A GENERALIZED BARTHOLDI ZETA FUNCTION FOR A HYPERGRAPH

Iwao Sato

Oyama National College of Technology Oyama, Tochigi 323-0806, Japan e-mail: isato@oyama-ct.ac.jp

Abstract

We introduce a generalized Bartholdi zeta function of a bipartite graph, and define a generalized Bartholdi zeta function of a hypergraph H with three variables. Furthermore, we present three types of determinant expressions for the generalized Bartholdi zeta function of a hypergraph H.

1. Introduction

1.1. Zeta functions of graphs

Graphs and digraphs treated here are finite. Let G be a connected graph and D_G be the symmetric digraph corresponding to G. Set $D(G) = \{(u, v), (v, u) | uv \in E(G)\}$. For $e = (u, v) \in D(G)$, set u = o(e) and v = t(e). Furthermore, let $e^{-1} = (v, u)$ be the *inverse* of e = (u, v).

A path P of length n in G is a sequence $P = (e_1, ..., e_n)$ of n arcs such

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: 05C50, 15A15.

Keywords and phrases: zeta function, hypergraph, oriented line graph, bipartite graph.

This research was partially supported by Grant-in-Aid for Science Research (C).

Communicated by K. K. Azad

Received March 29, 2013

that $e_i \in D(G)$, $t(e_i) = o(e_{i+1})(1 \le i \le n-1)$. If $e_i = (v_{i-1}, v_i)$ for i = 1,, n, then we write $P = (v_0, v_1, ..., v_{n-1}, v_n)$. Set |P| = n, $o(P) = o(e_1)$ and $t(P) = t(e_n)$. Also, P is called an (o(P), t(P))-path. We say that a path $P = (e_1, ..., e_n)$ has a backtracking or a bump at $t(e_i)$ if $e_{i+1}^{-1} = e_i$ for some i $(1 \le i \le n-1)$. A (v, w)-path is called a v-cycle (or v-closed path) if v = w. The inverse cycle of a cycle $C = (e_1, ..., e_n)$ is the cycle $C^{-1} = (e_n^{-1}, ..., e_1^{-1})$.

We introduce an equivalence relation between cycles. Two cycles $C_1 = (e_1, ..., e_m)$ and $C_2 = (f_1, ..., f_m)$ are called *equivalent* if $f_j = e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let C be the equivalence class which contains a cycle C. Let C be the cycle obtained by going C times around a cycle C. Such a cycle is called a *multiple* of C. A cycle C is *reduced* if both C and C have no backtracking. Furthermore, a cycle C is *prime* if it is not a multiple of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph C corresponds to a unique conjugacy class of the fundamental group C0 of C1.

The *Ihara*(-*Selberg*) zeta function of G is defined by

$$\mathbf{Z}(G, t) = \prod_{[C]} (1 - t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of G. Ihara [6] defined Ihara zeta functions of graphs, and showed that the reciprocals of Ihara zeta functions of regular graphs are explicit polynomials. A zeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed by Sunada [12, 13]. Hashimoto [5] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial by a determinant containing the edge matrix. Bass [3] presented

another determinant expression for the Ihara zeta function of an irregular graph by using its adjacency matrix.

Let G be a connected graph with n vertices and m edges. Then two $2m \times 2m$ matrices

$$\mathbf{B} = \mathbf{B}(G) = (\mathbf{B}_{e, f})_{e, f \in D(G)}$$
 and $\mathbf{J}_0 = \mathbf{J}_0(G) = (\mathbf{J}_{e, f})_{e, f \in D(G)}$

are defined as follows:

$$\mathbf{B}_{e, f} = \begin{cases} 1 & \text{if } t(e) = o(f), \\ 0 & \text{otherwise,} \end{cases} \mathbf{J}_{e, f} = \begin{cases} 1 & \text{if } f = e^{-1}, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 1 (Hashimoto; Bass). Let G be a connected graph with n vertices and m edges. Then the reciprocal of the Ihara zeta function of G is given by

$$\mathbf{Z}(G, t)^{-1} = \det(\mathbf{I}_{2m} - t(\mathbf{B} - \mathbf{J}_0))$$
$$= (1 - t^2)^{m-n} \det(\mathbf{I}_n - t\mathbf{A}(G) + t^2(\mathbf{D}_G - \mathbf{I}_n)),$$

where $\mathbf{D}_G = (d_{ij})$ is the diagonal matrix with

$$d_{ii} = \deg_G v_i(V(G) = \{v_1, ..., v_n\}).$$

The first identity in Theorem 1 was also obtained by Hashimoto [5]. Bass [3] proved the second identity by using a linear algebraic method.

Stark and Terras [10] gave an elementary proof of this formula, and discussed three different zeta functions of any graph. Various proofs of Bass' Theorem were given by Kotani and Sunada [7], and Foata and Zeilberger [4].

Let G be a connected graph. Then the cyclic bump count $cbc(\pi)$ of a cycle $\pi = (\pi_1, ..., \pi_n)$ is

$$cbc(\pi) = |\{i = 1, ..., n | \pi_i = \pi_{i+1}^{-1}\}|,$$

where $\pi_{n+1} = \pi_1$.

Bartholdi [2] introduced the Bartholdi zeta function of a graph. The Bartholdi zeta function of G is defined by

$$\zeta(G, u, t) = \prod_{C} (1 - u^{cbc(C)}t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of G, and u, t are complex variables with |u|, |t| sufficiently small.

Bartholdi [2] gave a determinant expression of the Bartholdi zeta function of a graph.

Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and m unoriented edges. Then the reciprocal of the Bartholdi zeta function of G is given by

$$\zeta(G, u, t)^{-1} = \det(\mathbf{I}_{2m} - t(\mathbf{B} - (1 - u)\mathbf{J}_0))$$

$$= (1 - (1 - u)^2 t^2)^{m-n} \det(\mathbf{I}_n - t\mathbf{A}(G) + (1 - u)(\mathbf{D}_G - (1 - u)\mathbf{I}_n)t^2).$$

We state Amitsur Theorem which is used in the proof of Theorem 6. Foata and Zeilberger [4] gave a new proof of Bass' Theorem by using the algebra of Lyndon words. Let X be a finite nonempty set, < be a total order in X, and X^* be the free monoid generated by X. Then the total order < on X derives the lexicographic order $<^*$ on X^* . A Lyndon word in X is defined to a nonempty word in X^* which is prime, i.e., not the power l^r of any other word l for any $r \ge 2$, and which is also minimal in the class of its cyclic rearrangements under $<^*$ (see [8]). Let L denote the set of all Lyndon words in X.

Foata and Zeilberger [4] gave a short proof of Amitsur's identity [1].

Theorem 3 (Amitsur). For square matrices $A_1, ..., A_k$,

$$\det(\mathbf{I} - (\mathbf{A}_1 + \dots + \mathbf{A}_k)) = \prod_{l \in L} \det(\mathbf{I} - \mathbf{A}_l),$$

where the product runs over all Lyndon words in $\{1, ..., k\}$, and $\mathbf{A}_l = \mathbf{A}_{i_1} \cdots \mathbf{A}_{i_n}$ for $l = i_1 \cdots i_p$.

1.2. Zeta functions of hypergraphs

Storm [11] defined the Ihara-Selberg zeta function of a hypergraph. A hypergraph H = (V(H), E(H)) is a pair of a set V(H) of hypervertices and a set E(H) of hyperedges, where the union of all hyperedges is V(H). A hypervertex v is incident to a hyperedge e if $v \in e$. For a hypergraph H, its dual H^* is the hypergraph obtained by letting its hypervertex set be indexed by E(H) and its hyperedge set by V(H).

A bipartite graph B_H associated with a hypergraph H is defined as follows: $V(B_H) = V(H) \cup E(H)$ and $v \in V(H)$ and $e \in E(H)$ are adjacent in B_H if v is incident to e. Let $V(H) = \{v_1, ..., v_n\}$. Then an adjacency matrix $\mathbf{A}(H)$ of H is defined as a matrix whose rows and columns are parameterized by V(H), and (i, j)-entry is the number of paths in B_H from v_i to v_j of length 2 with no backtracking.

For the bipartite graph B_H associated with a hypergraph H, let $V_1 = V(H)$ and $V_2 = E(H)$. Then, the halved graph $B_H^{[i]}$ of B_H is defined to be the graph with vertex set V_i and arc set $\{P : \text{reduced path} \mid \mid P \mid = 2; o(P), t(P) \in V_i\}$ for i = 1, 2.

Let H be a hypergraph. A path P of length n in H is a sequence $P=(v_1,\,e_1,\,v_2,\,e_2,\,...,\,e_n,\,v_{n+1})$ of n+1 hypervertices and n hyperedges such that $v_i\in V(H),\,\,e_j\in E(H),\,\,v_1\in e_1,\,\,v_{n+1}\in e_n$ and $v_i\in e_i,\,e_{i-1}$ for $i=2,\,...,\,n-1$. Set $|P|=n,\,\,o(P)=v_1$ and $t(P)=v_{n+1}$. Also, P is called an $(o(P),\,t(P))$ -path. We say that a path P has a hyperedge backtracking

if there is a subsequence of P of the form (e, v, e), where $e \in E(H)$, $v \in V(H)$. A (v, w)-path is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles $C_1 = (v_1, e_1, v_2, ..., e_m, v_1)$ and $C_2 = (w_1, f_1, w_2, ..., f_m, w_1)$ are called equivalent if $w_j = v_{j+k}$ and $f_j = e_{j+k}$ for all j. Let [C] be the equivalence class which contains a cycle C. Let B^r be the cycle obtained by going r times around a cycle B. Such a cycle is called a *multiple* of B. A cycle C is reduced if both C and C^2 have no hyperedge backtracking. Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle.

The *Ihara-Selberg zeta function* of *H* is defined by

$$\zeta_H(t) = \prod_{[C]} (1 - t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of H, and t is a complex variable with |t| sufficiently small (see [11]).

Let H be a hypergraph with $E(H) = \{e_1, ..., e_m\}$, and let $\{c_1, ..., c_m\}$ be a set of m colors, where $c(e_i) = c_i$. Then an edge-colored graph GH_c is defined as a graph with vertex set V(H) and edge set $\{vw|v, w \in V(H); v, w \in e \in E(H)\}$, where an edge vw is colored c_i if $v, w \in e_i$. Note that GH_c is the halved graph $B_H^{[1]}$ of B_H .

