cdots+\mathbf{A}_{k}\right)\right)=\prod_{l \in L} \operatorname{det}\left(\mathbf{I}-\mathbf{A}_{l}\right)
$$

where the product runs over all Lyndon words in $\{1, \ldots, k\}$, and $\mathbf{A}_{l}=$ $\mathbf{A}_{i_{1}} \cdots \mathbf{A}_{i_{p}}$ for $l=i_{1} \cdots i_{p}$.

1.2. Zeta functions of hypergraphs

Storm [11] defined the Ihara-Selberg zeta function of a hypergraph. A hypergraph $H=(V(H), E(H))$ is a pair of a set $V(H)$ of hypervertices and a set $E(H)$ of hyperedges, where the union of all hyperedges is $V(H)$. A hypervertex v is incident to a hyperedge e if $v \in e$. For a hypergraph H, its dual H^{*} is the hypergraph obtained by letting its hypervertex set be indexed by $E(H)$ and its hyperedge set by $V(H)$.

A bipartite graph B_{H} associated with a hypergraph H is defined as follows: $V\left(B_{H}\right)=V(H) \cup E(H)$ and $v \in V(H)$ and $e \in E(H)$ are adjacent in B_{H} if v is incident to e. Let $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$. Then an adjacency matrix $\mathbf{A}(H)$ of H is defined as a matrix whose rows and columns are parameterized by $V(H)$, and (i, j)-entry is the number of paths in B_{H} from v_{i} to v_{j} of length 2 with no backtracking.

For the bipartite graph B_{H} associated with a hypergraph H, let $V_{1}=$ $V(H)$ and $V_{2}=E(H)$. Then, the halved graph $B_{H}^{[i]}$ of B_{H} is defined to be the graph with vertex set V_{i} and arc set $\{P$: reduced path $\| P \mid=2 ; o(P)$, $\left.t(P) \in V_{i}\right\}$ for $i=1,2$.

Let H be a hypergraph. A path P of length n in H is a sequence $P=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{n}, v_{n+1}\right)$ of $n+1$ hypervertices and n hyperedges such that $v_{i} \in V(H), e_{j} \in E(H), v_{1} \in e_{1}, v_{n+1} \in e_{n}$ and $v_{i} \in e_{i}, e_{i-1}$ for $i=2, \ldots, n-1$. Set $|P|=n, o(P)=v_{1}$ and $t(P)=v_{n+1}$. Also, P is called an $(o(P), t(P))$-path. We say that a path P has a hyperedge backtracking
if there is a subsequence of P of the form (e, v, e), where $e \in E(H)$, $v \in V(H)$. A (v, w)-path is called a v-cycle (or v-closed path) if $v=w$.

We introduce an equivalence relation between cycles. Two cycles $C_{1}=\left(v_{1}, e_{1}, v_{2}, \ldots, e_{m}, v_{1}\right)$ and $C_{2}=\left(w_{1}, f_{1}, w_{2}, \ldots, f_{m}, w_{1}\right)$ are called equivalent if $w_{j}=v_{j+k}$ and $f_{j}=e_{j+k}$ for all j. Let [C] be the equivalence class which contains a cycle C. Let B^{r} be the cycle obtained by going r times around a cycle B. Such a cycle is called a multiple of B. A cycle C is reduced if both C and C^{2} have no hyperedge backtracking. Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle.

The Ihara-Selberg zeta function of H is defined by

$$
\zeta_{H}(t)=\prod_{[C]}\left(1-t^{|C|}\right)^{-1}
$$

where [C] runs over all equivalence classes of prime, reduced cycles of H, and t is a complex variable with $|t|$ sufficiently small (see [11]).

Let H be a hypergraph with $E(H)=\left\{e_{1}, \ldots, e_{m}\right\}$, and let $\left\{c_{1}, \ldots, c_{m}\right\}$ be a set of m colors, where $c\left(e_{i}\right)=c_{i}$. Then an edge-colored graph $G H_{C}$ is defined as a graph with vertex set $V(H)$ and edge set $\{v w \mid v, w \in V(H)$; $v, w \in e \in E(H)\}$, where an edge $v w$ is colored c_{i} if $v, w \in e_{i}$. Note that $G H_{C}$ is the halved graph $B_{H}^{[1]}$ of B_{H}.

Let $G H_{C}^{o}$ be the symmetric digraph corresponding to the edge-colored graph $G H_{c}$. Then the oriented line graph $H_{L}^{O}=\left(V_{L}, E_{L}^{O}\right)$ associated with $G H_{c}^{o}$ by

$$
V_{L}=D\left(G H_{c}^{o}\right)
$$

and

$$
E_{L}^{o}=\left\{\left(e_{i}, e_{j}\right) \in D\left(G H_{c}^{o}\right) \times D\left(G H_{c}^{o}\right) \mid c\left(e_{i}\right) \neq c\left(e_{j}\right), t\left(e_{i}\right)=o\left(e_{j}\right)\right\},
$$

where $c\left(e_{i}\right)$ is the color assigned to the oriented edge $e_{i} \in D\left(G H_{c}^{o}\right)$ such that
$c(u, v)=c(u v),(u, v) \in D\left(G H_{c}^{o}\right)$. Also, H_{L}^{o} is called the oriented line graph of $G H_{C}$. The Perron-Frobenius operator $T: C\left(V_{L}\right) \rightarrow C\left(V_{L}\right)$ is given by

$$
(T f)(x)=\sum_{e \in E_{o}(x)} f(t(e))
$$

where $E_{o}(x)=\left\{e \in E_{L}^{O} \mid o(e)=x\right\}$ is the set of all oriented edges with x as their origin vertex, and $C\left(V_{L}\right)$ is the set of functions from V_{L} to the complex number field \mathbf{C}.

Storm [11] gave two nice determinant expressions of the Ihara-Selberg zeta function of a hypergraph by using the results of Kotani and Sunada [7], and Bass [3].

Theorem 4 (Storm). Let H be a finite, connected hypergraph such that every hypervertex is in at least two hyperedges. Then

$$
\begin{aligned}
\zeta_{H}(t)^{-1} & =\operatorname{det}(\mathbf{I}-t T)=\mathbf{Z}\left(B_{H}, \sqrt{t}\right)^{-1} \\
& =(1-t)^{m-n} \operatorname{det}\left(\mathbf{I}-\sqrt{t} \mathbf{A}\left(B_{H}\right)+t \mathbf{Q}_{B_{H}}\right)
\end{aligned}
$$

where $n=\left|V\left(B_{H}\right)\right|, m=\left|E\left(B_{H}\right)\right|$ and $\mathbf{Q}_{B_{H}}=\mathbf{D}_{B_{H}}-\mathbf{I}$.
Let H be a hypergraph. Then a path $P=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{n}, v_{n+1}\right)$ has a (broad) backtracking or (broad) bump at e or v if there is a subsequence of P of the form (e, v, e) or (v, e, v), where $e \in H(H), v \in V(H)$. Furthermore, the cyclic bump count $\operatorname{cbc}(C)$ of a cycle $C=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{n}, v_{1}\right)$ is

$$
\operatorname{cbc}(C)=\left|\left\{i=1, \ldots, n \mid v_{i}=v_{i+1}\right\}\right|+\left|\left\{i=1, \ldots, n \mid e_{i}=e_{i+1}\right\}\right|
$$

where $v_{n+1}=v_{1}$ and $e_{n+1}=e_{1}$.
The Bartholdi zeta function of H is defined by

$$
\zeta(H, u, t)=\prod_{[C]}\left(1-u^{c b c(C)_{t}|C|}\right)^{-1}
$$

where [C] runs over all equivalence classes of prime cycles of H, and u, t are complex variables with $|u|,|t|$ sufficiently small.

If $u=0$, then the Bartholdi zeta function of H is the Ihara-Selberg zeta function of H.

Sato [9] presented a determinant expression of the Bartholdi zeta function of a hypergraph.

Theorem 5 (Sato). Let H be a finite, connected hypergraph. Then

$$
\begin{aligned}
\zeta(H, u, t)^{-1}= & \zeta\left(B_{H}, u, \sqrt{t}\right)^{-1} \\
= & \left(1-(1-u)^{2} t\right)^{m-n} \operatorname{det}\left(\mathbf{I}-\sqrt{t} \mathbf{A}\left(B_{H}\right)\right. \\
& \left.+(1-u) t\left(\mathbf{D}_{B_{H}}-(1-u) \mathbf{I}\right)\right),
\end{aligned}
$$

where $n=\left|V\left(B_{H}\right)\right|$ and $m=\left|E\left(B_{H}\right)\right|$.
Unfortunately, in the case that H is a graph G, the Bartholdi zeta function $\zeta(H, u, t)=\zeta\left(B_{G}, u, \sqrt{t}\right)$ of G is not equal to the original Bartholdi zeta function $\zeta(G, u, t)$ of G.

In this paper, we present a three variable Bartholdi zeta function of a hypergraph H which is the original Bartholdi zeta function of a graph G in the case of $H=G$ and $s=0$.

In Section 2, we introduce a generalized Bartholdi zeta function of a bipartite graph with three variables, and present a determinant expression of it. In Section 3, we introduce a generalized Bartholdi zeta function of a hypergraph with three variables, and present a determinant expression of it. In Section 4, we give a determinant expression for the generalized Bartholdi zeta function of a hypergraph by using a modified Perron-Frobenius operator. In Section 5, we present a decomposition formula for the generalized Bartholdi zeta function of a semiregular bipartite graph. As a corollary, we obtain a decomposition formula for the generalized Bartholdi zeta function of a (d, r)-regular hypergraph.

2. A Generalized Bartholdi Zeta Function of a Bipartite Graph

Let $G=\left(V_{1}, V_{2}\right)$ be a connected bipartite graph. For $j=1$, 2, the cyclic
bump count $\operatorname{cbc} c_{j}(\pi)$ of a cycle $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in G is

$$
c b c_{j}(\pi)=\left|\left\{i=1, \ldots, n \mid \pi_{i}=\pi_{i+1}^{-1}, t\left(\pi_{i}\right) \in V_{j}\right\}\right|
$$

where $\pi_{n+1}=\pi_{1}$. Then the generalized Bartholdi zeta function of a bipartite graph G is defined by

$$
\zeta(G, u, s, t)=\prod_{[C]}\left(1-u^{c b c_{1}(C)} s{ }^{c b c_{2}(C)_{t}|C|}\right)^{-1}
$$

where [C] runs over all equivalence classes of prime cycles of G, and u, s, t are complex variables with $|u|,|s|,|t|$ sufficiently small.

Let $G=\left(V_{1}, V_{2}\right)$ be a connected bipartite graph with v vertices and ε edges. Then three $2 \varepsilon \times 2 \varepsilon$ matrices $\mathbf{B}=\mathbf{B}(G)=\left((\mathbf{B})_{e, f}\right)_{e, f \in D(G)}$ and $\mathbf{J}_{i}=$ $\mathbf{J}_{i}(G)=\left(\left(\mathbf{J}_{i}\right)_{e, f}\right)_{e, f \in D(G)}(i=1,2)$ are defined as follows:
$(\mathbf{B})_{e, f}=\left\{\begin{array}{ll}1 & \text { if } t(e)=o(f), \\ 0 & \text { otherwise },\end{array} \quad\left(\mathbf{J}_{i}\right)_{e, f}=\left\{\begin{array}{ll}1 & \text { if } f=e^{-1} \\ 0 & \text { otherwise },\end{array}\right.\right.$ and $t(e) \in V_{i+1}$, where i is treated modulo 2.

