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Abstract

We introduce a generalized Bartholdi zeta function of a bipartite
graph, and define a generalized Bartholdi zeta function of a
hypergraph H with three variables. Furthermore, we present three
types of determinant expressions for the generalized Bartholdi zeta
function of a hypergraph H.

1. Introduction

1.1. Zeta functions of graphs

Graphs and digraphs treated here are finite. Let G be a connected
graph and Dg be the symmetric digraph corresponding to G. Set D(G) =

{(u, v), (v, u)Juv € E(G)}. Fore = (u, v) € D(G), setu = o(e) and v = t(e).

Furthermore, let =% = (v, u) be the inverse of e = (u, v).

A path P of length n in G is a sequence P = (e, ..., ;) of n arcs such
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that e € D(G), t(g) =o0(gj;1)L<i<n-1). If g =(vj_q,V;) for i =1,
..., N, then we write P = (Vg, V{, ..., Vh_1, V). Set [P |=n, o(P) = o(e)
and t(P) = t(e,). Also, P is called an (o(P), t(P))-path. We say that a path

P = (e, ..., &) has a backtracking or a bump at t(e;) if e} = e; for some
i(l<i<n-1). A (v, w)-path is called a v-cycle (or v-closed path) if
v =w. The inverse cycle of a cycle C = (e, ..., &) is the cycle C™* =

(egl, el‘l).

We introduce an equivalence relation between cycles. Two cycles C; =
(€1, -, &) and Cy = (fy, ..., fy) are called equivalentif f; =e;, forall
j. The inverse cycle of C is in general not equivalent to C. Let [C] be the

equivalence class which contains a cycle C. Let B" be the cycle obtained by
going r times around a cycle B. Such a cycle is called a multiple of B. A

cycle C is reduced if both C and C? have no backtracking. Furthermore, a
cycle C is prime if it is not a multiple of a strictly smaller cycle. Note that
each equivalence class of prime, reduced cycles of a graph G corresponds to
a unique conjugacy class of the fundamental group w;(G, v) of G at a vertex

v of G.

The Ihara(-Selberg) zeta function of G is defined by

26, 1) =[Ja-dch?,
[c]

where [C] runs over all equivalence classes of prime, reduced cycles of

G. Ihara [6] defined Ihara zeta functions of graphs, and showed that the
reciprocals of Ihara zeta functions of regular graphs are explicit polynomials.
A zeta function of a regular graph G associated with a unitary representation
of the fundamental group of G was developed by Sunada [12, 13].
Hashimoto [5] generalized lhara’s result on the zeta function of a regular
graph to an irregular graph, and showed that its reciprocal is again a
polynomial by a determinant containing the edge matrix. Bass [3] presented
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another determinant expression for the lhara zeta function of an irregular
graph by using its adjacency matrix.

Let G be a connected graph with n vertices and m edges. Then two
2m x 2m matrices

B =B(G)=(Be, ) rep) and Jo =Jo(G) = (Je, 1 )e, ten(G)
are defined as follows:

_{1 if t(e) = o(f), S _{1 if f=e?,

f = .
& 0 otherwise,

0 otherwise.

Theorem 1 (Hashimoto; Bass). Let G be a connected graph with n
vertices and m edges. Then the reciprocal of the Ihara zeta function of G is
given by

Z(G, t) = det(l,, —t(B — Jp))
= (1—t2)™ " det(l,, — tA(G) + t2(Dg — 1)),
where Dg = (djj) is the diagonal matrix with

dii = degg Vi(V(G) = {v, ..., Vp}).

The first identity in Theorem 1 was also obtained by Hashimoto [5]. Bass
[3] proved the second identity by using a linear algebraic method.

Stark and Terras [10] gave an elementary proof of this formula, and
discussed three different zeta functions of any graph. Various proofs of Bass’
Theorem were given by Kotani and Sunada [7], and Foata and Zeilberger [4].

Let G be a connected graph. Then the cyclic bump count cbc(n) of a

cycle © = (my, ..., T,) is
che(n) = | {i=1, ... n|m = ma} |,

where 7,1 = 7.
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Bartholdi [2] introduced the Bartholdi zeta function of a graph. The
Bartholdi zeta function of G is defined by

C(Gy u, t) — H(l _ quC(C)t‘ C ‘)—l,
[C]
where [C] runs over all equivalence classes of prime cycles of G, and u, t are

complex variables with |u |, | t| sufficiently small.

Bartholdi [2] gave a determinant expression of the Bartholdi zeta
function of a graph.

Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and
m unoriented edges. Then the reciprocal of the Bartholdi zeta function of G
is given by

4G, u, )L =det(l,y —t(B - (1—-u)Jy))
= (1= (1 -u)’t>)™ " det(l, — tA(G)

+(@-u)(Dg — (L-u)I)t?).

We state Amitsur Theorem which is used in the proof of Theorem 6.
Foata and Zeilberger [4] gave a new proof of Bass’ Theorem by using the
algebra of Lyndon words. Let X be a finite nonempty set, < be a total order in

X, and X* be the free monoid generated by X. Then the total order < on X
derives the lexicographic order <* on X *. A Lyndon word in X is defined to

a nonempty word in X ™ which is prime, i.e., not the power 1" of any other
word | for any r > 2, and which is also minimal in the class of its cyclic

rearrangements under <* (see [8]). Let L denote the set of all Lyndon words
in X.