Let GH_c^o be the symmetric digraph corresponding to the edge-colored graph GH_c . Then the *oriented line graph* $H_L^o = (V_L, E_L^o)$ associated with GH_c^o by

$$V_L = D(GH_c^o)$$

and

$$E_L^o = \{(e_i, \, e_j) \in D(GH_c^o) \times D(GH_c^o) | \, c(e_i) \neq c(e_j), \, t(e_i) = o(e_j) \},$$

where $c(e_i)$ is the color assigned to the oriented edge $e_i \in D(GH_c^o)$ such that

 $c(u, v) = c(uv), (u, v) \in D(GH_c^o)$. Also, H_L^o is called the *oriented line graph* of GH_c . The *Perron-Frobenius operator* $T: C(V_L) \to C(V_L)$ is given by

$$(Tf)(x) = \sum_{e \in E_o(x)} f(t(e)),$$

where $E_o(x) = \{e \in E_L^o | o(e) = x\}$ is the set of all oriented edges with x as their origin vertex, and $C(V_L)$ is the set of functions from V_L to the complex number field \mathbb{C} .

Storm [11] gave two nice determinant expressions of the Ihara-Selberg zeta function of a hypergraph by using the results of Kotani and Sunada [7], and Bass [3].

Theorem 4 (Storm). Let H be a finite, connected hypergraph such that every hypervertex is in at least two hyperedges. Then

$$\zeta_H(t)^{-1} = \det(\mathbf{I} - tT) = \mathbf{Z}(B_H, \sqrt{t})^{-1}$$
$$= (1 - t)^{m-n} \det(\mathbf{I} - \sqrt{t}\mathbf{A}(B_H) + t\mathbf{Q}_{B_H}),$$

where
$$n = |V(B_H)|$$
, $m = |E(B_H)|$ and $\mathbf{Q}_{B_H} = \mathbf{D}_{B_H} - \mathbf{I}$.

Let H be a hypergraph. Then a path $P = (v_1, e_1, v_2, e_2, ..., e_n, v_{n+1})$ has a (broad) backtracking or (broad) bump at e or v if there is a subsequence of P of the form (e, v, e) or (v, e, v), where $e \in H(H)$, $v \in V(H)$. Furthermore, the cyclic bump count cbc(C) of a cycle $C = (v_1, e_1, v_2, e_2, ..., e_n, v_1)$ is

$$cbc(C) = |\{i = 1, ..., n | v_i = v_{i+1}\}| + |\{i = 1, ..., n | e_i = e_{i+1}\}|,$$

where $v_{n+1} = v_1$ and $e_{n+1} = e_1$.

The *Bartholdi zeta function* of *H* is defined by

$$\zeta(H, u, t) = \prod_{[C]} (1 - u^{cbc(C)}t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of H, and u, t are complex variables with |u|, |t| sufficiently small.

If u = 0, then the Bartholdi zeta function of H is the Ihara-Selberg zeta function of H.

Sato [9] presented a determinant expression of the Bartholdi zeta function of a hypergraph.

Theorem 5 (Sato). Let H be a finite, connected hypergraph. Then

$$\zeta(H, u, t)^{-1} = \zeta(B_H, u, \sqrt{t})^{-1}$$

$$= (1 - (1 - u)^2 t)^{m-n} \det(\mathbf{I} - \sqrt{t} \mathbf{A}(B_H) + (1 - u)t(\mathbf{D}_{B_H} - (1 - u)\mathbf{I})),$$

where $n = |V(B_H)|$ and $m = |E(B_H)|$.

Unfortunately, in the case that H is a graph G, the Bartholdi zeta function $\zeta(H, u, t) = \zeta(B_G, u, \sqrt{t})$ of G is not equal to the original Bartholdi zeta function $\zeta(G, u, t)$ of G.

In this paper, we present a three variable Bartholdi zeta function of a hypergraph H which is the original Bartholdi zeta function of a graph G in the case of H = G and s = 0.

In Section 2, we introduce a generalized Bartholdi zeta function of a bipartite graph with three variables, and present a determinant expression of it. In Section 3, we introduce a generalized Bartholdi zeta function of a hypergraph with three variables, and present a determinant expression of it. In Section 4, we give a determinant expression for the generalized Bartholdi zeta function of a hypergraph by using a modified Perron-Frobenius operator. In Section 5, we present a decomposition formula for the generalized Bartholdi zeta function of a semiregular bipartite graph. As a corollary, we obtain a decomposition formula for the generalized Bartholdi zeta function of a (d, r)-regular hypergraph.

2. A Generalized Bartholdi Zeta Function of a Bipartite Graph

Let $G = (V_1, V_2)$ be a connected bipartite graph. For j = 1, 2, the cyclic

bump count $cbc_i(\pi)$ of a cycle $\pi = (\pi_1, ..., \pi_n)$ in G is

$$cbc_{j}(\pi) = |\{i = 1, ..., n | \pi_{i} = \pi_{i+1}^{-1}, t(\pi_{i}) \in V_{j}\}|,$$

where $\pi_{n+1} = \pi_1$. Then the *generalized Bartholdi zeta function* of a bipartite graph G is defined by

$$\zeta(G, u, s, t) = \prod_{|C|} (1 - u^{cbc_1(C)} s^{cbc_2(C)} t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of G, and u, s, t are complex variables with |u|, |s|, |t| sufficiently small.

Let $G = (V_1, V_2)$ be a connected bipartite graph with v vertices and ε edges. Then three $2\varepsilon \times 2\varepsilon$ matrices $\mathbf{B} = \mathbf{B}(G) = ((\mathbf{B})_{e, f})_{e, f \in D(G)}$ and $\mathbf{J}_i = \mathbf{J}_i(G) = ((\mathbf{J}_i)_{e, f})_{e, f \in D(G)}$ (i = 1, 2) are defined as follows:

$$(\mathbf{B})_{e,f} = \begin{cases} 1 & \text{if } t(e) = o(f), \\ 0 & \text{otherwise,} \end{cases} (\mathbf{J}_i)_{e,f} = \begin{cases} 1 & \text{if } f = e^{-1} \text{ and } t(e) \in V_{i+1}, \\ 0 & \text{otherwise,} \end{cases}$$

where i is treated modulo 2.

A determinant expression for the generalized Bartholdi function of G is given as follows.

Theorem 6. Let $G = (V_1, V_2)$ be a connected bipartite graph with v vertices and ε unoriented edges, $|V_1| = n$ and $|V_2| = m$. Then the reciprocal of the generalized Bartholdi zeta function of G is

$$\begin{aligned} \zeta(G, u, s, t)^{-1} &= \det(\mathbf{I}_{2\varepsilon} - t(\mathbf{B} - (1 - s)\mathbf{J}_1 - (1 - u)\mathbf{J}_2)) \\ &= (1 - (1 - s)(1 - u)t^2)^{\varepsilon - v} \det(\mathbf{I}_v - t\mathbf{A}(G) \\ &+ t^2((1 - s)(\mathbf{D}_{V_1} - (1 - u)\mathbf{I}_n) \oplus (1 - u)(\mathbf{D}_{V_2} - (1 - s)\mathbf{I}_m))), \end{aligned}$$

where $\mathbf{D}_W = (d_{ij})$ is the diagonal matrix with $d_{ii} = \deg_G v_i$ $(W = \{v_1, ..., v_p\})$ for any subset W of V(G).

Proof. The argument is an analogue of Bass' method [3].

Let $V_1 = \{v_1, ..., v_n\}$ and $V_2 = \{w_1, ..., w_m\}$. Furthermore, let $D(G) = \{f_1, ..., f_{\varepsilon}, f_1^{-1}, ..., f_{\varepsilon}^{-1}\}$ such that $o(f_i) \in V_1$ $(1 \le i \le n)$.

Arrange arcs of G as follows: $f_1, ..., f_{\varepsilon}, f_1^{-1}, ..., f_{\varepsilon}^{-1}$. Furthermore, arrange vertices of G as follows: $v_1, ..., v_n, w_1, ..., w_m$.

Now, we define two $2\varepsilon \times v$ matrices $\mathbf{K} = (\mathbf{K}_{fv})_{f \in D(G); v \in V(G)}$ and $\mathbf{L} = (\mathbf{L}_{fv})_{f \in D(G); v \in V(G)}$ as follows:

$$\mathbf{K}_{fv} \coloneqq \begin{cases} 1 & \text{if } t(f) = v, \\ 0 & \text{otherwise,} \end{cases} \quad \mathbf{L}_{fv} \coloneqq \begin{cases} 1 & \text{if } o(f) = v, \\ 0 & \text{otherwise.} \end{cases}$$

Here we consider two matrices K and L under the above order.

Now, let

$$\mathbf{K} = \begin{bmatrix} \mathbf{0} & \mathbf{K}_1 \\ \mathbf{K}_2 & \mathbf{0} \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} \mathbf{L}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{L}_2 \end{bmatrix},$$

where \mathbf{K}_1 , \mathbf{L}_2 are $\varepsilon \times m$ matrices, and \mathbf{K}_2 , \mathbf{L}_1 are $\varepsilon \times n$ matrices. By the definitions of \mathbf{K} and \mathbf{L} ,

$$\mathbf{K}_1 = \mathbf{L}_2$$
 and $\mathbf{K}_2 = \mathbf{L}_1$.

Thus,

$$\mathbf{L} = \begin{bmatrix} \mathbf{K}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_1 \end{bmatrix}.$$

But, we have

$$\mathbf{K}^{t}\mathbf{L} = \mathbf{B}(G) = \begin{bmatrix} \mathbf{0} & \mathbf{K}_{1}^{t}\mathbf{K}_{1} \\ \mathbf{K}_{2}^{t}\mathbf{K}_{2} & \mathbf{0} \end{bmatrix}$$
 (1)

and

$${}^{t}\mathbf{L}\mathbf{K} = \mathbf{A}(G) = \begin{bmatrix} \mathbf{0} & {}^{t}\mathbf{K}_{2}\mathbf{K}_{1} \\ {}^{t}\mathbf{K}_{1}\mathbf{K}_{2} & \mathbf{0} \end{bmatrix}.$$
 (2)

Furthermore,

$${}^{t}\mathbf{K}\mathbf{K} = \mathbf{D}_{G} = \begin{bmatrix} {}^{t}\mathbf{K}_{2}\mathbf{K}_{2} & \mathbf{0} \\ \mathbf{0} & {}^{t}\mathbf{K}_{1}\mathbf{K}_{1} \end{bmatrix}. \tag{3}$$

Note that

$${}^{t}\mathbf{K}_{2}\mathbf{K}_{2} = \begin{bmatrix} \deg_{G} v_{1} & 0 \\ & \ddots & \\ 0 & \deg_{G} v_{n} \end{bmatrix} = \mathbf{D}_{V_{1}}$$

$$(4)$$

and

$${}^{t}\mathbf{K}_{1}\mathbf{K}_{1} = \begin{bmatrix} \deg_{G} w_{1} & 0 \\ & \ddots & \\ 0 & \deg_{G} w_{m} \end{bmatrix} = \mathbf{D}_{V_{2}}.$$
 (5)