A determinant expression for the generalized Bartholdi function of G is given as follows.

Theorem 6. Let $G=\left(V_{1}, V_{2}\right)$ be a connected bipartite graph with v vertices and ε unoriented edges, $\left|V_{1}\right|=n$ and $\left|V_{2}\right|=m$. Then the reciprocal of the generalized Bartholdi zeta function of G is

$$
\begin{aligned}
\zeta(G, u, s, t)^{-1}= & \operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-t\left(\mathbf{B}-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right) \\
= & \left(1-(1-s)(1-u) t^{2}\right)^{\varepsilon-v} \operatorname{det}\left(\mathbf{I}_{v}-t \mathbf{A}(G)\right. \\
& \left.+t^{2}\left((1-s)\left(\mathbf{D}_{V_{1}}-(1-u) \mathbf{I}_{n}\right) \oplus(1-u)\left(\mathbf{D}_{V_{2}}-(1-s) \mathbf{I}_{m}\right)\right)\right)
\end{aligned}
$$

where $\mathbf{D}_{W}=\left(d_{i j}\right)$ is the diagonal matrix with $d_{i i}=\operatorname{deg}_{G} v_{i}\left(W=\left\{v_{1}, \ldots, v_{p}\right\}\right)$ for any subset W of $V(G)$.

Proof. The argument is an analogue of Bass’ method [3].
Let $V_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $V_{2}=\left\{w_{1}, \ldots, w_{m}\right\}$. Furthermore, let $D(G)=$ $\left\{f_{1}, \ldots, f_{\varepsilon}, f_{1}^{-1}, \ldots, f_{\varepsilon}^{-1}\right\}$ such that $o\left(f_{i}\right) \in V_{1}(1 \leq i \leq n)$.

Arrange arcs of G as follows: $f_{1}, \ldots, f_{\varepsilon}, f_{1}^{-1}, \ldots, f_{\varepsilon}^{-1}$. Furthermore, arrange vertices of G as follows: $v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{m}$.

Now, we define two $2 \varepsilon \times v$ matrices $\mathbf{K}=\left(\mathbf{K}_{f v}\right)_{f \in D(G) ; v \in V(G)}$ and $\mathbf{L}=\left(\mathbf{L}_{f v}\right)_{f \in D(G) ; v \in V(G)}$ as follows:

$$
\mathbf{K}_{f v}:=\left\{\begin{array}{ll}
1 & \text { if } t(f)=v, \\
0 & \text { otherwise },
\end{array} \quad \mathbf{L}_{f v}:= \begin{cases}1 & \text { if } o(f)=v, \\
0 & \text { otherwise }\end{cases}\right.
$$

Here we consider two matrices \mathbf{K} and \mathbf{L} under the above order.
Now, let

$$
\mathbf{K}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{K}_{1} \\
\mathbf{K}_{2} & \mathbf{0}
\end{array}\right], \quad \mathbf{L}=\left[\begin{array}{cc}
\mathbf{L}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{L}_{2}
\end{array}\right],
$$

where $\mathbf{K}_{1}, \mathbf{L}_{2}$ are $\varepsilon \times m$ matrices, and $\mathbf{K}_{2}, \mathbf{L}_{1}$ are $\varepsilon \times n$ matrices. By the definitions of \mathbf{K} and \mathbf{L},

$$
\mathbf{K}_{1}=\mathbf{L}_{2} \text { and } \mathbf{K}_{2}=\mathbf{L}_{1} .
$$

Thus,

$$
\mathbf{L}=\left[\begin{array}{cc}
\mathbf{K}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{K}_{1}
\end{array}\right] .
$$

But, we have

$$
\mathbf{K}^{t} \mathbf{L}=\mathbf{B}(G)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{K}_{1}{ }^{t} \mathbf{K}_{1} \tag{1}\\
\mathbf{K}_{2}{ }^{t} \mathbf{K}_{2} & \mathbf{0}
\end{array}\right]
$$

and

$$
{ }^{t} \mathbf{L K}=\mathbf{A}(G)=\left[\begin{array}{cc}
\mathbf{0} & { }^{t} \mathbf{K}_{2} \mathbf{K}_{1} \tag{2}\\
{ }^{t} \mathbf{K}_{1} \mathbf{K}_{2} & \mathbf{0}
\end{array}\right] .
$$

Furthermore,

$$
{ }^{t} \mathbf{K} \mathbf{K}=\mathbf{D}_{G}=\left[\begin{array}{cc}
{ }^{t} \mathbf{K}_{2} \mathbf{K}_{2} & \mathbf{0} \tag{3}\\
\mathbf{0} & { }^{t} \mathbf{K}_{1} \mathbf{K}_{1}
\end{array}\right] .
$$

Note that

$$
{ }^{t} \mathbf{K}_{2} \mathbf{K}_{2}=\left[\begin{array}{ccc}
\operatorname{deg}_{G} v_{1} & & 0 \tag{4}\\
& \ddots & \\
0 & & \operatorname{deg}_{G} v_{n}
\end{array}\right]=\mathbf{D}_{V_{1}}
$$

and

$$
{ }^{t} \mathbf{K}_{1} \mathbf{K}_{1}=\left[\begin{array}{ccc}
\operatorname{deg}_{G} w_{1} & & 0 \tag{5}\\
& \ddots & \\
0 & & \operatorname{deg}_{G} w_{m}
\end{array}\right]=\mathbf{D}_{V_{2}} .
$$

We introduce two $(v+2 \varepsilon) \times(v+2 \varepsilon)$ matrices as follows:
$\mathbf{P}=\left[\begin{array}{cccc}\left(1-(1-u)(1-s) t^{2}\right) \mathbf{I}_{n} & \mathbf{0} & { }^{t} \mathbf{K}_{2} & (1-s) t^{t} \mathbf{K}_{2} \\ \mathbf{0} & \left(1-(1-u)(1-s) t^{2}\right) \mathbf{I}_{m} & (1-u) t^{t} \mathbf{K}_{1} & { }^{t} \mathbf{K}_{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{\varepsilon} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{\varepsilon}\end{array}\right]$
and

$$
\mathbf{Q}=\left[\begin{array}{cccc}
\mathbf{I}_{n} & \mathbf{0} & { }^{t} \mathbf{K}_{2} & -(1-s) t^{t} \mathbf{K}_{2} \\
\mathbf{0} & \mathbf{I}_{m} & -(1-u) t^{t} \mathbf{K}_{1} & { }^{t} \mathbf{K}_{1} \\
\mathbf{0} & t \mathbf{K}_{1} & \left(1-(1-u)(1-s) t^{2}\right) \mathbf{I}_{\varepsilon} & \mathbf{0} \\
t \mathbf{K}_{2} & \mathbf{0} & \mathbf{0} & \left(1-(1-u)(1-s) t^{2}\right) \mathbf{I}_{\varepsilon}
\end{array}\right] .
$$

By (3), (4) and (5), we have

$$
\mathbf{P Q}=\left[\begin{array}{cccc}
a \mathbf{I}_{n}+(1-s) t^{2}{ }^{t} \mathbf{K}_{2} \mathbf{K}_{2} & -t{ }^{t} \mathbf{K}_{2} \mathbf{K}_{1} & \mathbf{0} & \mathbf{0} \\
-t{ }^{t} \mathbf{K}_{1} \mathbf{K}_{2} & a \mathbf{I}_{m}+(1-u) t^{2}{ }^{t} \mathbf{K}_{1} \mathbf{K}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & t \mathbf{K}_{1} & a \mathbf{I}_{\varepsilon} & \mathbf{0} \\
t \mathbf{K}_{2} & \mathbf{0} & \mathbf{0} & a \mathbf{I}_{\varepsilon}
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
a \mathbf{I}_{n}+(1-s) t^{2} \mathbf{D}_{V_{1}} & -t^{t} \mathbf{K}_{2} \mathbf{K}_{1} & \mathbf{0} & \mathbf{0} \\
-t^{t} \mathbf{K}_{1} \mathbf{K}_{2} & a \mathbf{I}_{m}+(1-u) t^{2} \mathbf{D}_{V_{2}} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & t \mathbf{K}_{1} & a \mathbf{I}_{\varepsilon} & \mathbf{0} \\
t \mathbf{K}_{2} & \mathbf{0} & \mathbf{0} & a \mathbf{I}_{\varepsilon}
\end{array}\right],
$$

where $a=1-(1-u)(1-s) t^{2}$. By (2), we have

$$
\begin{aligned}
\operatorname{det}(\mathbf{P Q})= & \left(1-(1-u)(1-s) t^{2}\right)^{2 \varepsilon} \operatorname{det}\left(\mathbf{I}_{v}-t \mathbf{A}(G)\right. \\
& \left.+t^{2}\left((1-s)\left(\mathbf{D}_{V_{1}}-(1-u) \mathbf{I}_{n}\right) \oplus(1-u)\left(\mathbf{D}_{V_{2}}-(1-s) \mathbf{I}_{m}\right)\right)\right)
\end{aligned}
$$

Furthermore, we have

$$
\mathbf{Q P}=\left[\begin{array}{cccc}
a \mathbf{I}_{n} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & a \mathbf{I}_{m} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & a t \mathbf{K}_{1} & a \mathbf{I}_{\varepsilon}+(1-u) t^{2} \mathbf{K}_{1}{ }^{t} \mathbf{K}_{1} & -t \mathbf{K}_{1}{ }^{t} \mathbf{K}_{1} \\
a t \mathbf{K}_{2} & \mathbf{0} & -t \mathbf{K}_{2}{ }^{t} \mathbf{K}_{2} & a \mathbf{I}_{\varepsilon}+(1-s) t^{2} \mathbf{K}_{2}{ }^{t} \mathbf{K}_{2}
\end{array}\right]
$$

and so

$$
\begin{aligned}
\operatorname{det}(\mathbf{Q P})= & \left(1-(1-u)(1-s) t^{2}\right)^{v} \\
& \cdot \operatorname{det}\left(\left[\begin{array}{cc}
a \mathbf{I}_{\varepsilon}+(1-u) t^{2} \mathbf{K}_{1}{ }^{t} \mathbf{K}_{1} & -t \mathbf{K}_{1}{ }^{t} \mathbf{K}_{1} \\
-t \mathbf{K}_{2}{ }^{t} \mathbf{K}_{2} & a \mathbf{I}_{\varepsilon}+(1-s) t^{2} \mathbf{K}_{2}{ }^{t} \mathbf{K}_{2}
\end{array}\right]\right)
\end{aligned}
$$

But,

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{cc}
a \mathbf{I}_{\varepsilon}+(1-u) t^{2} \mathbf{K}_{1}{ }^{t} \mathbf{K}_{1} & -t \mathbf{K}_{1}{ }^{t} \mathbf{K}_{1} \\
-t \mathbf{K}_{2}{ }^{t} \mathbf{K}_{2} & a \mathbf{I}_{\varepsilon}+(1-s) t^{2} \mathbf{K}_{2}{ }^{t} \mathbf{K}_{2}
\end{array}\right]\right) \\
= & \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{\varepsilon} & -t\left(\mathbf{K}_{1}{ }^{t} \mathbf{K}_{1}-(1-s) \mathbf{I}_{\varepsilon}\right) \\
-t\left(\mathbf{K}_{2}{ }^{t} \mathbf{K}_{2}-(1-u) \mathbf{I}_{\varepsilon}\right) & \mathbf{I}_{\varepsilon}
\end{array}\right]\right) \\
& \cdot \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{\varepsilon} & -(1-s) t \mathbf{I}_{\varepsilon} \\
-(1-u) t \mathbf{I}_{\varepsilon} & \mathbf{I}_{\varepsilon}
\end{array}\right]\right) .
\end{aligned}
$$