Foata and Zeilberger [4] gave a short proof of Amitsur’s identity [1].

Theorem 3 (Amitsur). For square matrices Ay, ..., Ay,
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det(l — (Ag + -+ Ay)) = | [ det(1 - A)),
leL

where the product runs over all Lyndon words in {1, .., k}, and A, =

Ay, Ay for | =ig-eip.

i
1.2. Zeta functions of hypergraphs

Storm [11] defined the lhara-Selberg zeta function of a hypergraph. A
hypergraph H = (V(H), E(H)) is a pair of a set V(H) of hypervertices and
a set E(H) of hyperedges, where the union of all hyperedges is V(H). A
hypervertex v is incident to a hyperedge e if v € e. For a hypergraph H, its

dual H™ is the hypergraph obtained by letting its hypervertex set be indexed
by E(H) and its hyperedge set by V(H).

A Dipartite graph By associated with a hypergraph H is defined as
follows: V(B )=V(H)UE(H) and veV(H) and e € E(H) are adjacent
in By if v is incident to e. Let V(H) = {v, ..., v4}. Then an adjacency
matrix A(H) of H is defined as a matrix whose rows and columns are
parameterized by V(H), and (i, j)-entry is the number of paths in By

from v; to v; of length 2 with no backtracking.

For the bipartite graph By associated with a hypergraph H, let V; =
V(H) and V5, = E(H). Then, the halved graph B[Hi] of By is defined to be
the graph with vertex set V; and arc set {P : reduced path|| P | = 2; o(P),
t(P)eV;} fori=1 2.

Let H be a hypergraph. A path P of length n in H is a sequence
P =(v, €, V9, €, ..., €, Vy41) Of n+1 hypervertices and n hyperedges
such that v; e V(H), ej € E(H), vi €, Vpiq €€y and v; € g, gy for
i=2.,n-1 Set |P|=n, o(P)=v and t(P) = v,,1. Also, P is called
an (o(P), t(P))-path. We say that a path P has a hyperedge backtracking
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if there is a subsequence of P of the form (e, v, €), where e € E(H),
veV(H). A (v, w)-path is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles
Cl = (Vl, €, Vo, ..., €, V]_) and CZ = (Wl, fl! Wo, ..., fm, Wl) are called
equivalent if w; =v;, and f; =ej,y forallj. Let [C] be the equivalence

class which contains a cycle C. Let B" be the cycle obtained by going r
times around a cycle B. Such a cycle is called a multiple of B. A cycle C is

reduced if both C and C? have no hyperedge backtracking. Furthermore, a
cycle C is prime if it is not a multiple of a strictly smaller cycle.

The lhara-Selberg zeta function of H is defined by
G =[Ja-deh™,
[C]

where [C] runs over all equivalence classes of prime, reduced cycles of H,

and t is a complex variable with | t| sufficiently small (see [11]).
Let H be a hypergraph with E(H) = {ey, ..., ey}, and let {¢;, ..., ¢y} be
a set of m colors, where c(e;) = ¢i. Then an edge-colored graph GH, is

defined as a graph with vertex set V(H) and edge set {vw|v, w e V(H);

v, W e e e E(H)}, where an edge vw is colored ¢; if v, w e ¢. Note that

GH, is the halved graph B,[_ll] of By.

Let GH? be the symmetric digraph corresponding to the edge-colored
graph GH,. Then the oriented line graph HP = (V| , E{) associated with
GH¢ by

VL = D(GH?)
and

EP = {(&i, ej) € D(GHZ) x D(GH?)[c(g;) # c(ej) t(e;) = o(e;)},

where c(g; ) is the color assigned to the oriented edge ¢; € D(GH_) such that
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c(u, v) = c(uv), (u, v) e D(GH?). Also, H{ is called the oriented line graph
of GH_. The Perron-Frobenius operator T : C(V ) — C(V_ ) is given by
)= > fte),
eeEqy(x)

where Ey(x) = {e € E2|o(e) = x} is the set of all oriented edges with x as
their origin vertex, and C(V| ) is the set of functions from V| to the complex
number field C.

Storm [11] gave two nice determinant expressions of the Ihara-Selberg
zeta function of a hypergraph by using the results of Kotani and Sunada [7],
and Bass [3].

Theorem 4 (Storm). Let H be a finite, connected hypergraph such that
every hypervertex is in at least two hyperedges. Then

L)t =det(1 —tT) = Z(By, Vi)t
= (1-t)" " det(l - VtA(By ) +tQp,, ),
where n =|V(By)|, m=|E(By)| and Qg =Dg, — 1.

Let H be a hypergraph. Then a path P = (vq, €1, V5, €5, ..., €5, V41) has a
(broad) backtracking or (broad) bump at e or v if there is a subsequence of P
of the form (e, v, €) or (v, e, v), where e € H(H), v € V(H). Furthermore,

the cyclic bump count cbc(C) of acycle C = (v, e, Vo, €, ..., €y, V1) iS
che(C) =[{i =1, .., n|v; =Vizq} | +]{i=1 .., nlej =1},

where v, =Vv; and e, 1 = €.