We introduce two $(v + 2\varepsilon) \times (v + 2\varepsilon)$ matrices as follows:

$$\mathbf{P} = \begin{bmatrix} (1 - (1 - u)(1 - s)t^{2})\mathbf{I}_{n} & \mathbf{0} & -^{t}\mathbf{K}_{2} & (1 - s)t^{t}\mathbf{K}_{2} \\ \mathbf{0} & (1 - (1 - u)(1 - s)t^{2})\mathbf{I}_{m} & (1 - u)t^{t}\mathbf{K}_{1} & -^{t}\mathbf{K}_{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{\varepsilon} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{\varepsilon} \end{bmatrix}$$

and

$$\mathbf{Q} = \begin{bmatrix} \mathbf{I}_n & \mathbf{0} & {}^t \mathbf{K}_2 & -(1-s)t \, {}^t \mathbf{K}_2 \\ \mathbf{0} & \mathbf{I}_m & -(1-u)t \, {}^t \mathbf{K}_1 & {}^t \mathbf{K}_1 \\ \mathbf{0} & t \mathbf{K}_1 & (1-(1-u)(1-s)t^2)\mathbf{I}_{\varepsilon} & \mathbf{0} \\ t \mathbf{K}_2 & \mathbf{0} & \mathbf{0} & (1-(1-u)(1-s)t^2)\mathbf{I}_{\varepsilon} \end{bmatrix}.$$

By (3), (4) and (5), we have

$$\mathbf{PQ} = \begin{bmatrix} a\mathbf{I}_{n} + (1-s)t^{2} & {}^{t}\mathbf{K}_{2}\mathbf{K}_{2} & -t & {}^{t}\mathbf{K}_{2}\mathbf{K}_{1} & \mathbf{0} & \mathbf{0} \\ -t & {}^{t}\mathbf{K}_{1}\mathbf{K}_{2} & a\mathbf{I}_{m} + (1-u)t^{2} & {}^{t}\mathbf{K}_{1}\mathbf{K}_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & t\mathbf{K}_{1} & a\mathbf{I}_{\varepsilon} & \mathbf{0} \\ t\mathbf{K}_{2} & \mathbf{0} & \mathbf{0} & a\mathbf{I}_{\varepsilon} \end{bmatrix}$$

$$= \begin{bmatrix} a\mathbf{I}_{n} + (1-s)t^{2}\mathbf{D}_{V_{1}} & -t^{t}\mathbf{K}_{2}\mathbf{K}_{1} & \mathbf{0} & \mathbf{0} \\ -t^{t}\mathbf{K}_{1}\mathbf{K}_{2} & a\mathbf{I}_{m} + (1-u)t^{2}\mathbf{D}_{V_{2}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & t\mathbf{K}_{1} & a\mathbf{I}_{\varepsilon} & \mathbf{0} \\ t\mathbf{K}_{2} & \mathbf{0} & \mathbf{0} & a\mathbf{I}_{\varepsilon} \end{bmatrix},$$

where $a = 1 - (1 - u)(1 - s)t^2$. By (2), we have

$$\det(\mathbf{PQ}) = (1 - (1 - u)(1 - s)t^{2})^{2\varepsilon} \det(\mathbf{I}_{v} - t\mathbf{A}(G) + t^{2}((1 - s)(\mathbf{D}_{V_{1}} - (1 - u)\mathbf{I}_{n}) \oplus (1 - u)(\mathbf{D}_{V_{2}} - (1 - s)\mathbf{I}_{m}))).$$

Furthermore, we have

$$\mathbf{QP} = \begin{bmatrix} a\mathbf{I}_n & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & a\mathbf{I}_m & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & at\mathbf{K}_1 & a\mathbf{I}_{\varepsilon} + (1-u)t^2\mathbf{K}_1{}^t\mathbf{K}_1 & -t\mathbf{K}_1{}^t\mathbf{K}_1 \\ at\mathbf{K}_2 & \mathbf{0} & -t\mathbf{K}_2{}^t\mathbf{K}_2 & a\mathbf{I}_{\varepsilon} + (1-s)t^2\mathbf{K}_2{}^t\mathbf{K}_2 \end{bmatrix}$$

and so

$$\det(\mathbf{QP}) = (1 - (1 - u)(1 - s)t^2)^{\mathsf{v}}$$

$$\cdot \det \begin{bmatrix} a\mathbf{I}_{\varepsilon} + (1 - u)t^2\mathbf{K}_1^{\ t}\mathbf{K}_1 & -t\mathbf{K}_1^{\ t}\mathbf{K}_1 \\ -t\mathbf{K}_2^{\ t}\mathbf{K}_2 & a\mathbf{I}_{\varepsilon} + (1 - s)t^2\mathbf{K}_2^{\ t}\mathbf{K}_2 \end{bmatrix}$$

But,

$$\det \begin{bmatrix} a\mathbf{I}_{\varepsilon} + (1-u)t^{2}\mathbf{K}_{1}{}^{t}\mathbf{K}_{1} & -t\mathbf{K}_{1}{}^{t}\mathbf{K}_{1} \\ -t\mathbf{K}_{2}{}^{t}\mathbf{K}_{2} & a\mathbf{I}_{\varepsilon} + (1-s)t^{2}\mathbf{K}_{2}{}^{t}\mathbf{K}_{2} \end{bmatrix}$$

$$= \det \begin{bmatrix} \mathbf{I}_{\varepsilon} & -t(\mathbf{K}_{1}{}^{t}\mathbf{K}_{1} - (1-s)\mathbf{I}_{\varepsilon}) \\ -t(\mathbf{K}_{2}{}^{t}\mathbf{K}_{2} - (1-u)\mathbf{I}_{\varepsilon}) & \mathbf{I}_{\varepsilon} \end{bmatrix}$$

$$\cdot \det \begin{bmatrix} \mathbf{I}_{\varepsilon} & -(1-s)t\mathbf{I}_{\varepsilon} \\ -(1-u)t\mathbf{I}_{\varepsilon} & \mathbf{I}_{\varepsilon} \end{bmatrix} .$$

By (1), we have

$$\det\begin{bmatrix} \mathbf{I}_{\varepsilon} & -t(\mathbf{K}_{1}^{t}\mathbf{K}_{1} - (1-s)\mathbf{I}_{\varepsilon}) \\ -t(\mathbf{K}_{2}^{t}\mathbf{K}_{2} - (1-u)\mathbf{I}_{\varepsilon}) & \mathbf{I}_{\varepsilon} \end{bmatrix}$$

$$= \det(\mathbf{I}_{2\varepsilon} - t(\mathbf{B}(G) - (1-s)\mathbf{J}_{1} - (1-u)\mathbf{J}_{2})).$$

Furthermore, we have

$$\det \begin{bmatrix} \mathbf{I}_{\varepsilon} & -(1-s)t\mathbf{I}_{\varepsilon} \\ -(1-u)t\mathbf{I}_{\varepsilon} & \mathbf{I}_{\varepsilon} \end{bmatrix}$$

$$= \det \begin{bmatrix} \mathbf{I}_{\varepsilon} & -(1-s)t\mathbf{I}_{\varepsilon} \\ -(1-u)t\mathbf{I}_{\varepsilon} & \mathbf{I}_{\varepsilon} \end{bmatrix} \det \begin{bmatrix} \mathbf{I}_{\varepsilon} & \mathbf{0} \\ (1-u)t\mathbf{I}_{\varepsilon} & \mathbf{I}_{\varepsilon} \end{bmatrix}$$

$$= \det \begin{bmatrix} (1-(1-u)(1-s)t^{2})\mathbf{I}_{\varepsilon} & -(1-s)t\mathbf{I}_{\varepsilon} \\ \mathbf{0} & \mathbf{I}_{\varepsilon} \end{bmatrix}$$

$$= (1-(1-u)(1-s)t^{2})^{\varepsilon}.$$

Since $det(\mathbf{PQ}) = det(\mathbf{QP})$, we have

$$(1 - (1 - u)(1 - s)t^{2})^{2\varepsilon} \det(\mathbf{I}_{v} - t\mathbf{A}(G) + t^{2}((1 - s)(\mathbf{D}_{V_{1}} - (1 - u)\mathbf{I}_{n}) \oplus (1 - u)(\mathbf{D}_{V_{2}} - (1 - s)\mathbf{I}_{m})))$$

$$= (1 - (1 - u)(1 - s)t^{2})^{\varepsilon + v} \det(\mathbf{I}_{2\varepsilon} - t(\mathbf{B}(G) - (1 - s)\mathbf{J}_{1} - (1 - u)\mathbf{J}_{2})).$$

Therefore, it follows that

$$\begin{split} &\det(\mathbf{I}_{2\varepsilon} - t(\mathbf{B}(G) - (1-s)\mathbf{J}_1 - (1-u)\mathbf{J}_2)) \\ &= (1 - (1-u)(1-s)t^2)^{\varepsilon - v} \det(\mathbf{I}_{v} - t\mathbf{A}(G) \\ &+ t^2((1-s)(\mathbf{D}_{V_1} - (1-u)\mathbf{I}_n) \oplus (1-u)(\mathbf{D}_{V_2} - (1-s)\mathbf{I}_m))). \end{split}$$

Next, let

$$D(G) = \{f_1, ..., f_{\varepsilon}, f_{\varepsilon+1}, ..., f_{2\varepsilon}\}\$$

such that $f_{\varepsilon+i} = f_i^{-1}$ $(1 \le i \le \varepsilon)$, and consider the lexicographic order on

 $D(G) \times D(G)$ derived from a total order of D(G): $f_1 < f_2 < \cdots < f_{2\epsilon}$. If (f_i, f_j) is the *r*th pair under the above order, then we define the $2\epsilon \times 2\epsilon$ matrix $\mathbf{T}_r = ((\mathbf{T}_r)_{p,q})_{1 \le p, q \le 2\epsilon}$ as follows:

$$(\mathbf{T}_r)_{p,\,q} = \begin{cases} t & \text{if } p = f_i, \ q = f_j, \ t(f_i) = o(f_j) \ \text{and} \ f_j \neq f_i^{-1}, \\ ut & \text{if } p = f_i, \ q = f_j, \ t(f_i) \in V_1 \ \text{and} \ f_j = f_i^{-1}, \\ st & \text{if } p = f_i, \ q = f_j, \ t(f_i) \in V_2 \ \text{and} \ f_j = f_i^{-1}, \\ 0 & \text{otherwise.} \end{cases}$$

Let
$$\mathbf{M} = \mathbf{T}_1 + \dots + \mathbf{T}_k$$
, $k = 4\varepsilon^2$. Then we have
$$\mathbf{M} = t(\mathbf{B}(G) - (1 - s)\mathbf{J}_1 - (1 - u)\mathbf{J}_2).$$

Let L be the set of all Lyndon words in $D(G) \times D(G)$. Then we can also consider L as the set of all Lyndon words in $\{1, ..., k\}$: $(f_{i_1}, f_{j_1}) \cdots (f_{i_q}, f_{j_q})$ corresponds to $r_1 r_2 \cdots r_q$, where $(f_{i_p}, f_{j_p}) (1 \le p \le q)$ is the r_p th pair. Theorem 3 implies that

$$\det(\mathbf{I}_{2\varepsilon} - \mathbf{M}) = \prod_{w \in L} \det(\mathbf{I}_{2\varepsilon} - \mathbf{T}_w),$$

where

$$\mathbf{T}_w = \mathbf{T}_{i_1} \cdots \mathbf{T}_{i_p}$$

for $w = i_1 \cdots i_p$. Note that $\det(\mathbf{I}_{2\varepsilon} - \mathbf{T}_w)$ is the alternating sum of the diagonal minors of \mathbf{T}_w . Thus, we have

$$\det(\mathbf{I}_{2\varepsilon} - \mathbf{T}_w) = \begin{cases} 1 - u^{cbc_1(C)} s^{cbc_2(C)} t^{|C|} & \text{if } w \text{ is a prime cycle } C, \\ 1 & \text{otherwise.} \end{cases}$$

Therefore, it follows that

$$\zeta(G, u, s, t)^{-1} = \prod_{[C]} (1 - u^{cbc_1(C)} s^{cbc_2(C)} t^{|C|})$$

= \det(\mathbf{I}_{2\varepsilon} - t(\mathbf{B}(G) - (1 - s)\mathbf{J}_1 - (1 - u)\mathbf{J}_2)),

where [C] runs over all equivalence classes of prime cycles of G.