By (1), we have

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{\varepsilon} & -t\left(\mathbf{K}_{1}{ }^{t} \mathbf{K}_{1}-(1-s) \mathbf{I}_{\varepsilon}\right) \\
-t\left(\mathbf{K}_{2}{ }^{t} \mathbf{K}_{2}-(1-u) \mathbf{I}_{\varepsilon}\right) & \mathbf{I}_{\varepsilon}
\end{array}\right]\right) \\
= & \operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-t\left(\mathbf{B}(G)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right) .
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{\varepsilon} & -(1-s) t \mathbf{I}_{\varepsilon} \\
-(1-u) t \mathbf{I}_{\varepsilon} & \mathbf{I}_{\varepsilon}
\end{array}\right]\right) \\
= & \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{\varepsilon} & -(1-s) t \mathbf{I}_{\varepsilon} \\
-(1-u) t \mathbf{I}_{\varepsilon} & \mathbf{I}_{\varepsilon}
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{\varepsilon} & \mathbf{0} \\
(1-u) t \mathbf{I}_{\varepsilon} & \mathbf{I}_{\varepsilon}
\end{array}\right]\right) \\
= & \operatorname{det}\left(\left[\begin{array}{cc}
\left(1-(1-u)(1-s) t^{2}\right) \mathbf{I}_{\varepsilon} & -(1-s) t \mathbf{I}_{\varepsilon} \\
\mathbf{0} & \mathbf{I}_{\varepsilon}
\end{array}\right]\right) \\
= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon} .
\end{aligned}
$$

Since $\operatorname{det}(\mathbf{P Q})=\operatorname{det}(\mathbf{Q P})$, we have

$$
\begin{aligned}
& \left(1-(1-u)(1-s) t^{2}\right)^{2 \varepsilon} \operatorname{det}\left(\mathbf{I}_{v}-t \mathbf{A}(G)\right. \\
& \left.+t^{2}\left((1-s)\left(\mathbf{D}_{V_{1}}-(1-u) \mathbf{I}_{n}\right) \oplus(1-u)\left(\mathbf{D}_{V_{2}}-(1-s) \mathbf{I}_{m}\right)\right)\right) \\
= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon+v} \operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-t\left(\mathbf{B}(G)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right) .
\end{aligned}
$$

Therefore, it follows that

$$
\begin{aligned}
& \operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-t\left(\mathbf{B}(G)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right) \\
= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon-v} \operatorname{det}\left(\mathbf{I}_{v}-t \mathbf{A}(G)\right. \\
& \left.+t^{2}\left((1-s)\left(\mathbf{D}_{V_{1}}-(1-u) \mathbf{I}_{n}\right) \oplus(1-u)\left(\mathbf{D}_{V_{2}}-(1-s) \mathbf{I}_{m}\right)\right)\right)
\end{aligned}
$$

Next, let

$$
D(G)=\left\{f_{1}, \ldots, f_{\varepsilon}, f_{\varepsilon+1}, \ldots, f_{2 \varepsilon}\right\}
$$

such that $f_{\varepsilon+i}=f_{i}^{-1}(1 \leq i \leq \varepsilon)$, and consider the lexicographic order on
$D(G) \times D(G)$ derived from a total order of $D(G): f_{1}<f_{2}<\cdots<f_{2 \varepsilon}$. If $\left(f_{i}, f_{j}\right)$ is the r th pair under the above order, then we define the $2 \varepsilon \times 2 \varepsilon$ matrix $\mathbf{T}_{r}=\left(\left(\mathbf{T}_{r}\right)_{p, q}\right)_{1 \leq p, q \leq 2 \varepsilon}$ as follows:

$$
\left(\mathbf{T}_{r}\right)_{p, q}= \begin{cases}t & \text { if } p=f_{i}, q=f_{j}, t\left(f_{i}\right)=o\left(f_{j}\right) \text { and } f_{j} \neq f_{i}^{-1} \\ u t & \text { if } p=f_{i}, q=f_{j}, t\left(f_{i}\right) \in V_{1} \text { and } f_{j}=f_{i}^{-1} \\ s t & \text { if } p=f_{i}, q=f_{j}, t\left(f_{i}\right) \in V_{2} \text { and } f_{j}=f_{i}^{-1} \\ 0 & \text { otherwise. }\end{cases}
$$

Let $\mathbf{M}=\mathbf{T}_{1}+\cdots+\mathbf{T}_{k}, k=4 \varepsilon^{2}$. Then we have

$$
\mathbf{M}=t\left(\mathbf{B}(G)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right) .
$$

Let L be the set of all Lyndon words in $D(G) \times D(G)$. Then we can also consider L as the set of all Lyndon words in $\{1, \ldots, k\}:\left(f_{i_{1}}, f_{j_{1}}\right) \ldots$ $\left(f_{i_{q}}, f_{j_{q}}\right)$ corresponds to $r_{1} r_{2} \cdots r_{q}$, where $\left(f_{i_{p}}, f_{j_{p}}\right)(1 \leq p \leq q)$ is the r_{p} th pair. Theorem 3 implies that

$$
\operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\mathbf{M}\right)=\prod_{w \in L} \operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\mathbf{T}_{w}\right),
$$

where

$$
\mathbf{T}_{w}=\mathbf{T}_{i_{1}} \cdots \mathbf{T}_{i_{p}}
$$

for $w=i_{1} \cdots i_{p}$. Note that $\operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\mathbf{T}_{w}\right)$ is the alternating sum of the diagonal minors of \mathbf{T}_{w}. Thus, we have

$$
\operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\mathbf{T}_{w}\right)= \begin{cases}1-u^{c b c_{1}(C)_{S} c b c_{2}(C)} t^{C \mid} & \text { if } w \text { is a prime cycle } C, \\ 1 & \text { otherwise } .\end{cases}
$$

Therefore, it follows that

$$
\begin{aligned}
\zeta(G, u, s, t)^{-1} & =\prod_{[C]}\left(1-u^{c b c_{1}(C)} s^{c b c_{2}(C)} t^{C \mid}\right) \\
& =\operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-t\left(\mathbf{B}(G)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right),
\end{aligned}
$$

where $[C$] runs over all equivalence classes of prime cycles of G.

3. A Generalized Bartholdi Zeta Function of a Hypergraph

Let H be a hypergraph. In a path $P=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{n}, v_{n+1}\right)$, subsequences (e, v, e) and (v, e, v) are called a vertex bump and an edge bump, respectively. Furthermore, the vertex cyclic bump count $v c b c(C)$ and edge cyclic bump count ecbc (C) of a cycle $C=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{n}, v_{1}\right)$ are defined by

$$
\operatorname{vcbc}(C)=\left|\left\{i=1, \ldots, n \mid e_{i}=e_{i+1}\right\}\right|
$$

and

$$
\operatorname{ecbc}(C)=\left|\left\{i=1, \ldots, n \mid v_{i}=v_{i+1}\right\}\right|
$$

respectively, where $v_{n+1}=v_{1}$ and $e_{n+1}=e_{1}$.
The generalized Bartholdi zeta function of a hypergraph H is defined by

$$
\zeta(H, u, s, t)=\prod_{[C]}\left(1-u^{v c b c(C)_{s} e c b c(C)} t^{|C|}\right)^{-1}
$$

where [C] runs over all equivalence classes of prime cycles of H, and u, s, t are complex variables with $|u|,|s|,|t|$ sufficiently small.

If $u=s=0$, then the Bartholdi zeta function of H is the Ihara-Selberg zeta function of H.

A determinant expression of the generalized Bartholdi zeta function of a hypergraph is given as follows:

Theorem 7. Let H be a finite, connected hypergraph with n hypervertices and m hyperedges. Then

$$
\begin{aligned}
\zeta(H, u, s, t)^{-1}= & \zeta\left(B_{H}, u, s, \sqrt{t}\right)^{-1} \\
= & \operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\sqrt{t}\left(\mathbf{B}\left(B_{H}\right)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right) \\
= & (1-(1-u)(1-s) t)^{\varepsilon-v} \operatorname{det}\left(\mathbf{I}_{v}-\sqrt{t} \mathbf{A}\left(B_{H}\right)+t\left((1-s)\left(\mathbf{D}_{V(H)}\right)\right.\right. \\
& \left.\left.\left.-(1-u) \mathbf{I}_{n}\right) \oplus(1-u)\left(\mathbf{D}_{E(H)}-(1-s) \mathbf{I}_{m}\right)\right)\right)
\end{aligned}
$$

where $v=\left|V\left(B_{H}\right)\right|$ and $\varepsilon=\left|E\left(B_{H}\right)\right|$.

Proof. The argument is an analogue of Storm's method [11].
Let $V_{1}=V(H)$ and $V_{2}=E(H)$. At first, we show that there exists a one-to-one correspondence between equivalence classes of prime cycles of length l in H and those of prime cycles of length $2 l$ in B_{H}, and $v c b c(C)$ $=c b c_{1}(\tilde{C}), \quad e c b c(C)=c b c_{2}(\tilde{C})$ for any prime cycle C in H and the corresponding cycle \tilde{C} in B_{H}.

Let $C=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{l}, e_{l}, v_{1}\right)$ be a prime cycle of length l in H. Then a cycle $\tilde{C}=\left(v_{1},\left(v_{1}, e_{1}\right), e_{1}, \ldots, v_{l},\left(v_{l}, e_{l}\right), e_{l},\left(e_{l}, v_{1}\right), v_{1}\right)$ is a prime cycle of length $2 l$ in B_{H}. Thus, there exists a one-to-one correspondence between equivalence classes of prime cycles of length l in H and those of prime cycles of length $2 l$ in B_{H}.

Let C be a prime cycle in H and \tilde{C} be a prime cycle corresponding to C in B_{H}. Then there exists a subsequence (v, e, v) (or $\left.(e, v, e)\right)$ in C if and only if there exists a subsequence $(v,(v, e), e,(e, v), v)($ or $(e,(e, v), v,(v, e), e))$ in \tilde{C}. Thus, we have $v c b c(C)=c b c_{1}(\tilde{C})$ and $e c b c(C)=c b c_{2}(\tilde{C})$.

Therefore, it follows that

$$
\begin{aligned}
\zeta(H, u, s, t) & =\prod_{[C]}\left(1-u^{v c b c(C)} s_{s} e c b c(C) t^{|C|}\right)^{-1} \\
& =\prod_{[\tilde{C}]}\left(1-u^{c b c_{1}(\tilde{C})_{s} s b c_{2}(\tilde{C})_{t}} t^{\tilde{C} \mid / 2}\right)^{-1}=\zeta\left(B_{H}, u s, \sqrt{t}\right),
\end{aligned}
$$

where $[C]$ and $[\tilde{C}]$ run over all equivalence classes of prime cycles in H and B_{H}, respectively.