The Bartholdi zeta function of H is defined by

GH, ut) = [Ja-u®©deht,
[C]

where [C] runs over all equivalence classes of prime cycles of H, and u, t are
complex variables with |u |, |t| sufficiently small.
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If u =0, then the Bartholdi zeta function of H is the lhara-Selberg zeta
function of H.

Sato [9] presented a determinant expression of the Bartholdi zeta
function of a hypergraph.

Theorem 5 (Sato). Let H be a finite, connected hypergraph. Then
G(H, u, 7 =By, u V)
= (1= (1 -u)®’)™ " det(l - VtA(By )
+(@-ut(Dg, - @ -ul)),
where n = |V(By )| and m = | E(By ).

Unfortunately, in the case that H is a graph G, the Bartholdi zeta function
¢(H, u, t) = ¢(Bg, u, vt) of G is not equal to the original Bartholdi zeta
function ¢(G, u, t) of G.

In this paper, we present a three variable Bartholdi zeta function of a
hypergraph H which is the original Bartholdi zeta function of a graph G in
the caseof H =G and s = 0.

In Section 2, we introduce a generalized Bartholdi zeta function of a
bipartite graph with three variables, and present a determinant expression of
it. In Section 3, we introduce a generalized Bartholdi zeta function of a
hypergraph with three variables, and present a determinant expression of it.
In Section 4, we give a determinant expression for the generalized Bartholdi
zeta function of a hypergraph by using a modified Perron-Frobenius
operator. In Section 5, we present a decomposition formula for the
generalized Bartholdi zeta function of a semiregular bipartite graph. As a
corollary, we obtain a decomposition formula for the generalized Bartholdi
zeta function of a (d, r)-regular hypergraph.

2. A Generalized Bartholdi Zeta Function of a Bipartite Graph

Let G = (Vq, V,) be a connected bipartite graph. For j =1, 2, the cyclic



A Generalized Bartholdi Zeta Function for a Hypergraph 101

bump count cbc(r) of acycle © = (my, ..., Ty) IN G is
chej(n) = [{i =1 .., n|m = midy, t(m) €V},

where w1 = m;. Then the generalized Bartholdi zeta function of a bipartite

graph G is defined by
4G, u, s, t) = H(l_ uoPa(C)gehea(Chl )1
C

where [C] runs over all equivalence classes of prime cycles of G, and u, s, t

are complex variables with |u|, |s|, |t| sufficiently small.

Let G = (Vy, V,) be a connected bipartite graph with v vertices and ¢

edges. Then three 2¢ x 2& matrices B = B(G) = ((B)g, 1 )e, fen(c) and Jj =
Ji(G) = ((Ji)e 1 e, feD(G) (i =1, 2) are defined as follows:

1if t(e) =o(f), _ 1 e f = e~ and t(e) € Viyg,
(B 1 _{O otherwise, Ui, _{

where i is treated modulo 2.

0 otherwise,

A determinant expression for the generalized Bartholdi function of G is
given as follows.

Theorem 6. Let G = (V4, V,) be a connected bipartite graph with v
vertices and ¢ unoriented edges, |V, | = n and |V, | = m. Then the reciprocal
of the generalized Bartholdi zeta function of G is

4G, u, s, t) T =det(ly, —t(B—(1—-5)J; —(1-u)Jy))
=(1-(@-s)1-u)t?)*Vdet(l, - tA(G)
+t%((1-5)(Dy, — (L= u)l5) ® (1-u)(Dy, - 1= 5)Iy))),

where Dy, = (djj) is the diagonal matrix with d;; = deggVv; (W ={v{, ..., v })
for any subset W of V(G).
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Proof. The argument is an analogue of Bass’ method [3].

Let Vi ={vy, ..., vq} and Vo = {wy, ..., W, }. Furthermore, let D(G) =
{fy, ., o, £ o £ suchthat o( f;) e Vy (L<i < n).

Arrange arcs of G as follows: fq, ..., fg, fl_l, fg_l. Furthermore,
arrange vertices of G as follows: vy, ..., v, Wy, ..., Wp,.

Now, we define two 2e x v matrices K = (Kfv)feD(G);VGV(G) and

L =(Ltv)tep(o)vev(c) as follows:

1 ift(f)=yv, 1 ifo(f)=yv,
K fv = i L fv = i
0 otherwise, 0 otherwise.

Here we consider two matrices K and L under the above order.