3. A Generalized Bartholdi Zeta Function of a Hypergraph

Let H be a hypergraph. In a path $P = (v_1, e_1, v_2, e_2, ..., e_n, v_{n+1})$, subsequences (e, v, e) and (v, e, v) are called a *vertex bump* and an *edge bump*, respectively. Furthermore, the *vertex cyclic bump count vcbc*(C) and *edge cyclic bump count ecbc*(C) of a cycle $C = (v_1, e_1, v_2, e_2, ..., e_n, v_1)$ are defined by

$$vcbc(C) = |\{i = 1, ..., n | e_i = e_{i+1}\}|$$

and

$$ecbc(C) = |\{i = 1, ..., n | v_i = v_{i+1}\}|,$$

respectively, where $v_{n+1} = v_1$ and $e_{n+1} = e_1$.

The generalized Bartholdi zeta function of a hypergraph H is defined by

$$\zeta(H, u, s, t) = \prod_{[C]} (1 - u^{vcbc(C)} s^{ecbc(C)} t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of H, and u, s, t are complex variables with |u|, |s|, |t| sufficiently small.

If u = s = 0, then the Bartholdi zeta function of H is the Ihara-Selberg zeta function of H.

A determinant expression of the generalized Bartholdi zeta function of a hypergraph is given as follows:

Theorem 7. Let H be a finite, connected hypergraph with n hypervertices and m hyperedges. Then

$$\zeta(H, u, s, t)^{-1} = \zeta(B_H, u, s, \sqrt{t})^{-1}
= \det(\mathbf{I}_{2\varepsilon} - \sqrt{t}(\mathbf{B}(B_H) - (1 - s)\mathbf{J}_1 - (1 - u)\mathbf{J}_2))
= (1 - (1 - u)(1 - s)t)^{\varepsilon - v} \det(\mathbf{I}_v - \sqrt{t}\mathbf{A}(B_H) + t((1 - s)(\mathbf{D}_{V(H)} - (1 - u)\mathbf{I}_n) \oplus (1 - u)(\mathbf{D}_{E(H)} - (1 - s)\mathbf{I}_m))),$$

where $v = |V(B_H)|$ and $\varepsilon = |E(B_H)|$.

Proof. The argument is an analogue of Storm's method [11].

Let $V_1 = V(H)$ and $V_2 = E(H)$. At first, we show that there exists a one-to-one correspondence between equivalence classes of prime cycles of length l in H and those of prime cycles of length 2l in B_H , and $vcbc(C) = cbc_1(\tilde{C})$, $ecbc(C) = cbc_2(\tilde{C})$ for any prime cycle C in H and the corresponding cycle \tilde{C} in B_H .

Let $C=(v_1,\,e_1,\,v_2,\,...,\,v_l,\,e_l,\,v_1)$ be a prime cycle of length l in H. Then a cycle $\widetilde{C}=(v_1,\,(v_1,\,e_1),\,e_1,\,...,\,v_l,\,(v_l,\,e_l),\,e_l,\,(e_l,\,v_1),\,v_1)$ is a prime cycle of length 2l in B_H . Thus, there exists a one-to-one correspondence between equivalence classes of prime cycles of length l in l and those of prime cycles of length l in l and l in l in l and l in l in l and l in l in

Let C be a prime cycle in H and \widetilde{C} be a prime cycle corresponding to C in B_H . Then there exists a subsequence (v, e, v) (or (e, v, e)) in C if and only if there exists a subsequence (v, (v, e), e, (e, v), v) (or (e, (e, v), v, (v, e), e)) in \widetilde{C} . Thus, we have $vcbc(C) = cbc_1(\widetilde{C})$ and $ecbc(C) = cbc_2(\widetilde{C})$.

Therefore, it follows that

$$\zeta(H, u, s, t) = \prod_{[C]} (1 - u^{vcbc(C)} s^{ecbc(C)} t^{|C|})^{-1}$$

$$= \prod_{[\widetilde{C}]} (1 - u^{cbc_1(\widetilde{C})} s^{cbc_2(\widetilde{C})} t^{|\widetilde{C}|/2})^{-1} = \zeta(B_H, u s, \sqrt{t}),$$

where [C] and $[\tilde{C}]$ run over all equivalence classes of prime cycles in H and B_H , respectively.

By Theorem 6, we have

$$\zeta(H, u, s, t)^{-1}$$

$$= \det(\mathbf{I}_{2\varepsilon} - \sqrt{t}(\mathbf{B}(B_H) - (1 - s)\mathbf{J}_1 - (1 - u)\mathbf{J}_2))$$

$$= (1 - (1 - u)(1 - s)t)^{\varepsilon - v} \det(\mathbf{I}_{v} - \sqrt{t}\mathbf{A}(B_{H}) + t((1 - s)(\mathbf{D}_{V(H)}) - (1 - u)\mathbf{I}_{n}) \oplus (1 - u)(\mathbf{D}_{E(H)} - (1 - s)\mathbf{I}_{m}))),$$

where
$$v = |V(B_H)|$$
 and $\varepsilon = |E(B_H)|$.

Corollary 1. Let H be a finite, connected hypergraph. Then

$$\zeta(H, u, s, t) = \zeta(H^*, u, s, t).$$

Proof. By the fact that $B_H = B_{H^*}$.

If u = 0, then the following result holds.

Corollary 2. Let H be a finite, connected hypergraph with n hypervertices and m hyperedges. Then

$$\zeta(H, 0, s, t)^{-1} = \prod_{[C_1]} (1 - s^{ecbc(C_1)}t^{|C_1|})$$

$$= \det(\mathbf{I}_{2\varepsilon} - \sqrt{t}(\mathbf{B}(B_H) - (1 - s)\mathbf{J}_1 - \mathbf{J}_2))$$

$$= (1 - (1 - s)t)^{\varepsilon - v} \det(\mathbf{I}_v - \sqrt{t}\mathbf{A}(B_H)$$

$$+ t((1 - s)(\mathbf{D}_{V(H)} - \mathbf{I}_n) \oplus (\mathbf{D}_{E(H)} - (1 - s)\mathbf{I}_m))),$$

where $v = |V(B_H)|$, $\varepsilon = |E(B_H)|$, and $[C_1]$ runs over all equivalence classes of prime cycles without vertex bumps in H.

If s = 0, then the following result holds.

Corollary 3. Let H be a finite, connected hypergraph with n hypervertices and m hyperedges. Then

$$\zeta(H, u, 0, t)^{-1} = \prod_{[C_2]} (1 - u^{vcbc(C_2)} t^{|C_2|})$$
$$= \det(\mathbf{I}_{2\varepsilon} - \sqrt{t} (\mathbf{B}(B_H) - \mathbf{J}_1 - (1 - u)\mathbf{J}_2))$$

$$= (1 - (1 - u)t)^{\varepsilon - v} \det(\mathbf{I}_{v} - \sqrt{t} \mathbf{A}(B_{H}) + t(\mathbf{D}_{V(H)} - (1 - u)\mathbf{I}_{n}) \oplus (1 - u)(\mathbf{D}_{E(H)} - \mathbf{I}_{m}))),$$

where $v = |V(B_H)|$, $\varepsilon = |E(B_H)|$, and $[C_2]$ runs over all equivalence classes of prime cycles without edge bumps in H.

In the case of s = u, we also obtain Theorem 5.

Next, in the case that H = G is a graph, we show that $\zeta(G, u, 0, t) = \zeta(B_G, u, 0, \sqrt{t})$ is equal to the original Bartholdi zeta function $\zeta(G, u, t)$ of G.

Corollary 4. Let H = G be a finite, connected graph with n vertices and m edges. Then

$$\zeta(G, u, 0, t) = \zeta(G, u, t).$$

Proof. Let H = G be a connected graph, $V(G) = \{v_1, ..., v_n\}$ and $E(G) = \{e_1, ..., e_m\}$. Furthermore, let B_G be the bipartite graph with ν vertices and ε edges corresponding to G. Then we have $\varepsilon = 2m$, $\nu = m + n$, and

$$\mathbf{D}_{V(G)} = \mathbf{D}_{G}, \quad \mathbf{D}_{E(G)} = 2\mathbf{I}_{m}.$$

By Corollary 3, we have

$$\zeta(G, u, 0, t)^{-1} = (1 - (1 - u)t)^{2m - (m+n)} \det(\mathbf{I}_{v} - \sqrt{t} \mathbf{A}(B_{G}) + t((\mathbf{D}_{G} - (1 - u)\mathbf{I}_{n}) \oplus (1 - u)\mathbf{I}_{m})).$$

Let $\mathbf{H} = (h_{ve})_{v \in V(G); e \in E(G)}$ be the incidence matrix of G:

$$h_{ve} = \begin{cases} 1 & \text{if } v \text{ and } e \text{ are incident,} \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$\mathbf{A}(B_G) = \begin{bmatrix} \mathbf{0} & \mathbf{H} \\ {}^t\mathbf{H} & \mathbf{0} \end{bmatrix}.$$