By Theorem 6, we have

$$
\begin{aligned}
& \zeta(H, u, s, t)^{-1} \\
= & \operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\sqrt{t}\left(\mathbf{B}\left(B_{H}\right)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & (1-(1-u)(1-s) t)^{\varepsilon-v} \operatorname{det}\left(\mathbf{I}_{v}-\sqrt{t} \mathbf{A}\left(B_{H}\right)+t\left((1-s)\left(\mathbf{D}_{V(H)}\right)\right.\right. \\
& \left.\left.\left.-(1-u) \mathbf{I}_{n}\right) \oplus(1-u)\left(\mathbf{D}_{E(H)}-(1-s) \mathbf{I}_{m}\right)\right)\right)
\end{aligned}
$$

where $v=\left|V\left(B_{H}\right)\right|$ and $\varepsilon=\left|E\left(B_{H}\right)\right|$.
Corollary 1. Let H be a finite, connected hypergraph. Then

$$
\zeta(H, u, s, t)=\zeta\left(H^{*}, u, s, t\right)
$$

Proof. By the fact that $B_{H}=B_{H^{*}}$.
If $u=0$, then the following result holds.
Corollary 2. Let H be a finite, connected hypergraph with n hypervertices and m hyperedges. Then

$$
\begin{aligned}
\zeta(H, 0, s, t)^{-1}= & \prod_{\left[C_{1}\right]}\left(1-s^{e c b c\left(C_{1}\right)_{t}\left|C_{1}\right|}\right) \\
= & \operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\sqrt{t}\left(\mathbf{B}\left(B_{H}\right)-(1-s) \mathbf{J}_{1}-\mathbf{J}_{2}\right)\right) \\
= & (1-(1-s) t)^{\varepsilon-v} \operatorname{det}\left(\mathbf{I}_{v}-\sqrt{t} \mathbf{A}\left(B_{H}\right)\right. \\
& \left.+t\left((1-s)\left(\mathbf{D}_{V(H)}-\mathbf{I}_{n}\right) \oplus\left(\mathbf{D}_{E(H)}-(1-s) \mathbf{I}_{m}\right)\right)\right)
\end{aligned}
$$

where $v=\left|V\left(B_{H}\right)\right|, \varepsilon=\left|E\left(B_{H}\right)\right|$, and $\left[C_{1}\right]$ runs over all equivalence classes of prime cycles without vertex bumps in H.

If $s=0$, then the following result holds.
Corollary 3. Let H be a finite, connected hypergraph with n hypervertices and m hyperedges. Then

$$
\begin{aligned}
\zeta(H, u, 0, t)^{-1} & =\prod_{\left[C_{2}\right]}\left(1-u^{v c b c\left(C_{2}\right)_{t}\left|C_{2}\right|}\right) \\
& =\operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\sqrt{t}\left(\mathbf{B}\left(B_{H}\right)-\mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & (1-(1-u) t)^{\varepsilon-v} \operatorname{det}\left(\mathbf{I}_{v}-\sqrt{t} \mathbf{A}\left(B_{H}\right)\right. \\
& \left.\left.+t\left(\mathbf{D}_{V(H)}-(1-u) \mathbf{I}_{n}\right) \oplus(1-u)\left(\mathbf{D}_{E(H)}-\mathbf{I}_{m}\right)\right)\right)
\end{aligned}
$$

where $v=\left|V\left(B_{H}\right)\right|, \varepsilon=\left|E\left(B_{H}\right)\right|$, and $\left[C_{2}\right]$ runs over all equivalence classes of prime cycles without edge bumps in H .

In the case of $s=u$, we also obtain Theorem 5 .
Next, in the case that $H=G$ is a graph, we show that $\zeta(G, u, 0, t)=$ $\zeta\left(B_{G}, u, 0, \sqrt{t}\right)$ is equal to the original Bartholdi zeta function $\zeta(G, u, t)$ of G.

Corollary 4. Let $H=G$ be a finite, connected graph with n vertices and m edges. Then

$$
\zeta(G, u, 0, t)=\zeta(G, u, t) .
$$

Proof. Let $H=G$ be a connected graph, $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E(G)=$ $\left\{e_{1}, \ldots, e_{m}\right\}$. Furthermore, let B_{G} be the bipartite graph with v vertices and ε edges corresponding to G. Then we have $\varepsilon=2 m, v=m+n$, and

$$
\mathbf{D}_{V(G)}=\mathbf{D}_{G}, \quad \mathbf{D}_{E(G)}=2 \mathbf{I}_{m} .
$$

By Corollary 3, we have

$$
\begin{aligned}
\zeta(G, u, 0, t)^{-1}= & (1-(1-u) t)^{2 m-(m+n)} \operatorname{det}\left(\mathbf{I}_{v}-\sqrt{t} \mathbf{A}\left(B_{G}\right)\right. \\
& \left.+t\left(\left(\mathbf{D}_{G}-(1-u) \mathbf{I}_{n}\right) \oplus(1-u) \mathbf{I}_{m}\right)\right) .
\end{aligned}
$$

Let $\mathbf{H}=\left(h_{v e}\right)_{v \in V(G) ; e \in E(G)}$ be the incidence matrix of G :

$$
h_{v e}= \begin{cases}1 & \text { if } v \text { and } e \text { are incident }, \\ 0 & \text { otherwise }\end{cases}
$$

Then we have

$$
\mathbf{A}\left(B_{G}\right)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{H} \\
{ }^{t} \mathbf{H} & \mathbf{0}
\end{array}\right] .
$$

Thus,

$$
\begin{aligned}
& \operatorname{det}\left(\mathbf{I}_{v}-\sqrt{t} \mathbf{A}\left(B_{G}\right)+t\left(\left(\mathbf{D}_{G}-(1-u) \mathbf{I}_{n}\right) \oplus(1-u) \mathbf{I}_{m}\right)\right) \\
= & \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{n}+t\left(\mathbf{D}_{G}-(1-u) \mathbf{I}_{n}\right) & -\sqrt{t} \mathbf{H} \\
-\sqrt{t}^{t} \mathbf{H} & (1+(1-u) t) \mathbf{I}_{m}
\end{array}\right]\right) \\
= & \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{n}+t\left(\mathbf{D}_{G}-(1-u) \mathbf{I}_{n}\right)-t /(1+(1-u) t) \mathbf{H}^{t} \mathbf{H} & -\sqrt{t} \mathbf{H} \\
0 & (1+(1-u) t) \mathbf{I}_{m}
\end{array}\right]\right) .
\end{aligned}
$$

Since

$$
\mathbf{H}^{t} \mathbf{H}=\mathbf{A}(G)+\mathbf{D}_{G},
$$

we have

$$
\begin{aligned}
& \operatorname{det}\left(\mathbf{I}_{v}-\sqrt{t} \mathbf{A}\left(B_{G}\right)+t\left(\left(\mathbf{D}_{G}-(1-u) \mathbf{I}_{n}\right) \oplus(1-u) \mathbf{I}_{m}\right)\right) \\
= & (1+(1-u) t)^{m-n} \operatorname{det}\left(\left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{n}-t \mathbf{A}(G)+(1-u) t^{2} \mathbf{D}_{G}\right) \\
= & (1+(1-u) t)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-t \mathbf{A}(G)+(1-u) t^{2}\left(\mathbf{D}_{G}-(1-u) \mathbf{I}_{n}\right)\right) .
\end{aligned}
$$

Therefore, it follows that

$$
\begin{aligned}
& \zeta(G, u, 0, t)^{-1} \\
= & \left(1-(1-u)^{2} t^{2}\right)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-t \mathbf{A}(G)+(1-u) t^{2}\left(\left(\mathbf{D}_{G}-(1-u) \mathbf{I}_{n}\right)\right)\right. \\
= & \zeta(G, u, t)^{-1} .
\end{aligned}
$$

In the case of $s=u=0$, Theorem 7 implies Storm Theorem.

4. Two New Determinant Expressions of the Generalized Bartholdi Zeta Function of a Hypergraph

Let $H=(V(H), E(H))$ be a hypergraph, $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E(H)$ $=\left\{e_{1}, \ldots, e_{m}\right\}$. Let B_{H} have v vertices and ε edges, where $v=n+m$. Then we have

$$
D\left(B_{H}\right)=\{(v, e),(e, v) \mid v \in V(H), e \in E(H)\} .
$$

Let $f_{1}, \ldots, f_{\varepsilon}$ be arcs in B_{H} such that $o\left(f_{i}\right) \in V(H)$ for each $i=1$, ..., ε. Then two $\varepsilon \times \varepsilon$ matrices $\mathbf{X}=\left(X_{i j}\right)$ and $\mathbf{Y}=\left(Y_{i j}\right)$ are defined as follows:

$$
X_{i j}= \begin{cases}1 & \text { if there exists an arc } f_{k}^{-1} \text { such that }\left(f_{i}, f_{k}^{-1}, f_{j}\right) \text { is a reduced path, } \\ 0 & \text { otherwise }\end{cases}
$$

and $Y_{i j}= \begin{cases}1 & \text { if there exists an arc } f_{k} \text { such that }\left(f_{i}^{-1}, f_{k}, f_{j}^{-1}\right) \text { is a reduced path, } \\ 0 & \text { otherwise. }\end{cases}$

Furthermore, let

$$
\mathbf{B}\left(B_{H}\right)-\mathbf{J}_{1}-\mathbf{J}_{2}=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{F} \\
\mathbf{G} & \mathbf{0}
\end{array}\right] .
$$

Theorem 8. Let H be a finite, connected hypergraph. Set $\varepsilon=\left|E\left(B_{H}\right)\right|$. Then

$$
\begin{aligned}
\zeta(H, u, s, t)^{-1} & =\operatorname{det}\left(\mathbf{I}_{\varepsilon}-t\left(\mathbf{X}+u \mathbf{F}+s \mathbf{G}+u s \mathbf{I}_{\varepsilon}\right)\right) \\
& =\operatorname{det}\left(\mathbf{I}_{\varepsilon}-t\left(\mathbf{Y}+u \mathbf{F}+s \mathbf{G}+u s \mathbf{I}_{\varepsilon}\right)\right) .
\end{aligned}
$$

Proof. Let $H=(V(H), E(H))$ be a hypergraph, $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E(H)=\left\{e_{1}, \ldots, e_{m}\right\}$. Let B_{H} have v vertices and ε edges. By Theorem 7, we have

$$
\zeta(H, u, s, t)^{-1}=\operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\sqrt{t}\left(\mathbf{B}\left(B_{H}\right)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right) .
$$

Arrange arcs of B_{H} as follows: $f_{1}, \ldots, f_{\varepsilon}, f_{1}^{-1}, \ldots, f_{\varepsilon}^{-1}$. We consider three matrices $\mathbf{B}\left(B_{H}\right), \mathbf{J}_{1}$ and \mathbf{J}_{2} under this order. Then we have

$$
\mathbf{B}\left(B_{H}\right)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{F}+s \mathbf{I}_{\varepsilon} \\
\mathbf{G}+u \mathbf{I}_{\varepsilon} & \mathbf{0}
\end{array}\right] .
$$