0 K1 L, O
K == ) L = ]
Ky, 0 0 Ly
where Kq, L, are e xm matrices, and K,, L, are & x n matrices. By the
definitions of K and L,

Now, let

Kl = L2 and K2 = Ll‘

Thus,
K 0
L |2
0 K
But, we have
r t
KL = B(G) = ? K1k 1)
Ky 'K, 0 |
and
ttk = AG)=|, ©° Kaky )
K1K3 0 |
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Furthermore,
t
'KK =Dg = KoK t 0 ®3)
0 K1K;
Note that
deggvy 0
KoK, = =Dy, 4)
0 degG Vi,
and
degg Wy 0
'KiKy = = Dy,. (5)
0 degg Wn

We introduce two (v + 2¢) x (v + 2¢) matrices as follows:

1-(1-u)@-9s)tH)I, 0 -k, 1-9)t'K,
o_ 0 A-@-u)@-t)1, @-u)t'K, -k,
0 0 I 0
0 0 0 I
and
I 0 'K, ~1-s)t'K,
Q- 0 g ~1-u)t'K, 'K,
0 tK; (I-(@-uw@-s)tdl, 0
tk, 0 0 @L-@1-u)@-s)t)I,

By (3), (4) and (5), we have

fal, + (1-9)t? 'K,K, ~t'K,K, 0o 0
PO - ~t 'K K, aly + (1-u)t? 'KKy 0
0 tK, al, 0
I tK, 0 0 al,|
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al, +(1-s)t?Dy, ~t'K,K, 0 0|
B ~t'K4K, alp +(@1-ut’Dy, 0 0
0 tKl ala 0
i tK, 0 0 al,

where a =1— (1 - u)(L- s)t%. By (2), we have
det(PQ) = (1— (L — u)(L - s)t?)% det(l, —tA(G)

+t%((L-3)(Dy, — (L= )1 ® L -u)(Dy, — (1 -5)Ip))).

Furthermore, we have

al, 0 0 0
0 al, 0 0
QP = 2,0t t
0 atKl al8 +(1—U)t Kl Kl —tKl Kl
atk, 0 —tK, 'K, al, + (1-s)t’K, 'K,
and so

det(QP) = (1— (L —u)(L - s)t?)Y

det al, +(1-u)t’K; 'Ky ~tK; 'Ky
al, +(1-s)t%K, 'K, | )

—tK, 'K,
But,
[al. + (1— u)t?K, 'K —tK4 'K
det alg + (1 -u)t°K; 'Ky 1K1
~tK, 'K, al, +(1-5)t°K, 'K,

I | —t(K, 'Ky — (1 =5)1.)]
et o (Ka 'Ky )S)J
__t(KZ K2 _(1_u)|s) Is |

det I -(1- S)HSD-
~(1-utl, I,
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By (1), we have
[ —t(K; 'Ky — (1= )1
det € (K Ky =(@=9)lg)
_t(KZtK2_(1_u)|s) Ia
= det(lpe —t(B(G) — (1 -5)J1 — (1 - u)Jp)).
Furthermore, we have

T —(1-s)tl,]
__(1_u)t|s Is j

det

B ~(1-s)tl,] I, 0
= det det
__(1_u)t|s Is _] (Ll_u)tla Ist

(1-@1-u)1-9)td)I, —(1—s)t|8n
0 |

L €

=(1-(1-u)@-s)t?).

= det

Since det(PQ) = det(QP), we have
(L- @ -u)@-s)t?)* det(l, —tA(G)
+1%((L=5)(Dy, —(@-u)ly) ® (L-u)(Dy, — (1= 95)Iy))
= (1- (- u) (L= $)t?)*" det(l5, —t(B(G) - (L-5)Jy — (L-u)J)).

Therefore, it follows that

det(lz; —t(B(G) — (1-5)J; — (1 - u)J3))
=(1-(@-u)@-3)t?)* "V det(l, - tA(G)

+t%((L-35)(Dy, —(2-u)ly) ® (L= u)(Dy, — (L= 5)Im)).

Next, let
D(G) = {fy, «u, To, foiqs oo Toe}

such that f.; = fi_l (L<i<eg), and consider the lexicographic order on
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D(G)x D(G) derived from a total order of D(G): f; < fy) < < fy,. If

(fj, fj) is the rth pair under the above order, then we define the 2g x 2¢

matrix T, = ((Tr)p q)lsp q<2¢ as follows:

t if p=fi,q="f;t(f)=o(f))and f; = fi™,
(). = ut if p=fi,q="fj,t(f)eVyand f; = fi7,
P9 lst ifp=f,q=f,t(f)eV,and f; = f L,
i j i 2 j i

0  otherwise.
Let M =Ty +---+ Ty, k= 4¢?. Then we have
M=tB(G)-(1-5)J; —1-u)dy).

Let L be the set of all Lyndon words in D(G)x D(G). Then we can
also consider L as the set of all Lyndon words in {1, ..., kj: (fi, fj)-
(fiq, qu) corresponds to nry -1, Where (fip, fjp)(ls p<q) is the
rp th pair. Theorem 3 implies that

det(l5; - M) = | [ det(12; - Tw),
wel
where
Tw =Ty Tiy
for w=i;---i,. Note that det(Ip, —Ty) is the alternating sum of the

diagonal minors of T,,. Thus, we have

1 - yPa(C)see(CHICIif \ is a prime cycle C,
det(lzg - W) = {

1 otherwise.

Therefore, it follows that

4G, u, s, t) L = H(l_ ueba(C)sehea(Chl C 1y
]

=det(l,, —t(B(G)-(1-15)J; —(1-u)dp)),

where [C] runs over all equivalence classes of prime cycles of G. O
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3. A Generalized Bartholdi Zeta Function of a Hypergraph

Let H be a hypergraph. In a path P = (v, e, Vo, €5, ..., €4, Vii1)s
subsequences (e, v, €) and (v, e, v) are called a vertex bump and an edge
bump, respectively. Furthermore, the vertex cyclic bump count vcbhe(C) and
edge cyclic bump count ecbc(C) of a cycle C = (vq, €, Vo, €5, ..., €, V1)
are defined by

vebe(C) =[{i =1, .., n|ej = gj1}|
and

echc(C) =|{i =1, ..., n|v; = Vi 1},
respectively, where v,,; = v and ey = €.