Thus,

$$\det(\mathbf{I}_{V} - \sqrt{t}\mathbf{A}(B_{G}) + t((\mathbf{D}_{G} - (1-u)\mathbf{I}_{n}) \oplus (1-u)\mathbf{I}_{m}))$$

$$= \det\begin{bmatrix}\mathbf{I}_{n} + t(\mathbf{D}_{G} - (1-u)\mathbf{I}_{n}) & -\sqrt{t}\mathbf{H} \\ -\sqrt{t}^{t}\mathbf{H} & (1+(1-u)t)\mathbf{I}_{m}\end{bmatrix}$$

$$= \det\begin{bmatrix}\mathbf{I}_{n} + t(\mathbf{D}_{G} - (1-u)\mathbf{I}_{n}) - t/(1+(1-u)t)\mathbf{H}^{t}\mathbf{H} & -\sqrt{t}\mathbf{H} \\ \mathbf{0} & (1+(1-u)t)\mathbf{I}_{m}\end{bmatrix}.$$

Since

$$\mathbf{H}^t\mathbf{H}=\mathbf{A}(G)+\mathbf{D}_G,$$

we have

$$\det(\mathbf{I}_{v} - \sqrt{t}\mathbf{A}(B_{G}) + t((\mathbf{D}_{G} - (1-u)\mathbf{I}_{n}) \oplus (1-u)\mathbf{I}_{m}))$$

$$= (1 + (1-u)t)^{m-n} \det((1 - (1-u)^{2}t^{2})\mathbf{I}_{n} - t\mathbf{A}(G) + (1-u)t^{2}\mathbf{D}_{G})$$

$$= (1 + (1-u)t)^{m-n} \det(\mathbf{I}_{n} - t\mathbf{A}(G) + (1-u)t^{2}(\mathbf{D}_{G} - (1-u)\mathbf{I}_{n})).$$

Therefore, it follows that

$$\zeta(G, u, 0, t)^{-1}$$
= $(1 - (1 - u)^2 t^2)^{m-n} \det(\mathbf{I}_n - t\mathbf{A}(G) + (1 - u)t^2((\mathbf{D}_G - (1 - u)\mathbf{I}_n))$
= $\zeta(G, u, t)^{-1}$.

In the case of s = u = 0, Theorem 7 implies Storm Theorem.

4. Two New Determinant Expressions of the Generalized Bartholdi Zeta Function of a Hypergraph

Let H = (V(H), E(H)) be a hypergraph, $V(H) = \{v_1, ..., v_n\}$ and E(H)= $\{e_1, ..., e_m\}$. Let B_H have ν vertices and ε edges, where $\nu = n + m$. Then we have

$$D(B_H) = \{(v, e), (e, v) | v \in V(H), e \in E(H)\}.$$

Let $f_1, ..., f_{\varepsilon}$ be arcs in B_H such that $o(f_i) \in V(H)$ for each i = 1, ..., ε . Then two $\varepsilon \times \varepsilon$ matrices $\mathbf{X} = (X_{ij})$ and $\mathbf{Y} = (Y_{ij})$ are defined as follows:

 $X_{ij} = \begin{cases} 1 & \text{if there exists an arc } f_k^{-1} \text{ such that } (f_i, f_k^{-1}, f_j) \text{ is a reduced path,} \\ 0 & \text{otherwise} \end{cases}$

and

 $Y_{ij} = \begin{cases} 1 & \text{if there exists an arc } f_k \text{ such that } (f_i^{-1}, f_k, f_j^{-1}) \text{ is a reduced path,} \\ 0 & \text{otherwise.} \end{cases}$

Furthermore, let

$$\mathbf{B}(B_H) - \mathbf{J}_1 - \mathbf{J}_2 = \begin{bmatrix} \mathbf{0} & \mathbf{F} \\ \mathbf{G} & \mathbf{0} \end{bmatrix}.$$

Theorem 8. Let H be a finite, connected hypergraph. Set $\varepsilon = |E(B_H)|$. Then

$$\zeta(H, u, s, t)^{-1} = \det(\mathbf{I}_{\varepsilon} - t(\mathbf{X} + u\mathbf{F} + s\mathbf{G} + us\mathbf{I}_{\varepsilon}))$$
$$= \det(\mathbf{I}_{\varepsilon} - t(\mathbf{Y} + u\mathbf{F} + s\mathbf{G} + us\mathbf{I}_{\varepsilon})).$$

Proof. Let H = (V(H), E(H)) be a hypergraph, $V(H) = \{v_1, ..., v_n\}$ and $E(H) = \{e_1, ..., e_m\}$. Let B_H have ν vertices and ε edges. By Theorem 7, we have

$$\zeta(H, u, s, t)^{-1} = \det(\mathbf{I}_{2\varepsilon} - \sqrt{t}(\mathbf{B}(B_H) - (1 - s)\mathbf{J}_1 - (1 - u)\mathbf{J}_2)).$$

Arrange arcs of B_H as follows: $f_1, ..., f_{\varepsilon}, f_1^{-1}, ..., f_{\varepsilon}^{-1}$. We consider three matrices $\mathbf{B}(B_H)$, \mathbf{J}_1 and \mathbf{J}_2 under this order. Then we have

$$\mathbf{B}(B_H) - (1-s)\mathbf{J}_1 - (1-u)\mathbf{J}_2 = \begin{bmatrix} \mathbf{0} & \mathbf{F} + s\mathbf{I}_{\varepsilon} \\ \mathbf{G} + u\mathbf{I}_{\varepsilon} & \mathbf{0} \end{bmatrix}.$$

It is clear that both **F** and **G** are symmetric, but $\mathbf{F} \neq {}^{t}\mathbf{G}$. Furthermore,

$$\mathbf{FG} = \mathbf{X}$$
 and $\mathbf{GF} = \mathbf{Y}$. (6)

Thus, we have

$$\det(\mathbf{I}_{2\varepsilon} - \sqrt{t}(\mathbf{B}(B_H) - (1 - s)\mathbf{J}_1 - (1 - u)\mathbf{J}_2))$$

$$= \det\left(\begin{bmatrix} \mathbf{I}_{\varepsilon} & -\sqrt{t}(\mathbf{F} + s\mathbf{I}_{\varepsilon}) \\ -\sqrt{t}(\mathbf{G} + u\mathbf{I}_{\varepsilon}) & \mathbf{I}_{\varepsilon} \end{bmatrix}\right)$$

$$= \det\left(\begin{bmatrix} \mathbf{I}_{\varepsilon} - t(\mathbf{F} + s\mathbf{I}_{\varepsilon})(\mathbf{G} + u\mathbf{I}_{\varepsilon}) & -\sqrt{t}(\mathbf{F} + s\mathbf{I}_{\varepsilon}) \\ \mathbf{0} & \mathbf{I}_{\varepsilon} \end{bmatrix}\right)$$

$$= \det(\mathbf{I}_{\varepsilon} - t(\mathbf{F}\mathbf{G} + u\mathbf{F} + s\mathbf{G} + us\mathbf{I}_{\varepsilon})) = \det(\mathbf{I}_{\varepsilon} - t(\mathbf{X} + u\mathbf{F} + s\mathbf{G} + us\mathbf{I}_{\varepsilon}))$$

$$= \det(\mathbf{I}_{\varepsilon} - t(\mathbf{G}\mathbf{F} + u\mathbf{F} + s\mathbf{G} + us\mathbf{I}_{\varepsilon})) = \det(\mathbf{I}_{\varepsilon} - t(\mathbf{Y} + u\mathbf{F} + s\mathbf{G} + us\mathbf{I}_{\varepsilon})).$$

Therefore, the result follows.

For the bipartite graph B_H corresponding to a hypergraph H with n hypervertices and m hyperedges, let $V_1 = V(H)$ and $V_2 = E(H)$. Then, the broad halved graph $B_H^{(i)}$ of B_H is defined to be the graph with vertex set V_i and arc set $\{P: \operatorname{path} || P| = 2; o(P), t(P) \in V_i\}$ for i = 1, 2. Furthermore, let $\{c_1, ..., c_m\}$ be a set of m colors such that $c(e_i) = c_i$ for i = 1, ..., m. We color each arc of $B_H^{(1)}$ as follows:

$$c(P) = c(e)$$
 for $P = (v, e, w) \in D(B_H^{(1)})$.

Then the line digraph $\vec{L}(B_H^{(i)})$ of $B_H^{(i)}$ (i=1,2) is defined as follows: $V(\vec{L}(B_H^{(i)})) = D(B_H^{(i)})$, and $(P,Q) \in A(\vec{L}(B_H^{(i)}))$ if and only if t(P) = o(Q) in B_H .

Let B_H have v vertices and ϵ edges, and

$$D(B_H) = \{f_1, ..., f_{\varepsilon}, f_1^{-1}, ..., f_{\varepsilon}^{-1}\}$$

such that $o(f_i) \in V(H)$ for each $i=1,..., \epsilon$. Let \mathcal{R} (or \mathcal{S}) be the set of reduced paths P in B_H with length two such that o(P), $t(P) \in V(H)$ (or o(P), $t(P) \in E(H)$). Set $r = |\mathcal{R}|$ and $s = |\mathcal{S}|$. Furthermore, let \mathcal{R}' (or \mathcal{S}') be the set of paths P in B_H with length two such that o(P), $t(P) \in V(H)$ (or $\in E(H)$). Next, let $f_k = (v_{i_k}, e_{j_k})$, $P_k = (v_{i_k}, e_{j_k}, v_{i_k})$ and $Q_k = (e_{j_k}, v_{i_k}, e_{j_k})$ for each $k = 1, ..., \epsilon$. Then we have

$$\mathcal{R}' = \mathcal{R} \cup \{P_1, ..., P_{\varepsilon}\}$$
 and $\mathcal{S}' = \mathcal{S} \cup \{Q_1, ..., Q_{\varepsilon}\}$

Furthermore, we have $\mathcal{R}' = D((B_H^{(1)}))$, $\mathcal{S}' = D((B_H^{(2)}))$, $|\mathcal{R}'| = r + \varepsilon$ and $|\mathcal{S}'| = s + \varepsilon$.

Now, we introduce an $(r + \varepsilon) \times (r + \varepsilon)$ matrix $\mathbf{T}' = (T''_{PP'})_{P, P' \in \mathcal{R}'}$ for the line digraph $\vec{L}(B_H^{(1)})$ of the halved graph $B_H^{(1)}$ is defined as follows:

$$\begin{cases} us & \text{if } t(P) = o(P'), P = P' = P_i \text{ for some } i = 1, ..., \varepsilon, \\ us & \text{if } t(P) = o(P'), P = P_i, P' \in \mathcal{R} \text{ and } c(P) = c(P'), \\ s & \text{if } t(P) = o(P'), P = P_i, P' = P_j \text{ and } c(P) \neq c(P'), \\ s & \text{if } t(P) = o(P'), P = P_i, P' \in \mathcal{R} \text{ and } c(P) \neq c(P'), \\ u & \text{if } t(P) = o(P'), P \in \mathcal{R}, P' = P_i \text{ and } c(P) = c(P'), \\ u & \text{if } t(P) = o(P'), P \in \mathcal{R}, P' \in \mathcal{R} \text{ and } c(P) = c(P'), \\ 1 & \text{if } t(P) = o(P'), P \in \mathcal{R}, P' = P_i \text{ and } c(P) \neq c(P'), \\ 1 & \text{if } t(P) = o(P'), P, P' \in \mathcal{R} \text{ and } c(P) \neq c(P'), \\ 0 & \text{otherwise.} \end{cases}$$

We present another new determinant expression for the Bartholdi zeta function of a hypergraph.