It is clear that both \mathbf{F} and \mathbf{G} are symmetric, but $\mathbf{F} \not{ }^{t} \mathbf{G}$. Furthermore,

$$
\begin{equation*}
\mathbf{F G}=\mathbf{X} \text { and } \mathbf{G F}=\mathbf{Y} \tag{6}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
& \operatorname{det}\left(\mathbf{I}_{2 \varepsilon}-\sqrt{t}\left(\mathbf{B}\left(B_{H}\right)-(1-s) \mathbf{J}_{1}-(1-u) \mathbf{J}_{2}\right)\right) \\
= & \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{\varepsilon} & -\sqrt{t}\left(\mathbf{F}+s \mathbf{I}_{\varepsilon}\right) \\
-\sqrt{t}\left(\mathbf{G}+u \mathbf{I}_{\varepsilon}\right) & \mathbf{I}_{\varepsilon}
\end{array}\right]\right) \\
= & \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{\varepsilon}-t\left(\mathbf{F}+s \mathbf{I}_{\varepsilon}\right)\left(\mathbf{G}+u \mathbf{I}_{\varepsilon}\right) & -\sqrt{t}\left(\mathbf{F}+s \mathbf{I}_{\varepsilon}\right) \\
\mathbf{0} & \mathbf{I}_{\varepsilon}
\end{array}\right]\right) \\
= & \operatorname{det}\left(\mathbf{I}_{\varepsilon}-t\left(\mathbf{F} \mathbf{G}+u \mathbf{F}+s \mathbf{G}+u s \mathbf{I}_{\varepsilon}\right)\right)=\operatorname{det}\left(\mathbf{I}_{\varepsilon}-t\left(\mathbf{X}+u \mathbf{F}+s \mathbf{G}+u s \mathbf{I}_{\varepsilon}\right)\right) \\
= & \operatorname{det}\left(\mathbf{I}_{\varepsilon}-t\left(\mathbf{G F}+u \mathbf{F}+s \mathbf{G}+u s \mathbf{I}_{\varepsilon}\right)\right)=\operatorname{det}\left(\mathbf{I}_{\varepsilon}-t\left(\mathbf{Y}+u \mathbf{F}+s \mathbf{G}+u s \mathbf{I}_{\varepsilon}\right)\right) .
\end{aligned}
$$

Therefore, the result follows.

For the bipartite graph B_{H} corresponding to a hypergraph H with n hypervertices and m hyperedges, let $V_{1}=V(H)$ and $V_{2}=E(H)$. Then, the broad halved graph $B_{H}^{(i)}$ of B_{H} is defined to be the graph with vertex set V_{i} and arc set $\left\{P\right.$: path $\left.\| P \mid=2 ; o(P), t(P) \in V_{i}\right\}$ for $i=1$, 2. Furthermore, let $\left\{c_{1}, \ldots, c_{m}\right\}$ be a set of m colors such that $c\left(e_{i}\right)=c_{i}$ for $i=1, \ldots, m$. We color each arc of $B_{H}^{(1)}$ as follows:

$$
c(P)=c(e) \text { for } P=(v, e, w) \in D\left(B_{H}^{(1)}\right)
$$

Then the line digraph $\vec{L}\left(B_{H}^{(i)}\right)$ of $B_{H}^{(i)}(i=1,2)$ is defined as follows: $V\left(\vec{L}\left(B_{H}^{(i)}\right)\right)=D\left(B_{H}^{(i)}\right)$, and $(P, Q) \in A\left(\vec{L}\left(B_{H}^{(i)}\right)\right)$ if and only if $t(P)=o(Q)$ in B_{H}.

Let B_{H} have v vertices and ε edges, and

$$
D\left(B_{H}\right)=\left\{f_{1}, \ldots, f_{\varepsilon}, f_{1}^{-1}, \ldots, f_{\varepsilon}^{-1}\right\}
$$

such that $o\left(f_{i}\right) \in V(H)$ for each $i=1, \ldots, \varepsilon$. Let \mathcal{R} (or \mathcal{S}) be the set of reduced paths P in B_{H} with length two such that $o(P), t(P) \in V(H)$ (or $o(P), t(P) \in E(H))$. Set $r=|\mathcal{R}|$ and $s=|\mathcal{S}|$. Furthermore, let \mathcal{R}^{\prime} (or \mathcal{S}^{\prime}) be the set of paths P in B_{H} with length two such that $o(P), t(P) \in V(H)$ (or $\in E(H)$). Next, let $f_{k}=\left(v_{i_{k}}, e_{j_{k}}\right), \quad P_{k}=\left(v_{i_{k}}, e_{j_{k}}, v_{i_{k}}\right)$ and $Q_{k}=$ $\left(e_{j_{k}}, v_{i_{k}}, e_{j_{k}}\right)$ for each $k=1, \ldots, \varepsilon$. Then we have

$$
\mathcal{R}^{\prime}=\mathcal{R} \cup\left\{P_{1}, \ldots, P_{\varepsilon}\right\} \text { and } \mathcal{S}^{\prime}=\mathcal{S} \cup\left\{Q_{1}, \ldots, Q_{\varepsilon}\right\} .
$$

Furthermore, we have $\mathcal{R}^{\prime}=D\left(\left(B_{H}^{(1)}\right)\right), \quad \mathcal{S}^{\prime}=D\left(\left(B_{H}^{(2)}\right)\right), \quad\left|\mathcal{R}^{\prime}\right|=r+\varepsilon$ and $\left|\mathcal{S}^{\prime}\right|=s+\varepsilon$.

Now, we introduce an $(r+\varepsilon) \times(r+\varepsilon)$ matrix $\mathbf{T}^{\prime}=\left(T_{P P^{\prime}}^{\prime \prime}\right)_{P, P^{\prime} \in \mathcal{R}^{\prime}}$ for the line digraph $\vec{L}\left(B_{H}^{(1)}\right)$ of the halved graph $B_{H}^{(1)}$ is defined as follows:

$$
T_{P P^{\prime}}^{\prime \prime}= \begin{cases}u s & \text { if } t(P)=o\left(P^{\prime}\right), P=P^{\prime}=P_{i} \text { for some } i=1, \ldots, \varepsilon, \\ u s & \text { if } t(P)=o\left(P^{\prime}\right), P=P_{i}, P^{\prime} \in \mathcal{R} \text { and } c(P)=c\left(P^{\prime}\right), \\ s & \text { if } t(P)=o\left(P^{\prime}\right), P=P_{i}, P^{\prime}=P_{j} \text { and } c(P) \neq c\left(P^{\prime}\right), \\ s & \text { if } t(P)=o\left(P^{\prime}\right), P=P_{i}, P^{\prime} \in \mathcal{R} \text { and } c(P) \neq c\left(P^{\prime}\right), \\ u & \text { if } t(P)=o\left(P^{\prime}\right), P \in \mathcal{R}, P^{\prime}=P_{i} \text { and } c(P)=c\left(P^{\prime}\right), \\ u & \text { if } t(P)=o\left(P^{\prime}\right), P \in \mathcal{R}, P^{\prime} \in \mathcal{R} \text { and } c(P)=c\left(P^{\prime}\right), \\ 1 & \text { if } t(P)=o\left(P^{\prime}\right), P \in \mathcal{R}, P^{\prime}=P_{i} \text { and } c(P) \neq c\left(P^{\prime}\right), \\ 1 & \text { if } t(P)=o\left(P^{\prime}\right), P, P^{\prime} \in \mathcal{R} \text { and } c(P) \neq c\left(P^{\prime}\right), \\ 0 & \text { otherwise. }\end{cases}
$$

We present another new determinant expression for the Bartholdi zeta function of a hypergraph.

Theorem 9. Let H be a finite, connected hypergraph. Set $\varepsilon=\left|E\left(B_{H}\right)\right|$ and $r=|\mathcal{R}|$. Then

$$
\zeta(H, u, s, t)^{-1}=\operatorname{det}\left(\mathbf{I}_{r+\varepsilon}-t \mathbf{T}^{\prime \prime}\right) .
$$

Proof. Let $H=(V(H), E(H))$ be a hypergraph, $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E(H)=\left\{e_{1}, \ldots, e_{m}\right\}$ such that $o\left(f_{i}\right) \in V(H)(1 \leq i \leq \varepsilon)$. Let B_{H} have v vertices and ε edges, and $D\left(B_{H}\right)=\left\{f_{1}, \ldots, f_{\varepsilon}, f_{1}^{-1}, \ldots, f_{\varepsilon}^{-1}\right\}$. Furthermore, let \mathcal{R} (or \mathcal{S}) be the set of reduced paths P in B_{H} with length two such that $o(P), t(P) \in V(H)($ or $o(P), t(P) \in E(H)$. Set $r=|\mathcal{R}|$ and $s=|\mathcal{S}|$. For a path $P=(x, y, z)$ of length two in B_{H}, let

$$
o e(P)=(x, y), \quad t e(P)=(y, z),
$$

where $(x, y, z)=(v, e, w)$ or $(x, y, z)=(e, v, f)(v, w \in V(H) ; e, f \in E(H))$.
Now, we introduce two $r \times \varepsilon$ matrices $\mathbf{K}=\left(K_{P f_{j}^{-1}}\right)_{P \in R ; 1 \leq j \leq \varepsilon}$ and $\mathbf{L}=$ $\left(L_{P f_{j}}\right)_{P \in R ; 1 \leq j \leq \varepsilon}$ are defined as follows:

$$
K_{P f_{j}^{-1}}=\left\{\begin{array}{ll}
1 & \text { if } t e(P)=f_{j}^{-1}, \\
0 & \text { otherwise },
\end{array} \quad L_{P f_{j}}= \begin{cases}1 & \text { if } o e(P)=f_{j} \\
0 & \text { otherwise } .\end{cases}\right.
$$

Furthermore, two $s \times \varepsilon$ matrices $\mathbf{M}=\left(M_{Q f_{j}^{-1}}\right)_{Q \in S ; 1 \leq j \leq \varepsilon}$ and $\mathbf{N}=$ $\left(N_{Q f_{j}}\right)_{Q \in S ; 1 \leq j \leq \varepsilon}$ are defined as follows:

$$
M_{Q f_{j}^{-1}}=\left\{\begin{array}{ll}
1 & \text { if } o e(Q)=f_{j}^{-1}, \\
0 & \text { otherwise },
\end{array} \quad N_{Q f_{j}}= \begin{cases}1 & \text { if } \text { te }(Q)=f_{j} \\
0 & \text { otherwise }\end{cases}\right.
$$

Then we have

$$
\begin{equation*}
{ }^{t} \mathbf{L K}=\mathbf{F} \text { and }{ }^{t} \mathbf{M N}=\mathbf{G} . \tag{7}
\end{equation*}
$$

Arrange elements of \mathcal{R}^{\prime} and \mathcal{S}^{\prime} are as follows:

$$
P_{1}, \ldots, P_{\varepsilon}, \mathcal{R} ; Q_{1}, \ldots, Q_{\varepsilon}, \mathcal{S} .
$$