The generalized Bartholdi zeta function of a hypergraph H is defined by
C(H, U, s 1) = H(l _ uvcbc(C)Secbc(C)t\ C \)—l’
[C]

where [C] runs over all equivalence classes of prime cycles of H, and u, s, t
are complex variables with |u|, |s]|, |t| sufficiently small.

If u=s =0, then the Bartholdi zeta function of H is the Ihara-Selberg
zeta function of H.

A determinant expression of the generalized Bartholdi zeta function of a
hypergraph is given as follows:

Theorem 7. Let H be a finite, connected hypergraph with n
hypervertices and m hyperedges. Then

GH,u s, 7 =¢(By, U, s, V)
= det(l5, —VE(B(By ) ~ (L - 5)J; ~ (L —u)J,))
= (1-(1-u)@-35)t)* " det(l, —VtA(By ) +t((1—5)(Dy ()
—@-u)ly) @ Q-u)(Dg) - L -95)In)),

where v = |V(By )| and € = | E(By)]|.
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Proof. The argument is an analogue of Storm’s method [11].

Let V; =V(H) and V, = E(H). At first, we show that there exists a

one-to-one correspondence between equivalence classes of prime cycles of
length | in H and those of prime cycles of length 2l in By, and vcbc(C)

= cbcl(é), echc(C) = cbcz(é) for any prime cycle C in H and the
corresponding cycle C in By .

Let C = (v, €, Vo, ..., V|, €, V1) be a prime cycle of length | in H. Then
acycle C = (vy, (vq, €1), €1, - V1, (v, €), €, (61, V), V1) is a prime cycle

of length 21 in By . Thus, there exists a one-to-one correspondence between

equivalence classes of prime cycles of length I in H and those of prime cycles
of length 21 in By.

Let C be a prime cycle in H and C be a prime cycle corresponding to C
in By . Then there exists a subsequence (v, €, v) (or (e, v, €)) in C if and only

if there exists a subsequence (v, (v, e), e, (e, v), v) (or (e, (e, v), v, (v, e), €))

in C. Thus, we have vche(C) = cbcl(é) and ecbc(C) = cb02(5 ).
Therefore, it follows that

C(H,u, s, t)= H(l— yVebe(C)geche(C)y| C \)—1
[C]

_ H(l_ ucbcl(é)scbcz(é)t\6\/2)_1 _ ¢(By, u s, h),
[C]
where [C] and [C] run over all equivalence classes of prime cycles in H and
By, respectively.
By Theorem 6, we have

C(H, u, s, t)‘1

= det(l,, - Vt(B(By)—(1-5)J; - (1-u)Jy))
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= (1-@1-u)@-9)t)°* "V det(l, —VtA(By ) +t((L—5)(Dy ()
~(1-u)ly) ®1-u)(Dg) -1 -95)Im))),
where v =|V(By )| and € = | E(By)|. O
Corollary 1. Let H be a finite, connected hypergraph. Then
EH,u,s,t)=¢(H", u, s, t).
Proof. By the fact that By = BH*. O

If u =0, then the following result holds.

Corollary 2. Let H be a finite, connected hypergraph with n
hypervertices and m hyperedges. Then

4(H, 0, s, t) ! = H(l_ geebe(Cy)yl € \)
[C1]

= det(lp; — Vt(B(By )~ (1-5)J; - J2))
= (1-(1-s)t)* "V det(l, — VtA(By)
+ (L= 8)(Dy(H) — 1n) @ (DgH) — L - 5)In)),

where v =|V(By)|, ¢=|E(By)|, and [C;] runs over all equivalence
classes of prime cycles without vertex bumps in H.

If s =0, then the following result holds.

Corollary 3. Let H be a finite, connected hypergraph with n
hypervertices and m hyperedges. Then

4(H,u,0,t)t = H(l_ 4Vebe(Ca )il C2 \)
[C,]

= det(lp;, — VE(B(By ) — Iy — (1 —u)Jy))
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= (1-@-ut)y Vdet(l, - VtABy)
+t(Dy(H) — @ -w)lp) © Q- u)(Dgn) — Im))),
where v =|V(By)|, €=|E(By)|, and [C,] runs over all equivalence
classes of prime cycles without edge bumps in H.
In the case of s = u, we also obtain Theorem 5.

Next, in the case that H = G is a graph, we show that (G, u, 0, t) =

¢(Bg, u, 0, x/f) is equal to the original Bartholdi zeta function {(G, u, t) of
G.

Corollary 4. Let H = G be afinite, connected graph with n vertices and
m edges. Then

€(G,u, 0,t)=¢(G, u, t).