Theorem 9. Let H be a finite, connected hypergraph. Set $\varepsilon = |E(B_H)|$ and $r = |\mathcal{R}|$. Then

$$\zeta(H, u, s, t)^{-1} = \det(\mathbf{I}_{r+\varepsilon} - t\mathbf{T}'').$$

Proof. Let H = (V(H), E(H)) be a hypergraph, $V(H) = \{v_1, ..., v_n\}$ and $E(H) = \{e_1, ..., e_m\}$ such that $o(f_i) \in V(H) (1 \le i \le \epsilon)$. Let B_H have v vertices and ϵ edges, and $D(B_H) = \{f_1, ..., f_\epsilon, f_1^{-1}, ..., f_\epsilon^{-1}\}$. Furthermore, let \mathcal{R} (or \mathcal{S}) be the set of reduced paths P in B_H with length two such that o(P), $t(P) \in V(H)$ (or o(P), $t(P) \in E(H)$). Set $r = |\mathcal{R}|$ and $s = |\mathcal{S}|$. For a path P = (x, y, z) of length two in B_H , let

$$oe(P) = (x, y), te(P) = (y, z),$$

where
$$(x, y, z) = (v, e, w)$$
 or $(x, y, z) = (e, v, f)(v, w \in V(H); e, f \in E(H))$.

Now, we introduce two $r \times \varepsilon$ matrices $\mathbf{K} = (K_{Pf_j^{-1}})_{P \in R; 1 \le j \le \varepsilon}$ and $\mathbf{L} = (L_{Pf_j})_{P \in R; 1 \le j \le \varepsilon}$ are defined as follows:

$$K_{Pf_j^{-1}} = \begin{cases} 1 & \text{if } te(P) = f_j^{-1}, \\ 0 & \text{otherwise,} \end{cases} \quad L_{Pf_j} = \begin{cases} 1 & \text{if } oe(P) = f_j, \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore, two $s \times \varepsilon$ matrices $\mathbf{M} = (M_{Qf_j^{-1}})_{Q \in S; 1 \le j \le \varepsilon}$ and $\mathbf{N} = (N_{Qf_j})_{Q \in S; 1 \le j \le \varepsilon}$ are defined as follows:

$$M_{Qf_j^{-1}} = \begin{cases} 1 & \text{if } oe(Q) = f_j^{-1}, \\ 0 & \text{otherwise,} \end{cases} N_{Qf_j} = \begin{cases} 1 & \text{if } te(Q) = f_j, \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$^{t}\mathbf{L}\mathbf{K} = \mathbf{F} \text{ and } ^{t}\mathbf{M}\mathbf{N} = \mathbf{G}.$$
 (7)

Arrange elements of \mathcal{R}' and \mathcal{S}' are as follows:

$$P_1, ..., P_{\varepsilon}, \mathcal{R}; Q_1, ..., Q_{\varepsilon}, \mathcal{S}.$$

Then we introduce two $(r + \varepsilon) \times \varepsilon$ matrices $\mathbf{K}' = (K'_{Pf_j^{-1}})_{P \in \mathcal{R}'; 1 \le j \le \varepsilon}$ and $\mathbf{L}' = (L'_{Pf_j})_{P \in \mathcal{R}'; 1 \le j \le \varepsilon}$ are defined as follows:

$$K'_{Pf_j^{-1}} = \begin{cases} 1 & \text{if } te(P) = f_j^{-1} \text{ and } te(P) \neq te(P^{-1}), \\ s & \text{if } te(P) = te(P^{-1}) = f_j^{-1}, \\ 0 & \text{otherwise,} \end{cases}$$

$$L'_{Pf_j} = \begin{cases} 1 & \text{if } oe(P) = f_j, \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore, two $(s + \varepsilon) \times \varepsilon$ matrices $\mathbf{M}' = (M'_{Qf_j^{-1}})_{Q \in \mathcal{S}'; 1 \le j \le \varepsilon}$ and $\mathbf{N}' = (N'_{Qf_j})_{Q \in \mathcal{S}'; 1 \le j \le \varepsilon}$ are defined as follows:

$$M'_{Qf_j^{-1}} = \begin{cases} 1 & \text{if } oe(Q) = f_j^{-1}, \\ 0 & \text{otherwise,} \end{cases}$$

$$N'_{Qf_j} = \begin{cases} 1 & \text{if } te(Q) = f_j \text{ and } te(Q) \neq te(Q^{-1}), \\ u & \text{if } te(Q) = te(Q^{-1}) = f_j, \\ 0 & \text{otherwise.} \end{cases}$$

But, we have

$$\mathbf{K'} = \begin{bmatrix} s\mathbf{I}_{\varepsilon} \\ \mathbf{K} \end{bmatrix}, \mathbf{L'} = \begin{bmatrix} \mathbf{I}_{\varepsilon} \\ \mathbf{L} \end{bmatrix}, \mathbf{M'} = \begin{bmatrix} \mathbf{I}_{\varepsilon} \\ \mathbf{M} \end{bmatrix} \text{ and } \mathbf{N'} = \begin{bmatrix} u\mathbf{I}_{\varepsilon} \\ \mathbf{N} \end{bmatrix}.$$

Thus, we have

$$\mathbf{K'}^{t}\mathbf{M'}\mathbf{N'}^{t}\mathbf{L'} = \begin{bmatrix} us\mathbf{I}_{\varepsilon} + s^{t}\mathbf{M}\mathbf{N} & us^{t}\mathbf{L} + s^{t}\mathbf{M}\mathbf{N}^{t}\mathbf{L} \\ u\mathbf{K} + \mathbf{K}^{t}\mathbf{M}\mathbf{N} & u\mathbf{K}^{t}\mathbf{L} + \mathbf{K}^{t}\mathbf{M}\mathbf{N}^{t}\mathbf{L} \end{bmatrix}.$$

A nonzero element of usI_{ε} , s^tMN us^tL , s^tMN^tL , uK, K^tMN , uK^tL and K^tMN^tL corresponds to a sequence of eight paths of length two,

respectively:

$$\begin{split} P_i &\to Q_i \to P_i; \quad P_i \to Q \to P_j(c(P_i) \neq c(P_j)); \\ P_i &\to Q_i \to R(c(P_i) = c(R)); \quad P_i \to Q \to R(c(P_i) \neq c(R)); \\ P &\to Q_i \to P_i(c(P) = c(P_i)); \quad P \to Q \to P_i(c(P) \neq c(P_i)); \\ P &\to Q_i \to R(c(P) = c(R)); \quad P \to Q \to R(c(P) \neq c(R)), \end{split}$$

where $P, R \in \mathcal{R}, Q \in \mathcal{S}, i = 1, ..., \epsilon$, and the notation $P \to Q$ implies that te(P) = oe(Q) in B_H . Therefore, it follows that

$$\mathbf{K}'^{t}\mathbf{M}'\mathbf{N}'^{t}\mathbf{L}' = \mathbf{T}''. \tag{8}$$

By (6) and (7), we have

$${}^{t}\mathbf{L}'\mathbf{K}'{}^{t}\mathbf{M}'\mathbf{N}' = us\mathbf{I}_{\varepsilon} + u^{t}\mathbf{L}\mathbf{K} + s^{t}\mathbf{M}\mathbf{N} + {}^{t}\mathbf{L}\mathbf{K}{}^{t}\mathbf{M}\mathbf{N} = us\mathbf{I}_{\varepsilon} + u\mathbf{F} + s\mathbf{G} + \mathbf{X}.$$
(9)

But, it is known that, for an $m \times n$ matrix **A** and an $n \times m$ matrix **B**,

$$\det(\mathbf{I}_m + \mathbf{A}\mathbf{B}) = \det(\mathbf{I}_n + \mathbf{B}\mathbf{A}). \tag{10}$$

By (8) and (9), it follows that

$$\det(\mathbf{I}_{r+\varepsilon} - t\mathbf{T}'') = \det(\mathbf{I}_{\varepsilon} - t(\mathbf{X} + u\mathbf{F} + s\mathbf{G} + us\mathbf{I}_{\varepsilon})). \qquad \Box$$

If u = s = 0, then Theorem 9 implies the first formula of Theorem 4.

Corollary 5. Let H be a finite, connected hypergraph such that every hypervertex is in at least two hyperedges. Set $r = |\mathcal{R}|$. Then

$$\zeta_H(t)^{-1} = \det(\mathbf{I}_r - t\mathbf{T}).$$

Proof. Set $\varepsilon = |E(B_H)|$ and u = s = 0. By Theorem 9 and the definition of T'', we have

$$\zeta_H(t)^{-1} = \det(\mathbf{I}_{r+\varepsilon} - t\mathbf{T}'') = \det\begin{bmatrix} \mathbf{I}_{\varepsilon} & \mathbf{0} \\ -t\mathbf{K}^t\mathbf{M}\mathbf{N} & \mathbf{I}_r - t\mathbf{T} \end{bmatrix} = \det(\mathbf{I}_r - t\mathbf{T}).$$

5. Bartholdi Zeta Functions of (d, r)-regular Hypergraphs

At first, we state a decomposition formula for the generalized Bartholdi zeta function of a semiregular bipartite graph. Hashimoto [5] presented a determinant expression for the Ihara zeta function of a semiregular bipartite graph. We generalize Hashimoto's result on the Ihara zeta function to the generalized Bartholdi zeta function.

A graph G is called *bipartite*, denoted by $G = (V_1, V_2)$ if there exists a partition $V(G) = V_1 \cup V_2$ of V(G) such that the vertices in V_i are mutually nonadjacent for i = 1, 2. A bipartite graph $G = (V_1, V_2)$ is called $(q_1 + 1, q_1 + 2)$ -semiregular if $\deg_G v = q_i + 1$ for each $v \in V_i$ (i = 1, 2). Then $G^{[1]}$ is $(q_1 + 1)q_2$ -regular, and $G^{[2]}$ is $(q_2 + 1)q_1$ -regular.

A determinant expression for the generalized Bartholdi zeta function of a semiregular bipartite graph is given as follows. For a graph G, let Spec(G) be the set of all eigenvalues of the adjacency matrix of G.