Then we introduce two $(r+\varepsilon) \times \varepsilon$ matrices $\mathbf{K}^{\prime}=\left(K_{P f_{j}^{-1}}^{\prime}\right)_{P \in \mathcal{R}^{\prime} ; 1 \leq j \leq \varepsilon}$ and $\mathbf{L}^{\prime}=\left(L_{P f_{j}}^{\prime}\right)_{P \in \mathcal{R}^{\prime} ; 1 \leq j \leq \varepsilon}$ are defined as follows:

$$
\begin{aligned}
& K_{P f_{j}^{-1}}^{\prime}= \begin{cases}1 & \text { if } t e(P)=f_{j}^{-1} \text { and } t e(P) \neq t e\left(P^{-1}\right) \\
s & \text { if } t e(P)=t e\left(P^{-1}\right)=f_{j}^{-1} \\
0 & \text { otherwise, }\end{cases} \\
& L_{P f_{j}}^{\prime}= \begin{cases}1 & \text { if } \text { oe }(P)=f_{j}, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Furthermore, two $(s+\varepsilon) \times \varepsilon$ matrices $\mathbf{M}^{\prime}=\left(M_{Q f_{j}^{-1}}^{\prime}\right)_{Q \in \mathcal{S}^{\prime} ; 1 \leq j \leq \varepsilon}$ and $\mathbf{N}^{\prime}=$ $\left(N_{Q f_{j}}^{\prime}\right)_{Q \in \mathcal{S}^{\prime} ; 1 \leq j \leq \varepsilon}$ are defined as follows:

$$
\begin{aligned}
& M_{Q f_{j}^{-1}}^{\prime}= \begin{cases}1 & \text { if } \text { oe }(Q)=f_{j}^{-1}, \\
0 & \text { otherwise, }\end{cases} \\
& N_{Q f_{j}}^{\prime}= \begin{cases}1 & \text { if } t e(Q)=f_{j} \text { and } t e(Q) \neq t e\left(Q^{-1}\right), \\
u & \text { if } t e(Q)=t e\left(Q^{-1}\right)=f_{j}, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

But, we have

$$
\mathbf{K}^{\prime}=\left[\begin{array}{c}
s \mathbf{I}_{\varepsilon} \\
\mathbf{K}
\end{array}\right], \mathbf{L}^{\prime}=\left[\begin{array}{c}
\mathbf{I}_{\varepsilon} \\
\mathbf{L}
\end{array}\right], \mathbf{M}^{\prime}=\left[\begin{array}{l}
\mathbf{I}_{\varepsilon} \\
\mathbf{M}
\end{array}\right] \text { and } \mathbf{N}^{\prime}=\left[\begin{array}{c}
u \mathbf{I}_{\varepsilon} \\
\mathbf{N}
\end{array}\right]
$$

Thus, we have

$$
\mathbf{K}^{\prime t} \mathbf{M}^{\prime} \mathbf{N}^{\prime t} \mathbf{L}^{\prime}=\left[\begin{array}{lc}
u s \mathbf{I}_{\varepsilon}+s^{t} \mathbf{M} \mathbf{N} & u s^{t} \mathbf{L}+s^{t} \mathbf{M} \mathbf{N}^{t} \mathbf{L} \\
u \mathbf{K}+\mathbf{K}^{t} \mathbf{M} \mathbf{N} & u \mathbf{K}^{t} \mathbf{L}+\mathbf{K}^{t} \mathbf{M N}^{t} \mathbf{L}
\end{array}\right]
$$

A nonzero element of $u \mathbf{S}_{\varepsilon}, s^{t} \mathbf{M N} u s^{t} \mathbf{L}, s^{t} \mathbf{M N}^{t} \mathbf{L}, u \mathbf{K}, \mathbf{K}^{t} \mathbf{M N}, u \mathbf{K}^{t} \mathbf{L}$ and $\mathbf{K}^{t} \mathbf{M}{ }^{t} \mathbf{L}$ corresponds to a sequence of eight paths of length two,
respectively:

$$
\begin{aligned}
& P_{i} \rightarrow Q_{i} \rightarrow P_{i} ; \quad P_{i} \rightarrow Q \rightarrow P_{j}\left(c\left(P_{i}\right) \neq c\left(P_{j}\right)\right) \\
& P_{i} \rightarrow Q_{i} \rightarrow R\left(c\left(P_{i}\right)=c(R)\right) ; \quad P_{i} \rightarrow Q \rightarrow R\left(c\left(P_{i}\right) \neq c(R)\right) \\
& P \rightarrow Q_{i} \rightarrow P_{i}\left(c(P)=c\left(P_{i}\right)\right) ; \quad P \rightarrow Q \rightarrow P_{i}\left(c(P) \neq c\left(P_{i}\right)\right) \\
& P \rightarrow Q_{i} \rightarrow R(c(P)=c(R)) ; \quad P \rightarrow Q \rightarrow R(c(P) \neq c(R))
\end{aligned}
$$

where $P, R \in \mathcal{R}, Q \in \mathcal{S}, i=1, \ldots, \varepsilon$, and the notation $P \rightarrow Q$ implies that $t e(P)=o e(Q)$ in B_{H}. Therefore, it follows that

$$
\begin{equation*}
\mathbf{K}^{\prime t} \mathbf{M}^{\prime} \mathbf{N}^{\prime t} \mathbf{L}^{\prime}=\mathbf{T}^{\prime \prime} \tag{8}
\end{equation*}
$$

By (6) and (7), we have
${ }^{t} \mathbf{L}^{\prime} \mathbf{K}^{\prime t} \mathbf{M}^{\prime} \mathbf{N}^{\prime}=u s \mathbf{I}_{\varepsilon}+u^{t} \mathbf{L K}+s{ }^{t} \mathbf{M} \mathbf{N}+{ }^{t} \mathbf{L} \mathbf{K}^{t} \mathbf{M} \mathbf{N}=u s \mathbf{I}_{\varepsilon}+u \mathbf{F}+s \mathbf{G}+\mathbf{X}$. (9)
But, it is known that, for an $m \times n$ matrix \mathbf{A} and an $n \times m$ matrix \mathbf{B},

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{I}_{m}+\mathbf{A B}\right)=\operatorname{det}\left(\mathbf{I}_{n}+\mathbf{B} \mathbf{A}\right) \tag{10}
\end{equation*}
$$

By (8) and (9), it follows that

$$
\operatorname{det}\left(\mathbf{I}_{r+\varepsilon}-t \mathbf{T}^{\prime \prime}\right)=\operatorname{det}\left(\mathbf{I}_{\varepsilon}-t\left(\mathbf{X}+u \mathbf{F}+s \mathbf{G}+u s \mathbf{I}_{\varepsilon}\right)\right)
$$

If $u=s=0$, then Theorem 9 implies the first formula of Theorem 4.
Corollary 5. Let H be a finite, connected hypergraph such that every hypervertex is in at least two hyperedges. Set $r=|\mathcal{R}|$. Then

$$
\zeta_{H}(t)^{-1}=\operatorname{det}\left(\mathbf{I}_{r}-t \mathbf{T}\right)
$$

Proof. Set $\varepsilon=\left|E\left(B_{H}\right)\right|$ and $u=s=0$. By Theorem 9 and the definition of $\mathbf{T}^{\prime \prime}$, we have

$$
\zeta_{H}(t)^{-1}=\operatorname{det}\left(\mathbf{I}_{r+\varepsilon}-t \mathbf{T}^{\prime \prime}\right)=\operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}_{\varepsilon} & \mathbf{0} \\
-t \mathbf{K}^{t} \mathbf{M} \mathbf{N} & \mathbf{I}_{r}-t \mathbf{T}
\end{array}\right]\right)=\operatorname{det}\left(\mathbf{I}_{r}-t \mathbf{T}\right)
$$

5. Bartholdi Zeta Functions of (d, r)-regular Hypergraphs

At first, we state a decomposition formula for the generalized Bartholdi zeta function of a semiregular bipartite graph. Hashimoto [5] presented a determinant expression for the Ihara zeta function of a semiregular bipartite graph. We generalize Hashimoto's result on the Ihara zeta function to the generalized Bartholdi zeta function.

A graph G is called bipartite, denoted by $G=\left(V_{1}, V_{2}\right)$ if there exists a partition $V(G)=V_{1} \cup V_{2}$ of $V(G)$ such that the vertices in V_{i} are mutually nonadjacent for $i=1$, 2 . A bipartite graph $G=\left(V_{1}, V_{2}\right)$ is called $\left(q_{1}+1, q_{1}+2\right)$-semiregular if $\operatorname{deg}_{G} v=q_{i}+1$ for each $v \in V_{i}(i=1,2)$. Then $G^{[1]}$ is $\left(q_{1}+1\right) q_{2}$-regular, and $G^{[2]}$ is $\left(q_{2}+1\right) q_{1}$-regular.

A determinant expression for the generalized Bartholdi zeta function of a semiregular bipartite graph is given as follows. For a graph G, let $\operatorname{Spec}(G)$ be the set of all eigenvalues of the adjacency matrix of G.

Theorem 10. Let $G=\left(V_{1}, V_{2}\right)$ be a connected $\left(q_{1}+1, q_{2}+1\right)$ semiregular bipartite graph with v vertices and ε edges. Set $\left|V_{1}\right|=n$ and $\left|V_{2}\right|=m(n \leq m)$. Then

$$
\zeta(G, u, s, t)^{-t}=\left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon-v}\left(1+(1-u)\left(q_{2}+s\right) t^{2}\right)^{m-n}
$$

$$
\begin{aligned}
& \times \prod_{j=1}^{n}\left(1-\left(\lambda_{j}^{2}-(1-s)\left(q_{1}+u\right)-(1-u)\left(q_{2}+s\right)\right) t^{2}\right. \\
& \left.+(1-u)(1-s)\left(q_{1}+u\right)\left(q_{2}+s\right) t^{4}\right) \\
= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon-v}
\end{aligned}
$$

$$
\cdot\left(1+(1-u)\left(q_{2}+s\right) t^{2}\right)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-\left(\mathbf{A}^{[1]}\right.\right.
$$

$$
\left.-\left(q_{2}-1-\left(q_{1}-1\right) s-\left(q_{2}-1\right) u-2 u s\right) \mathbf{I}_{n}\right) t^{2}
$$

$$
\left.+(1-u)(1-s)\left(q_{1}+u\right)\left(q_{2}+s\right) t^{4} \mathbf{I}_{n}\right)
$$

$$
\begin{aligned}
= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon-v}\left(1+(1-s)\left(q_{1}+u\right) t^{2}\right)^{n-m} \operatorname{det}\left(\mathbf{I}_{m}\right. \\
& -\left(\mathbf{A}^{[2]}-\left(q_{1}-1-\left(q_{1}-1\right) s-\left(q_{2}-1\right) u-2 u s\right) \mathbf{I}_{m}\right) t^{2} \\
& \left.+(1-u)(1-s)\left(q_{1}+u\right)\left(q_{2}+s\right) t^{4} \mathbf{I}_{m}\right)
\end{aligned}
$$

where $\operatorname{Spec}(G)=\left\{ \pm \lambda_{1}, \ldots, \pm \lambda_{n}, 0, \ldots, 0\right\}$ and $\mathbf{A}^{[i]}=\mathbf{A}\left(G^{[i]}\right)(i=1,2)$.
Proof. The argument is an analogue of Hashimoto's method [5].
By Theorem 6, we have

$$
\begin{aligned}
\zeta(G, u, s, t)^{-1}= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon-v} \operatorname{det}\left(\mathbf{I}_{v}-t \mathbf{A}(G)\right. \\
& \left.+t^{2}\left((1-s)\left(q_{1}+u\right) \mathbf{I}_{n} \oplus(1-u)\left(q_{2}+s\right) \mathbf{I}_{m}\right)\right)
\end{aligned}
$$