Proof. Let H = G be a connected graph, V(G) = {v, ..., v, } and E(G) =
{e1, ..., em}. Furthermore, let Bg be the bipartite graph with v vertices and ¢

edges corresponding to G. Then we have € = 2m, v = m+ n, and
Dv(c) = D, Dege) = 2Im.
By Corollary 3, we have
4G, u, 0, t) L = (1— (1 - u)t)®™ (™) get(1, — VtA(Bg)
+1(Dg —(@-u)l))® @ —-u)ly)).
Let H = (hye)yev (6); ecE(G) De the incidence matrix of G:

1 if v and e are incident,
hve = .
0 otherwise.

Then we have

0 H
AR
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Thus,

det(l, — vVtA(Bg) +t((Dg — 1 - u)l,) @ (1-u)ly))

_det(_ln+t(DG—(1—u)ln) —JtH D
B Jt'H L+ @-ul,

: det[_ln +1(Dg — (L= u)ly) ~t/(L+ (L~ u)H)H'H —JtH D
0 L+ @-ut)ly, )

Since
H'H = A(G) + Dg,
we have
det(l, - VtA(Bg) +t((Dg — (L-u)15) & (L-u)lpy))

=1+ @-u)t)" " det((L— (1-u)’t?)I, —tA(G) + (1 - u)t’Dg)

=1+ @-u)t)™" " det(l, — tAG) + (1 - u)t?(Dg — (L= u)ly)).
Therefore, it follows that

(G, u, 0, )"
= (1= Q- w*t?)" " det(l, ~ tAG) + (L- u)t*((Dg — (L - u)ly)
=G, u, t) O

In the case of s = u = 0, Theorem 7 implies Storm Theorem.

4. Two New Determinant Expressions of the Generalized Bartholdi
Zeta Function of a Hypergraph

Let H=(V(H), E(H)) be a hypergraph, V(H) ={v, ..., v,} and E(H)
={e1, ..., €mJ. Let By have v vertices and ¢ edges, where v = n + m. Then
we have
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D(By)=1{(v,e), (e, v)]veV(H) ee E(H)}.
Let f, .., f, be arcs in By such that o(f;) e V(H) for each i =1,

. & Then two exe matrices X = (X;j) and Y =(Y;;) are defined as

follows:

__J1 if thereexists an arc fi L such that (f;, fi L, f;)is a reduced path,
" 1o otherwise

and

Vi = 1 if thereexistsan arc fy such that(fi‘l, fie, fj‘l) is a reduced path,
. 0 otherwise.

Furthermore, let

0 F
B(By)-J; - J, {G o}'

Theorem 8. Let H be a finite, connected hypergraph. Set € = | E(By )|
Then

4(H,u, s, t) L= det(l, —t(X + uF + sG + usl,))
= det(l, —t(Y + uF + sG + usl,)).
Proof. Let H = (V(H), E(H)) be a hypergraph, V(H) = {v, ..., v, } and

E(H) = {e, ..., &n}. Let By have v vertices and ¢ edges. By Theorem 7,

we have
C(H, u, s, )7 = det(lp, —VE(B(By) - (1—5)Jy — (1 - u)J2)).

Arrange arcs of By as follows: f, ..., fg, fl_l, fg_l. We consider

three matrices B(By ), J; and J, under this order. Then we have

0 F+s|1

B(By)-(1-15)J1 - (1-u)Jy Z{G+ul 0

€
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It is clear that both F and G are symmetric, but F = 'G. Furthermore,
FG =X and GF =Y. (6)
Thus, we have

det(l 5, — Vt(B(By ) — (1 -$)Jy — (1-u)J))

~ I, —Jt(F +sl,)
s e |

€

_ det("lg —t(F + ség)(e +ul) —JE(FI + SIS)D

L €

= det(l, — t(FG + uF + sG + usl)) = det(l, —t(X + uF + sG + usl,))

= det(l, — t(GF + uF + sG + usl,)) = det(l, — t(Y + uF + sG + usly)).
Therefore, the result follows. O
For the bipartite graph By corresponding to a hypergraph H with n

hypervertices and m hyperedges, let V; =V (H) and V, = E(H). Then, the

broad halved graph Bg) of By is defined to be the graph with vertex set V;
and arc set {P:path||P|=2; o(P), t(P)eV;} for i =1 2. Furthermore,

let {cq, ..., ¢y} be a set of m colors such that c(ej) = ¢; for i =1, .., m. We

color each arc of Bﬁ) as follows:
c(P)=c(e) for P =(v, e, w) e D(B&)).

Then the line digraph I:(Bﬂ)) of B,(_P (i=1 2) is defined as follows:

V(LBW)) = pBW), and (P, Q) e AL(BY)) if and only if t(P) = o(Q)
in BH'
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Let By have v vertices and € edges, and

D(BH ) = {fl’ ey fgy fl_l, vy fa_l}

such that o(fj) e V(H) for each i =1, .., & Let R (or S) be the set of
reduced paths P in By with length two such that o(P), t(P) eV (H) (or
o(P), t(P) e E(H)). Setr =| R | and s = | S|. Furthermore, let R’ (or S’)
be the set of paths P in By with length two such that o(P), t(P) e V(H)
(or € E(H)). Next, let fy =(vj,ej ), P =(v,ej, V) and Q =

(ejk, Vi ejk) foreach k =1, ..., &. Then we have
R'=RU{R, .. R} and 8'=SU{Q ... Q..