Theorem 10. Let $G = (V_1, V_2)$ be a connected $(q_1 + 1, q_2 + 1)$ -semiregular bipartite graph with v vertices and ε edges. Set $|V_1| = n$ and $|V_2| = m$ $(n \le m)$. Then

$$\zeta(G, u, s, t)^{-t} = (1 - (1 - u)(1 - s)t^{2})^{\varepsilon - v}(1 + (1 - u)(q_{2} + s)t^{2})^{m - n}
\times \prod_{j=1}^{n} (1 - (\lambda_{j}^{2} - (1 - s)(q_{1} + u) - (1 - u)(q_{2} + s))t^{2}
+ (1 - u)(1 - s)(q_{1} + u)(q_{2} + s)t^{4})$$

$$= (1 - (1 - u)(1 - s)t^{2})^{\varepsilon - v}
\cdot (1 + (1 - u)(q_{2} + s)t^{2})^{m - n} \det(\mathbf{I}_{n} - (\mathbf{A}^{[1]})
- (q_{2} - 1 - (q_{1} - 1)s - (q_{2} - 1)u - 2us)\mathbf{I}_{n})t^{2}
+ (1 - u)(1 - s)(q_{1} + u)(q_{2} + s)t^{4}\mathbf{I}_{n})$$

$$= (1 - (1 - u)(1 - s)t^{2})^{\varepsilon - v} (1 + (1 - s)(q_{1} + u)t^{2})^{n - m} \det(\mathbf{I}_{m}$$

$$- (\mathbf{A}^{[2]} - (q_{1} - 1 - (q_{1} - 1)s - (q_{2} - 1)u - 2us)\mathbf{I}_{m})t^{2}$$

$$+ (1 - u)(1 - s)(q_{1} + u)(q_{2} + s)t^{4}\mathbf{I}_{m}),$$

where $Spec(G) = \{\pm \lambda_1, ..., \pm \lambda_n, 0, ..., 0\}$ and $\mathbf{A}^{[i]} = \mathbf{A}(G^{[i]})(i = 1, 2)$.

Proof. The argument is an analogue of Hashimoto's method [5].

By Theorem 6, we have

$$\zeta(G, u, s, t)^{-1} = (1 - (1 - u)(1 - s)t^{2})^{\varepsilon - v} \det(\mathbf{I}_{v} - t\mathbf{A}(G) + t^{2}((1 - s)(q_{1} + u)\mathbf{I}_{n} \oplus (1 - u)(q_{2} + s)\mathbf{I}_{m})).$$

Let $V_1 = \{v_1, ..., v_n\}$ and $V_2 = \{w_1, ..., w_m\}$. Arrange vertices of G are as follows: $v_1, ..., v_n$; $w_1, ..., w_m$. We consider the matrix $\mathbf{A} = \mathbf{A}(G)$ under this order. Then, let

$$\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{E} \\ {}^{t}\mathbf{E} & \mathbf{0} \end{bmatrix},$$

where ${}^{t}\mathbf{E}$ is the transpose of \mathbf{E} .

Since **A** is symmetric, there exists an orthogonal matrix $\mathbf{W} \in O(m)$ such that

$$\mathbf{EW} = \begin{bmatrix} \mathbf{R} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mu_1 & 0 & 0 & \cdots & 0 \\ & \ddots & \vdots & & \vdots \\ \star & \mu_n & 0 & \cdots & 0 \end{bmatrix}.$$

Now, let

$$\mathbf{P} = \begin{bmatrix} \mathbf{I}_n & \mathbf{0} \\ \mathbf{0} & \mathbf{W} \end{bmatrix}.$$

Then we have

$${}^{t}\mathbf{PAP} = \begin{bmatrix} \mathbf{0} & \mathbf{R} & \mathbf{0} \\ {}^{t}\mathbf{R} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Furthermore, we have

$${}^{t}\mathbf{P}((1-s)(q_1+u)\mathbf{I}_n \oplus (1-u)(q_2+s)\mathbf{I}_m)\mathbf{P}$$
$$= (1-s)(q_1+u)\mathbf{I}_n \oplus (1-u)(q_2+s)\mathbf{I}_m.$$

Thus,

$$\zeta(G, u, s, t)^{-1}$$

$$= (1 - (1 - u)(1 - s)t^{2})^{\varepsilon - v}(1 + (1 - u)(q_{2} + s)t^{2})^{m - n} \det \begin{bmatrix} a\mathbf{I}_{n} & -t\mathbf{R} \\ -t^{t}\mathbf{R} & b\mathbf{I}_{n} \end{bmatrix}$$

$$= (1 - (1 - u)(1 - s)t^{2})^{\varepsilon - v}(1 + (1 - u)(q_{2} + s)t^{2})^{m - n}$$

$$\cdot \det \begin{bmatrix} a\mathbf{I}_{n} & \mathbf{0} \\ -t^{t}\mathbf{R} & b\mathbf{I}_{n} - a^{-1}t^{2}{}^{t}\mathbf{R}\mathbf{R} \end{bmatrix}$$

$$= (1 - (1 - u)(1 - s)t^{2})^{\varepsilon - v}(1 + (1 - u)(q_{2} + s)t^{2})^{m - n} \det(ab\mathbf{I}_{n} - t^{2}{}^{t}\mathbf{R}\mathbf{R}),$$
where $a = 1 + (1 - s)(q_{1} + u)t^{2}$ and $b = 1 + (1 - u)(q_{2} + s)t^{2}$.

Since **A** is symmetric, t **RR** is symmetric and positive semi-definite, i.e., the eigenvalues of t **RR** are of form:

$$\lambda_1^2, ..., \lambda_n^2(\lambda_1, ..., \lambda_n \ge 0).$$

Therefore, it follows that

$$\zeta(G, u, s, t)^{-1}$$

$$= (1 - (1 - u)(1 - s)t^{2})^{\varepsilon - v} (1 + (1 - u)(q_{2} + s)t^{2})^{m - n} \prod_{j=1}^{n} (ab - \lambda_{j}^{2}t^{2}).$$

But, we have

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^{m-n} \det(\lambda^2 \mathbf{I} - {}^t \mathbf{R} \mathbf{R})$$

and so

$$Spec(\mathbf{A}) = \{\pm \lambda_1, ..., \pm \lambda_n, 0, ..., 0\}.$$

Thus, there exists an orthogonal matrix S such that

where S_1 is an $n \times n$ matrix. Furthermore, we have

$$\mathbf{A}^2 = \mathbf{A}_2 + \mathbf{D}_G,$$

where $\mathbf{A}_2 = ((\mathbf{A}_2)_{uv})_{u, v \in V(G)}$ is given as follows:

 $(\mathbf{A}_2)_{uv}$ = the number of reduced (u, v)-paths with length 2.

By the definition of the graphs $G^{[i]}$ (i = 1, 2),

$$\mathbf{A}^{2} = \begin{bmatrix} \mathbf{A}^{[1]} + (q_1 + 1)\mathbf{I}_n & \mathbf{0} \\ \mathbf{0} & \mathbf{A}^{[2]} + (q_2 + 1)\mathbf{I}_m \end{bmatrix},$$

where $\mathbf{A}^{[i]} = \mathbf{A}(G^{[i]})(i = 1, 2)$. Thus,

$${}^{t}\mathbf{S}\mathbf{A}^{2}\mathbf{S} = \begin{bmatrix} \mathbf{S}_{1}^{-1}\mathbf{A}^{[1]}\mathbf{S}_{1} + (q_{1}+1)\mathbf{I}_{n} & \mathbf{0} \\ \mathbf{0} & * \end{bmatrix}.$$

Therefore, it follows that

$$\mathbf{S}_{1}^{-1}\mathbf{A}^{[1]}\mathbf{S}_{1} = \begin{bmatrix} \lambda_{1}^{2} - (q_{1} + 1) & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}^{2} - (q_{1} + 1) \end{bmatrix}.$$

Hence

$$\det(ab\mathbf{I}_n - (\mathbf{A}^{[1]} + (q_1 + 1)\mathbf{I}_n)t^2) = \prod_{j=1}^n (ab - \lambda_j^2 t^2).$$

Thus, the second equation follows.

Similarly to the proof of the second equation, the third equation is obtained. \Box

A hypergraph H is a (d, r)-regular if every hypervertex is incident to d hyperedges, and every hyperedge contains r hypervertices. If H is a (d, r)-regular hypergraph, then the associated bipartite graph B_H is (d, r)-semiregular. Let $V_1 = V(H)$, $V_2 = E(H)$ and $d \ge r$. Set $n = |V_1|$ and $m = |V_2|$. Then we have $\mathbf{A}^{[1]} = \mathbf{A}(H)$ and $\mathbf{A}^{[2]} = \mathbf{A}(H^*)$. By Theorems 7 and 10, we obtain the following result. Let $Spec(\mathbf{B})$ be the set of all eigenvalues of the square matrix \mathbf{B} .

Theorem 11. Let H be a finite, connected (d, r)-regular hypergraph with $d \ge r$. Set n = |V(H)| and m = |E(H)|. Then

$$\zeta(H, u, s, t)^{-1}$$

$$= (1 - (1 - u)(1 - s)t)^{\varepsilon - v} (1 + (1 - u)(r - 1 + s)t)^{m - n}$$

$$\times \prod_{j=1}^{n} (1 - (\lambda_j^2 - (1 - s)(d - 1 + u) - (1 - u)(r - 1 + s))t$$

$$+ (1 - u)(1 - s)(d - 1 + u)(r - 1 + s)t^2)$$

$$= (1 - (1 - u)(1 - s)t)^{\varepsilon - v}(1 + (1 - u)(r - 1 + s)t)^{m - n}$$

$$\times \det(\mathbf{I}_{n} - (\mathbf{A}(H) - (r - 2 - (d - 2)s - (r - 2)u - 2us)\mathbf{I}_{n})t$$

$$+ (1 - u)(1 - s)(d - 1 + u)(r - 1 + s)t^{2}\mathbf{I}_{n})$$

$$= (1 - (1 - u)(1 - s)t)^{\varepsilon - v}(1 + (1 - s)(d - 1 + u)t)^{n - m}$$

$$\times \det(\mathbf{I}_{m} - (\mathbf{A}(H^{*}) - (d - 2 - (d - 2)s - (r - 2)u - 2us)\mathbf{I}_{m})t$$

$$+ (1 - u)(1 - s)(d - 1 + u)(r - 1 + s)t^{2}\mathbf{I}_{m}),$$

where $\varepsilon = nd = mr$, v = n + m and $Spec(\mathbf{A}(B_H)) = \{\pm \lambda_1, ..., \pm \lambda_n, 0, ..., 0\}$.

In the case of s = u = 0, we obtain Theorem 16 in [11].