Let $V_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $V_{2}=\left\{w_{1}, \ldots, w_{m}\right\}$. Arrange vertices of G are as follows: $v_{1}, \ldots, v_{n} ; w_{1}, \ldots, w_{m}$. We consider the matrix $\mathbf{A}=\mathbf{A}(G)$ under this order. Then, let

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{E} \\
{ }^{t} \mathbf{E} & \mathbf{0}
\end{array}\right]
$$

where ${ }^{t} \mathbf{E}$ is the transpose of \mathbf{E}.
Since \mathbf{A} is symmetric, there exists an orthogonal matrix $\mathbf{W} \in O(m)$ such that

$$
\mathbf{E W}=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{cccccc}
\mu_{1} & & 0 & 0 & \cdots & 0 \\
& \ddots & & \vdots & & \vdots \\
\star & & \mu_{n} & 0 & \cdots & 0
\end{array}\right] .
$$

Now, let

$$
\mathbf{P}=\left[\begin{array}{cc}
\mathbf{I}_{n} & \mathbf{0} \\
\mathbf{0} & \mathbf{W}
\end{array}\right]
$$

Then we have

$$
{ }^{t} \mathbf{P A P}=\left[\begin{array}{ccc}
\mathbf{0} & \mathbf{R} & \mathbf{0} \\
{ }^{t} \mathbf{R} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right]
$$

Furthermore, we have

$$
\begin{aligned}
& { }^{t} \mathbf{P}\left((1-s)\left(q_{1}+u\right) \mathbf{I}_{n} \oplus(1-u)\left(q_{2}+s\right) \mathbf{I}_{m}\right) \mathbf{P} \\
= & (1-s)\left(q_{1}+u\right) \mathbf{I}_{n} \oplus(1-u)\left(q_{2}+s\right) \mathbf{I}_{m} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \zeta(G, u, s, t)^{-1} \\
= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon-v}\left(1+(1-u)\left(q_{2}+s\right) t^{2}\right)^{m-n} \operatorname{det}\left(\left[\begin{array}{cc}
a \mathbf{I}_{n} & -t \mathbf{R} \\
-t^{t} \mathbf{R} & b \mathbf{I}_{n}
\end{array}\right]\right) \\
= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon-v}\left(1+(1-u)\left(q_{2}+s\right) t^{2}\right)^{m-n} \\
& \cdot \operatorname{det}\left(\left[\begin{array}{cc}
a \mathbf{I}_{n} & \mathbf{0} \\
-t^{t} \mathbf{R} & b \mathbf{I}_{n}-a^{-1} t^{2 t} \mathbf{R R}
\end{array}\right]\right) \\
= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon-v}\left(1+(1-u)\left(q_{2}+s\right) t^{2}\right)^{m-n} \operatorname{det}\left(a b \mathbf{I}_{n}-t^{2 t} \mathbf{R} \mathbf{R}\right)
\end{aligned}
$$

where $a=1+(1-s)\left(q_{1}+u\right) t^{2}$ and $b=1+(1-u)\left(q_{2}+s\right) t^{2}$.

Since \mathbf{A} is symmetric, ${ }^{t} \mathbf{R R}$ is symmetric and positive semi-definite, i.e., the eigenvalues of ${ }^{t} \mathbf{R} \mathbf{R}$ are of form:

$$
\lambda_{1}^{2}, \ldots, \lambda_{n}^{2}\left(\lambda_{1}, \ldots, \lambda_{n} \geq 0\right)
$$

Therefore, it follows that

$$
\begin{aligned}
& \zeta(G, u, s, t)^{-1} \\
= & \left(1-(1-u)(1-s) t^{2}\right)^{\varepsilon-v}\left(1+(1-u)\left(q_{2}+s\right) t^{2}\right)^{m-n} \prod_{j=1}^{n}\left(a b-\lambda_{j}^{2} t^{2}\right) .
\end{aligned}
$$

But, we have

$$
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=\lambda^{m-n} \operatorname{det}\left(\lambda^{2} \mathbf{I}-{ }^{t} \mathbf{R} \mathbf{R}\right)
$$

and so

$$
\operatorname{Spec}(\mathbf{A})=\left\{ \pm \lambda_{1}, \ldots, \pm \lambda_{n}, 0, \ldots, 0\right\} .
$$

Thus, there exists an orthogonal matrix S such that
${ }^{t} \mathbf{S} \mathbf{A}^{2} \mathbf{S}=\left[\begin{array}{lllllllll}\lambda_{1}^{2} & & & & & & & & 0 \\ & \ddots & & & & & & & \\ & & \lambda_{n}^{2} & & & & & & \\ & & & \lambda_{1}^{2} & & & & & \\ & & & & \ddots & & & & \\ & & & & & \lambda_{n}^{2} & & & \\ & & & & & & 0 & & \\ 0 & & & & & & & \ddots & \\ & & & & & & & 0\end{array}\right], \mathbf{S}=\left[\begin{array}{cc}\mathbf{s}_{1} & \mathbf{0} \\ \mathbf{0} & *\end{array}\right]$,
where \mathbf{S}_{1} is an $n \times n$ matrix. Furthermore, we have

$$
\mathbf{A}^{2}=\mathbf{A}_{2}+\mathbf{D}_{G}
$$

where $\mathbf{A}_{2}=\left(\left(\mathbf{A}_{2}\right)_{u v}\right)_{u, v \in V(G)}$ is given as follows:
$\left(\mathbf{A}_{2}\right)_{u v}=$ the number of reduced (u, v)-paths with length 2.
By the definition of the graphs $G^{[i]}(i=1,2)$,

$$
\mathbf{A}^{2}=\left[\begin{array}{cc}
\mathbf{A}^{[1]}+\left(q_{1}+1\right) \mathbf{I}_{n} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}^{[2]}+\left(q_{2}+1\right) \mathbf{I}_{m}
\end{array}\right],
$$

where $\mathbf{A}^{[i]}=\mathbf{A}\left(G^{[i]}\right)(i=1,2)$. Thus,

$$
{ }^{t} \mathbf{S} \mathbf{A}^{2} \mathbf{S}=\left[\begin{array}{cc}
\mathbf{S}_{1}^{-1} \mathbf{A}^{[1]} \mathbf{S}_{1}+\left(q_{1}+1\right) \mathbf{I}_{n} & \mathbf{0} \\
\mathbf{0} & *
\end{array}\right]
$$

Therefore, it follows that

$$
\mathbf{S}_{1}^{-1} \mathbf{A}^{[1]} \mathbf{S}_{1}=\left[\begin{array}{ccc}
\lambda_{1}^{2}-\left(q_{1}+1\right) & & 0 \\
& \ddots & \\
0 & & \lambda_{n}^{2}-\left(q_{1}+1\right)
\end{array}\right]
$$

Hence

$$
\operatorname{det}\left(a b \mathbf{I}_{n}-\left(\mathbf{A}^{[1]}+\left(q_{1}+1\right) \mathbf{I}_{n}\right) t^{2}\right)=\prod_{j=1}^{n}\left(a b-\lambda_{j}^{2} t^{2}\right)
$$

Thus, the second equation follows.
Similarly to the proof of the second equation, the third equation is obtained.

A hypergraph H is a (d, r)-regular if every hypervertex is incident to d hyperedges, and every hyperedge contains r hypervertices. If H is a (d, r) regular hypergraph, then the associated bipartite graph B_{H} is (d, r) semiregular. Let $V_{1}=V(H), V_{2}=E(H)$ and $d \geq r$. Set $n=\left|V_{1}\right|$ and $m=\left|V_{2}\right|$. Then we have $\mathbf{A}^{[1]}=\mathbf{A}(H)$ and $\mathbf{A}^{[2]}=\mathbf{A}\left(H^{*}\right)$. By Theorems 7 and 10, we obtain the following result. Let $\operatorname{Spec}(\mathbf{B})$ be the set of all eigenvalues of the square matrix \mathbf{B}.

Theorem 11. Let H be a finite, connected (d, r)-regular hypergraph with $d \geq r$. Set $n=|V(H)|$ and $m=|E(H)|$. Then

$$
\begin{aligned}
& \zeta(H, u, s, t)^{-1} \\
= & (1-(1-u)(1-s) t)^{\varepsilon-v}(1+(1-u)(r-1+s) t)^{m-n} \\
& \times \prod_{j=1}^{n}\left(1-\left(\lambda_{j}^{2}-(1-s)(d-1+u)-(1-u)(r-1+s)\right) t\right. \\
& \left.+(1-u)(1-s)(d-1+u)(r-1+s) t^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & (1-(1-u)(1-s) t)^{\varepsilon-v}(1+(1-u)(r-1+s) t)^{m-n} \\
& \times \operatorname{det}\left(\mathbf{I}_{n}-\left(\mathbf{A}(H)-(r-2-(d-2) s-(r-2) u-2 u s) \mathbf{I}_{n}\right) t\right. \\
& \left.+(1-u)(1-s)(d-1+u)(r-1+s) t^{2} \mathbf{I}_{n}\right) \\
= & (1-(1-u)(1-s) t)^{\varepsilon-v}(1+(1-s)(d-1+u) t)^{n-m} \\
& \times \operatorname{det}\left(\mathbf{I}_{m}-\left(\mathbf{A}\left(H^{*}\right)-(d-2-(d-2) s-(r-2) u-2 u s) \mathbf{I}_{m}\right) t\right. \\
& \left.+(1-u)(1-s)(d-1+u)(r-1+s) t^{2} \mathbf{I}_{m}\right)
\end{aligned}
$$

where $\varepsilon=n d=m r, v=n+m$ and $\operatorname{Spec}\left(\mathbf{A}\left(B_{H}\right)\right)=\left\{ \pm \lambda_{1}, \ldots, \pm \lambda_{n}, 0, \ldots, 0\right\}$.
In the case of $s=u=0$, we obtain Theorem 16 in [11].

Corollary 6 (Storm). Let H be a finite, connected (d,r)-regular hypergraph with $d \geq r$. Set $n=|V(H)|, \quad m=|E(H)|$ and $q=(d-1)(r-1)$. Then

$$
\begin{aligned}
\zeta_{H}(t)^{-1} & =(1-t)^{\varepsilon-v}(1+(r-1) t)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-(\mathbf{A}(H)-r+2) t+q t^{2}\right) \\
& =(1-t)^{\varepsilon-v}(1+(d-1) t)^{n-m} \operatorname{det}\left(\mathbf{I}_{m}-\left(\mathbf{A}\left(H^{*}\right)-d+2\right) t+q t^{2}\right)
\end{aligned}
$$

where $\varepsilon=n d=m r$ and $v=n+m$.