Furthermore, we have R' = D((B(Hl))), S = D((B,(f))), |R'|=r+¢ and

|S'|=s+e
Now, we introduce an (r +¢&)x (r +¢) matrix T' = (Tpp')p pregr for
the line digraph E(Bﬁ)) of the halved graph Bﬁ) is defined as follows:

us if t(P)=0o(P'),P=P =R forsomei=1 .., ¢,

us if t(P)=0o(P’),P=R, P e R and c(P)=c(P),
s if t(P)=0(P), P=R, P =Pjand c(P) = c(P"),
s ift(P)=0o(P'),P=R, P eR andc(P)=c(P),
Tepr =qu  if t(P)=0(P’), Pe R, P'=PR and c(P) = c(P'),
u ift(P)=0o(P"),PeR,P eRandc(P)=c(P),
1 if t((P)=0(P’), Pe R, P'=PR and c(P) # c(P'),
1 if t(P)=o0(P’), P, P'e R and c(P) = c(P’),
0

otherwise.

We present another new determinant expression for the Bartholdi zeta
function of a hypergraph.
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Theorem 9. Let H be a finite, connected hypergraph. Set ¢ = | E(By )|
and r =|R|. Then

C(H, u, s, )7L = det(l,,, —tT").

Proof. Let H = (V(H), E(H)) be a hypergraph, V(H) = {v, ..., v}
and E(H) = {e, ..., ey} suchthat o(f;) e V(H)(L<i <¢). Let By havev

vertices and ¢ edges, and D(By ) = {fy, ..., T, fl‘l, fg‘l}. Furthermore,
let R (or S) be the set of reduced paths P in By with length two such that
o(P), t(P) e V(H)(or o(P), t(P) € E(H)). Set r =|R| and s =|S|. For
apath P =(x, y, z) of length two in By, let
oe(P) = (x, y), te(P)=(y, 2),

where (x, Yy, z)=(v,e,w)or (x,y,z)=(e,v, f)(v,weV(H);e, f e E(H)).

Now, we introduce two r x & matrices K = (Kpfj—l)PeR;lsts and L =
(Lpfj JpeR:1<j<¢ are defined as follows:

1 if te(P)= 1, 1 if oe(P) = fj,
FoLpy = .

0 otherwise, ! 0 otherwise.

Furthermore, two sx g matrices M Z(Mij_l)QES;lﬁjSS and N =

(NQfj )QeS;lngs are defined as follows:

1 if oe(Q)= ;T 1 if te(Q) = fj,
M f1 = . NQf = .
Qo 0 otherwise, I 10 otherwise.
Then we have
'LK =F and 'MN =G. @)

Arrange elements of R’ and S’ are as follows:

P]_, ey PS, R, Q]_, ey Qg, S.
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Then we introduce two (r + &) x & matrices K’ = (K'Pfj—l)peR';lsta and
L' = (L’pfj Jper1<j<e are defined as follows:

1 ifte(P)= fj_l and te(P) # te(P™),

K. i ={s ifteP)=te(Pl)=fil
Pf; J
0 otherwise,

L 1 if oe(P)= fj,
Pfi 710 otherwise.

Furthermore, two (s + &) x &€ matrices M’ = (M’ij_l Joesi<j<e @Nd N =

(Nbfj )QeS';lstE are defined as follows:

, 1 if oe(Q)= fi1,
M1 =
) 0 otherwise,
1 if te(Q) = fj and te(Q) = te(Q ),
Not, =qu  if te(Q) = te(Q!) = fj,
0 otherwise.
But, we have

Thus, we have

usl, +s'MN  us'L +s'MN'L }

K/tM!N/tLI —
uK + KIMN  uK'L + KIMNTL

A nonzero element of usl,, s'MN us'L, s'MN'L, uK, K'MN, uk'L

and K'MN'L corresponds to a sequence of eight paths of length two,
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respectively:
R —Q — R R —>Q—Pjc(R)=c(P))
R —Q = R(c(R)=cR); R —»Q—R((R) = c(R));
P—Q - R(c(P)=c(R); P—>Q—R(c(P)=c(R)):
P —Q - R(c(P) =c(R)); P —Q — R(c(P)#c(R)),

where P, Re R, Qe S, i=1, .., ¢, andthe notation P — Q implies that
te(P) = 0e(Q) in By. Therefore, it follows that

KTMNL =T (8)
By (6) and (7), we have
'LKIMN' = usl, + U'LK + s'TMN + 'LK'MN = usl, + uF + sG + X. (9)
But, it is known that, for an m x n matrix A and an n x m matrix B,
det(l,, + AB) = det(l, + BA). (10)
By (8) and (9), it follows that
det(l, ., —tT") = det(l, —t(X + uF + sG + usly)). O
If u=s =0, then Theorem 9 implies the first formula of Theorem 4.

Corollary 5. Let H be a finite, connected hypergraph such that every
hypervertex is in at least two hyperedges. Set r =| R |. Then

L ()7 = det(l, —tT).