Corollary 6 (Storm). Let H be a finite, connected (d, r)-regular hypergraph with $d \ge r$. Set n = |V(H)|, m = |E(H)| and q = (d-1)(r-1). Then

$$\zeta_H(t)^{-1} = (1-t)^{\varepsilon-\nu} (1+(r-1)t)^{m-n} \det(\mathbf{I}_n - (\mathbf{A}(H) - r + 2)t + qt^2)$$
$$= (1-t)^{\varepsilon-\nu} (1+(d-1)t)^{n-m} \det(\mathbf{I}_m - (\mathbf{A}(H^*) - d + 2)t + qt^2),$$

where $\varepsilon = nd = mr$ and v = n + m.

6. Example

Let $G = (V_1, V_2)$ be the bipartite graph with $V_1 = \{v_1, v_2, v_3\}$, $V_2 = \{v_4, v_5, v_6\}$ and

$$E(G) = \{v_1v_4, v_1v_5, v_1v_6, v_2v_4, v_2v_6, v_3v_5, v_3v_6\}.$$

Then we have n = m = 3, $\varepsilon = 7$, v = 6 and

$$\mathbf{A}(G) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{D}_{V_1} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix},$$

$$\mathbf{D}_{V_2} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

By Theorem 6, we have

$$\zeta(G, u, s, t)^{-1}$$

$$= (1 - (1 - s)(1 - u)t^{2})^{\varepsilon - v} \times \det(\mathbf{I}_{v} - t\mathbf{A}(G) + t^{2}((1 - s)(\mathbf{D}_{V_{1}} - (1 - u)\mathbf{I}_{n}) \oplus (1 - u)(\mathbf{D}_{V_{2}} - (1 - s)\mathbf{I}_{m})))$$

$$= (1 - (1 - s)(1 - u)t^{2})$$

$$\times \det\begin{pmatrix} \begin{bmatrix} 1 + at^{2} & 0 & 0 & -t & -t & -t \\ 0 & 1 + bt^{2} & 0 & -t & 0 & -t \\ 0 & 0 & 1 + bt^{2} & 0 & -t & -t \\ -t & -t & 0 & 1 + ct^{2} & 0 & 0 \\ -t & -t & -t & 0 & 1 + ct^{2} & 0 \\ -t & -t & -t & 0 & 0 & 1 + dt^{2} \end{bmatrix},$$

where a = (1-s)(2+u), b = (1-s)(1+u), c = (1-u)(1+s) and d = (1-s)(2+u). Thus, we obtain

$$\zeta(G, u, s, t)^{-1} = (1 - (1 - s)(1 - u)t^{2})(1 + (1 - 2us)t^{2} + (1 - u^{2})(1 - s^{2})t^{4})$$

$$\times \{1 - (s + u + 4us)t^{2} + (-4 - u - 3u^{2} + (-1 + u + 3u^{2})s + (-3 + 3u + 6u^{2})s^{2})t^{4} - (1 - u)(1 - s)(1 + 2u + u^{2})t^{4}\}$$

$$+ (2 + 12u + 7u^{2})s + (1 + 7u + 4u^{2})s^{2})t^{6}$$
$$+ (1 - s)^{2}(1 - u)^{2}(1 + u)(2 + u)(1 + s)(2 + s)t^{8}\}.$$

Now, let H be the hypergraph with $V(H) = \{v_1, v_2, v_3\}$ and $E(H) = \{e_1, e_2, e_3\}$, where $e_1 = \{v_1, v_2\}$, $e_2 = \{v_1, v_3\}$ and $e_3 = \{v_1, v_2, v_3\}$. Then the above bipartite graph G is the bipartite graph B_H associated with H, where $V_1 = V(H)$ and $V_2 = E(H)$. By Theorem 7, we have

$$\zeta(H, u, s, t)^{-1} = \zeta(G, u, s, \sqrt{t})^{-1}$$

$$= (1 - (1 - s)(1 - u)t)(1 + (1 - 2us)t + (1 - u^2)(1 - s^2)t^2)$$

$$\times \{1 - (s + u + 4us)t + (-4 - u - 3u^2 + (-1 + u + 3u^2)s + (-3 + 3u + 6u^2)s^2)t^2 - (1 - u)(1 - s)(1 + 2u + u^2 + (2 + 12u + 7u^2)s + (1 + 7u + 4u^2)s^2)t^3 + (1 - s)^2(1 - u)^2(1 + u)(2 + u)(1 + s)(2 + s)t^4\}.$$

If u = 0, then

$$\zeta(H, 0, s, t)^{-1} = (1 - (1 - s)t)(1 + t + (1 - s^2)t^2)$$

$$\times (1 - st + (-4 - s - 3s^2)t^2 - (1 - s)(1 + s)^2t^3$$

$$+ 2(1 - s)^2(1 + s)(2 + s)t^4).$$

In the case of s = 0, we have

$$\zeta(H, u, 0, t)^{-1} = (1 - (1 - u)t)(1 + t + (1 - u^2)t^2)$$

$$\times (1 - ut + (-4 - u - 3u^2)t^2 - (1 - u)(1 + u)^2t^3$$

$$+ 2(1 - u)^2(1 + u)(2 + u)t^4).$$

Furthermore, let s = u. Then

$$\zeta(H, u, u, t)^{-1} = \zeta(H, u, t)^{-1} = (1 - (1 - u)^{2}t)(1 + (1 - 2u^{2})t + (1 - u^{2})^{2}t^{2})$$

$$\times (1 - 2u(1 + 2u)t + (-4 - 2u - 5u^{2} - 6u^{3} + 6u^{4})t^{2}$$

$$- (1 - u)^{2}(1 + 4u + 14u^{2} + 14u^{3} + 4u^{4})t^{3}$$

$$+ (1 - u)^{4}(1 + u)^{2}(2 + u)^{2}t^{4}).$$

If s = u = 0, then we have

$$\zeta(H, 0, 0, t)^{-1} = \zeta(H, t)^{-1} = (1-t)(1+t+t^2)(1-4t^2-t^3+4t^4).$$

Next, let $f_1 = (v_1, e_1)$, $f_2 = (v_1, e_2)$, $f_3 = (v_1, e_3)$, $f_4 = (v_2, e_1)$, $f_5 = (v_2, e_3)$, $f_6 = (v_3, e_2)$ and $f_7 = (v_3, e_3)$. Then we have

$$D(B_H) = \{f_1, ..., f_7, f_1^{-1}, ..., f_7^{-1}\}.$$

Three matrices **X**, **F** and **G** are given as follows:

$$\mathbf{X} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\mathbf{F} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix},$$

$$\mathbf{G} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Then it is certain that FG = X.

Furthermore,

$$\mathbf{X} + u\mathbf{F} + s\mathbf{G} + us\mathbf{I}_{7} = \begin{bmatrix} us & s & s & u & 1 & 0 & 0 \\ s & us & s & 0 & 0 & u & 1 \\ s & s & us & 1 & u & 1 & u \\ u & 1 & 1 & us & s & 0 & 0 \\ 1 & 1 & u & s & us & 1 & u \\ 1 & u & 1 & 0 & 0 & us & s \\ 1 & 1 & u & 1 & u & s & us \end{bmatrix},$$

and so, we have

$$\det(\mathbf{I}_7 - t(\mathbf{X} + u\mathbf{F} + s\mathbf{G} + us\mathbf{I}_7)) = \zeta(H, u, s, t)^{-1}.$$

Finally, we consider arcs of $B_H^{(1)}$. Let

$$R_1 = (v_1, e_1, v_2), R_2 = (v_1, e_2, v_3), R_3 = (v_1, e_3, v_2),$$

 $R_4 = (v_1, e_3, v_3), R_5 = R_1^{-1}, R_6 = R_3^{-1}, R_7 = (v_2, e_3, v_3),$
 $R_8 = R_2^{-1}, R_9 = R_4^{-1}, R_{10} = R_7^{-1},$

and $P_i = (f_i, f_i^{-1})(1 \le i \le 7)$. Arrange elements of $\mathcal{R}' = D(B_H^{(1)})$ are as

follows: P_1 , ..., P_7 , R_1 , ..., R_{10} . We consider the matrix \mathbf{T}'' under this order, and then, we have

	\[us	S	S	0	0	0	0	us	S
	s	us	S	0	0	0	0	S	us
	S	S	us	0	0	0	0	S	S
	0	0	0	us	S	0	0	0	0
	0	0	0	S	us	0	0	0	0
	0	0	0	0	0	us	S	0	0
	0	0	0	0	0	S	us	0	0
	0	0	0	и	1	0	0	0	0
T'' =	0	0	0	0	0	и	1	0	0
	0	0	0	1	и	0	0	0	0
	0	0	0	0	0	1	и	0	0
	и	1	1	0	0	0	0	и	1
	1	1	и	0	0	0	0	1	1
	0	0	0	0	0	1	и	0	0
	1	и	1	0	0	0	0	1	и
	1	1	и	0	0	0	0	1	1
	0	0	0	1	и	0	0	0	0

A Generalized Bartholdi Zeta Function for a Hypergraph

S	S	0	0	0	0	0	0]	
S	S	0	0	0	0	0	0	
us	us	0	0	0	0	0	0	
0	0	us	S	S	0	0	0	
0	0	S	us	us	0	0	0	
0	0	0	0	0	us	S	s	
0	0	0	0	0	S	us	us	
0	0	и	1	1	0	0	0	
0	0	0	0	0	и	1	1	
0	0	1	и	и	0	0	0	
0	0	0	0	0	1	и	и	
1	1	0	0	0	0	0	0	
и	и	0	0	0	0	0	0	
0	0	0	0	0	1	и	и	
1	1	0	0	0	0	0	0	
и	и	0	0	0	0	0	0	
0	0	1	и	и	0	0	0	

129

By Theorem 9, we have

$$\det(\mathbf{I}_{17} - t \, \mathbf{T}'') = \zeta(H, \, u, \, s, \, t)^{-1}.$$

References

- [1] S. A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra 9 (1980), 177-182.
- [2] L. Bartholdi, Counting paths in graphs, Enseign. Math. 45 (1999), 83-131.
- [3] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), 717-797.
- [4] D. Foata and D. Zeilberger, A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999), 2257-2274.
- [5] K. Hashimoto, Zeta functions of finite graphs and representations of *p*-adic groups, Adv. Stud. Pure Math., Vol. 15, Academic Press, New York, 1989, pp. 211-280.
- [6] Y. Ihara, On discrete subgroups of the two by two projective linear group over *p*-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
- [7] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. U. Tokyo 7 (2000), 7-25.
- [8] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, Mass., 1983.
- [9] I. Sato, Bartholdi zeta functions for hypergraphs, Electron. J. Combin. 13 (2006).
- [10] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 124-165.
- [11] C. K. Storm, The zeta function of a hypergraph, Electron. J. Combin. 13 (2006).
- [12] T. Sunada, *L*-functions in geometry and some applications, Lecture Notes in Math., Vol. 1201, Springer-Verlag, New York, 1986, pp. 266-284.
- [13] T. Sunada, Fundamental Groups and Laplacians (in Japanese), Kinokuniya, Tokyo, 1988.