6. Example

Let $G=\left(V_{1}, V_{2}\right)$ be the bipartite graph with $V_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, V_{2}=$ $\left\{v_{4}, v_{5}, v_{6}\right\}$ and

$$
E(G)=\left\{v_{1} v_{4}, v_{1} v_{5}, v_{1} v_{6}, v_{2} v_{4}, v_{2} v_{6}, v_{3} v_{5}, v_{3} v_{6}\right\} .
$$

Then we have $n=m=3, \varepsilon=7, v=6$ and

$$
\begin{aligned}
& \mathbf{A}(G)=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{D}_{V_{1}}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right], \\
& \mathbf{D}_{V_{2}}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] .
\end{aligned}
$$

By Theorem 6, we have

$$
\begin{aligned}
& \zeta(G, u, s, t)^{-1} \\
= & \left(1-(1-s)(1-u) t^{2}\right)^{\varepsilon-v} \times \operatorname{det}\left(\mathbf{I}_{v}-t \mathbf{A}(G)\right. \\
& \left.+t^{2}\left((1-s)\left(\mathbf{D}_{V_{1}}-(1-u) \mathbf{I}_{n}\right) \oplus(1-u)\left(\mathbf{D}_{V_{2}}-(1-s) \mathbf{I}_{m}\right)\right)\right) \\
= & \left(1-(1-s)(1-u) t^{2}\right) \\
& \times \operatorname{det}\left(\left[\begin{array}{cccccc}
1+a t^{2} & 0 & 0 & -t & -t & -t \\
0 & 1+b t^{2} & 0 & -t & 0 & -t \\
0 & 0 & 1+b t^{2} & 0 & -t & -t \\
-t & -t & 0 & 1+c t^{2} & 0 & 0 \\
-t & 0 & -t & 0 & 1+c t^{2} & 0 \\
-t & -t & -t & 0 & 0 & 1+d t^{2}
\end{array}\right]\right)
\end{aligned}
$$

where $a=(1-s)(2+u), \quad b=(1-s)(1+u), \quad c=(1-u)(1+s)$ and $d=$ $(1-s)(2+u)$. Thus, we obtain

$$
\begin{aligned}
\zeta(G, u, s, t)^{-1}= & \left(1-(1-s)(1-u) t^{2}\right)\left(1+(1-2 u s) t^{2}+\left(1-u^{2}\right)\left(1-s^{2}\right) t^{4}\right) \\
& \times\left\{1-(s+u+4 u s) t^{2}+\left(-4-u-3 u^{2}+\left(-1+u+3 u^{2}\right) s\right.\right. \\
& \left.+\left(-3+3 u+6 u^{2}\right) s^{2}\right) t^{4}-(1-u)(1-s)\left(1+2 u+u^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(2+12 u+7 u^{2}\right) s+\left(1+7 u+4 u^{2}\right) s^{2}\right) t^{6} \\
& \left.+(1-s)^{2}(1-u)^{2}(1+u)(2+u)(1+s)(2+s) t^{8}\right\}
\end{aligned}
$$

Now, let H be the hypergraph with $V(H)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $E(H)=$ $\left\{e_{1}, e_{2}, e_{3}\right\}$, where $e_{1}=\left\{v_{1}, v_{2}\right\}, e_{2}=\left\{v_{1}, v_{3}\right\}$ and $e_{3}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Then the above bipartite graph G is the bipartite graph B_{H} associated with H, where $V_{1}=V(H)$ and $V_{2}=E(H)$. By Theorem 7, we have

$$
\begin{aligned}
\zeta(H, u, s, t)^{-1}= & \zeta(G, u, s, \sqrt{t})^{-1} \\
= & (1-(1-s)(1-u) t)\left(1+(1-2 u s) t+\left(1-u^{2}\right)\left(1-s^{2}\right) t^{2}\right) \\
& \times\left\{1-(s+u+4 u s) t+\left(-4-u-3 u^{2}+\left(-1+u+3 u^{2}\right) s\right.\right. \\
& \left.+\left(-3+3 u+6 u^{2}\right) s^{2}\right) t^{2}-(1-u)(1-s)\left(1+2 u+u^{2}\right. \\
& \left.+\left(2+12 u+7 u^{2}\right) s+\left(1+7 u+4 u^{2}\right) s^{2}\right) t^{3} \\
& \left.+(1-s)^{2}(1-u)^{2}(1+u)(2+u)(1+s)(2+s) t^{4}\right\}
\end{aligned}
$$

If $u=0$, then

$$
\begin{aligned}
\zeta(H, 0, s, t)^{-1}= & (1-(1-s) t)\left(1+t+\left(1-s^{2}\right) t^{2}\right) \\
& \times\left(1-s t+\left(-4-s-3 s^{2}\right) t^{2}-(1-s)(1+s)^{2} t^{3}\right. \\
& \left.+2(1-s)^{2}(1+s)(2+s) t^{4}\right)
\end{aligned}
$$

In the case of $s=0$, we have

$$
\begin{aligned}
\zeta(H, u, 0, t)^{-1}= & (1-(1-u) t)\left(1+t+\left(1-u^{2}\right) t^{2}\right) \\
& \times\left(1-u t+\left(-4-u-3 u^{2}\right) t^{2}-(1-u)(1+u)^{2} t^{3}\right. \\
& \left.+2(1-u)^{2}(1+u)(2+u) t^{4}\right)
\end{aligned}
$$

Furthermore, let $s=u$. Then

$$
\begin{aligned}
\zeta(H, u, u, t)^{-1}= & \zeta(H, u, t)^{-1}=\left(1-(1-u)^{2} t\right)\left(1+\left(1-2 u^{2}\right) t+\left(1-u^{2}\right)^{2} t^{2}\right) \\
& \times\left(1-2 u(1+2 u) t+\left(-4-2 u-5 u^{2}-6 u^{3}+6 u^{4}\right) t^{2}\right. \\
& -(1-u)^{2}\left(1+4 u+14 u^{2}+14 u^{3}+4 u^{4}\right) t^{3} \\
& \left.+(1-u)^{4}(1+u)^{2}(2+u)^{2} t^{4}\right)
\end{aligned}
$$

If $s=u=0$, then we have

$$
\zeta(H, 0,0, t)^{-1}=\zeta(H, t)^{-1}=(1-t)\left(1+t+t^{2}\right)\left(1-4 t^{2}-t^{3}+4 t^{4}\right) .
$$

Next, let $f_{1}=\left(v_{1}, e_{1}\right), f_{2}=\left(v_{1}, e_{2}\right), f_{3}=\left(v_{1}, e_{3}\right), f_{4}=\left(v_{2}, e_{1}\right), f_{5}=$ $\left(v_{2}, e_{3}\right), f_{6}=\left(v_{3}, e_{2}\right)$ and $f_{7}=\left(v_{3}, e_{3}\right)$. Then we have

$$
D\left(B_{H}\right)=\left\{f_{1}, \ldots, f_{7}, f_{1}^{-1}, \ldots, f_{7}^{-1}\right\} .
$$

Three matrices \mathbf{X}, \mathbf{F} and \mathbf{G} are given as follows:

$$
\begin{aligned}
& \mathbf{X}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right], \\
& \mathbf{F}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right],
\end{aligned}
$$

$$
\mathbf{G}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Then it is certain that $\mathbf{F G}=\mathbf{X}$.

Furthermore,

$$
\mathbf{X}+u \mathbf{F}+s \mathbf{G}+u s \mathbf{I}_{7}=\left[\begin{array}{ccccccc}
u s & s & s & u & 1 & 0 & 0 \\
s & u s & s & 0 & 0 & u & 1 \\
s & s & u s & 1 & u & 1 & u \\
u & 1 & 1 & u s & s & 0 & 0 \\
1 & 1 & u & s & u s & 1 & u \\
1 & u & 1 & 0 & 0 & u s & s \\
1 & 1 & u & 1 & u & s & u s
\end{array}\right],
$$

and so, we have

$$
\operatorname{det}\left(\mathbf{I}_{7}-t\left(\mathbf{X}+u \mathbf{F}+s \mathbf{G}+u s \mathbf{I}_{7}\right)\right)=\zeta(H, u, s, t)^{-1}
$$

Finally, we consider arcs of $B_{H}^{(1)}$. Let

$$
\begin{aligned}
& R_{1}=\left(v_{1}, e_{1}, v_{2}\right), R_{2}=\left(v_{1}, e_{2}, v_{3}\right), R_{3}=\left(v_{1}, e_{3}, v_{2}\right) \\
& R_{4}=\left(v_{1}, e_{3}, v_{3}\right), R_{5}=R_{1}^{-1}, R_{6}=R_{3}^{-1}, R_{7}=\left(v_{2}, e_{3} v_{3}\right) \\
& R_{8}=R_{2}^{-1}, R_{9}=R_{4}^{-1}, R_{10}=R_{7}^{-1}
\end{aligned}
$$

and $P_{i}=\left(f_{i}, f_{i}^{-1}\right)(1 \leq i \leq 7)$. Arrange elements of $\mathcal{R}^{\prime}=D\left(B_{H}^{(1)}\right)$ are as
follows: $P_{1}, \ldots, P_{7}, R_{1}, \ldots, R_{10}$. We consider the matrix $\mathbf{T}^{\prime \prime}$ under this order, and then, we have
$\mathbf{T}^{\prime \prime}=\left[\begin{array}{lllllllll}u s & s & s & 0 & 0 & 0 & 0 & u s & s \\ s & u s & s & 0 & 0 & 0 & 0 & s & u s \\ s & s & u s & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & u s & s & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & s & u s & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & u s & s & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & s & u s & 0 & 0 \\ 0 & 0 & 0 & u & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & u & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & u & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & u & 0 & 0 \\ u & 1 & 1 & 0 & 0 & 0 & 0 & u & 1 \\ 1 & 1 & u & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & u & 0 & 0 \\ 1 & u & 1 & 0 & 0 & 0 & 0 & 1 & u \\ 1 & 1 & u & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & u & 0 & 0 & 0 & 0\end{array}\right.$

A Generalized Bartholdi Zeta Function for a Hypergraph 129
$\left.\begin{array}{cccccccc}s & s & 0 & 0 & 0 & 0 & 0 & 0 \\ s & s & 0 & 0 & 0 & 0 & 0 & 0 \\ u s & u s & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & u s & s & s & 0 & 0 & 0 \\ 0 & 0 & s & u s & u s & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & u s & s & s \\ 0 & 0 & 0 & 0 & 0 & s & u s & u s \\ 0 & 0 & u & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & u & 1 & 1 \\ 0 & 0 & 1 & u & u & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & u & u \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ u & u & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & u & u \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ u & u & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & u & u & 0 & 0 & 0\end{array}\right]$.

By Theorem 9, we have

$$
\operatorname{det}\left(\mathbf{I}_{17}-t \mathbf{T}^{\prime \prime}\right)=\zeta(H, u, s, t)^{-1}
$$

References

[1] S. A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra 9 (1980), 177-182.
[2] L. Bartholdi, Counting paths in graphs, Enseign. Math. 45 (1999), 83-131.
[3] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), 717-797.
[4] D. Foata and D. Zeilberger, A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999), 2257-2274.
[5] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic groups, Adv. Stud. Pure Math., Vol. 15, Academic Press, New York, 1989, pp. 211-280.
[6] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
[7] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. U. Tokyo 7 (2000), 7-25.
[8] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, Mass., 1983.
[9] I. Sato, Bartholdi zeta functions for hypergraphs, Electron. J. Combin. 13 (2006).
[10] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 124-165.
[11] C. K. Storm, The zeta function of a hypergraph, Electron. J. Combin. 13 (2006).
[12] T. Sunada, L-functions in geometry and some applications, Lecture Notes in Math., Vol. 1201, Springer-Verlag, New York, 1986, pp. 266-284
[13] T. Sunada, Fundamental Groups and Laplacians (in Japanese), Kinokuniya, Tokyo, 1988.