Proof. Set e = | E(By )| and u = s = 0. By Theorem 9 and the definition

of T”", we have

C () = det(ly,, —tT") = deﬂ—tKIfMN | f)tTD = det(l, —tT).

O
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5. Bartholdi Zeta Functions of (d, r)-regular Hypergraphs

At first, we state a decomposition formula for the generalized Bartholdi
zeta function of a semiregular bipartite graph. Hashimoto [5] presented a
determinant expression for the lhara zeta function of a semiregular bipartite
graph. We generalize Hashimoto’s result on the lhara zeta function to the
generalized Bartholdi zeta function.

A graph G is called bipartite, denoted by G = (Vq, V5 ) if there exists
a partition V(G)=V; UV, of V(G) such that the vertices in V; are
mutually nonadjacent for i =1, 2. A bipartite graph G = (Vq, V5) is called
(g; +1, gy + 2)-semiregular if degg v =q; +1 for each veV; (i =1, 2).

Then G is (91 +1)qy, -regular, and Gl s (9o +1)qy -regular.

A determinant expression for the generalized Bartholdi zeta function of a
semiregular bipartite graph is given as follows. For a graph G, let Spec(G)

be the set of all eigenvalues of the adjacency matrix of G.

Theorem 10. Let G =(V4, Vo) be a connected (g +1, gy +1)-
semiregular bipartite graph with v vertices and ¢ edges. Set |V; | =n and
|[Vo | =m (n<m). Then

4G, u s, ) P =(1—@-u)@-s)t?)FV(A+ @L-u)(gp + s)t?)™ "
1005 -@-9)(@+w-a-we + )
+(@-u)(1-s) (g +u)(gp +9)t*)
=(1-(@-u)@1-s)t?)EY
L+ (@ -u)(gy + s)t2)™ " det(1,, — (Al
— (02 —~1- (g —1)s — (d -~ Du — 2us) 1)t

+(@-u)(@-s)(qg +u)(gp +9)t*y)
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=(1-@-u)@-s)tPFV@+ @ -s)(ag +u)t?)" ™ det(ly
(AP (a1 (@ - D)s - (2 - Du - 2u8) I, )t
+(L-u)(t-s) (o +u)(gz +5)t*l ),
where Spec(G) = {11, ..., A, 0, ..., 0} and Alll - A(G[i])(i =1 2).

Proof. The argument is an analogue of Hashimoto’s method [5].

By Theorem 6, we have

4G, u, s, )t = (@- (1-u)(1-s)t2)F det(l, —tA(G)

+ (L= 9) (@ +u)ly ® L-u) (g +5)Im)).

Let Vy ={v, ..., Vo} and Vo ={w, ..., W, }. Arrange vertices of G are
as follows: vy, ..., V,; Wi, ..., Wy,. We consider the matrix A = A(G) under

this order. Then, let

where 'E is the transpose of E.

Since A is symmetric, there exists an orthogonal matrix W e O(m) such
that

m 0O 0 - 0
EW =[R 0]= : :

Now, let



120 lwao Sato

Then we have

0 R 0
AP =|'R 0 0]
0 0 0

Furthermore, we have
'P(AL-5)(qg +u)ly ® (L-u)(dp +5)Iym)P

=(1-s)(q +u)ly @ Q-u)(dz + )l
Thus,

4G, u, s, t)
I, -tR
= (1= A= 1)@= @+ - u)(a + 9)t2)"" detﬂth btln D

= (1-@-u) L=V @+ @ -u) (g +s)t2)" "

det al, 0
- ge
t'R  bl, —a1’'RR

=(1-@-u)Q-s)t?)FVA+@L-u)(gy + 5)t?)" " det(abl, - t?'RR),
where a =1+ (1-s)(g + u)t? and b =1+ (1—u)(qy, + s)t2.
Since A is symmetric, 'RR is symmetric and positive semi-definite, i.e.,
the eigenvalues of 'RR are of form:
32, s W2 (Mg, o Ay 2 0).
Therefore, it follows that

¢(G, u, s, t)_1

n

=(1-(1-u)@A-9)F A+ @L-u)(gp +$)t))" "] [ (@b - 25t?).

j=1
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But, we have
det(Ll — A) = A" " det(2?l - 'RR)
and so
Spec(A) = {+Aq, ..., A, O, ..., O}.

Thus, there exists an orthogonal matrix S such that

tsa%s = ,sz[

0 0

where S; isan n x n matrix. Furthermore, we have
2 _
A = A2 + DG!
where Ay = ((A2)y )y vev(G) 18 given as follows:

(Az),, = the number of reduced (u, v)-paths with length 2.
By the definition of the graphs Gli] (i=12),

A2 _ Al L (g + D)1, 0
0 Al (g, + 1, |

where Alll = A(G[i])(i =1, 2). Thus,

toaZs - {sglA[”sl (@ + Dl 0}_
0 *

121
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Therefore, it follows that
M- (@ +1) 0
sytalls, = - .
0 25—y +1)
Hence
n
det(abl, — (AM + (g +1)1,)t%) = [ ] (ab - 23t2).
j=1
Thus, the second equation follows.

Similarly to the proof of the second equation, the third equation is
obtained. O

A hypergraph His a (d, r)-regular if every hypervertex is incident to d
hyperedges, and every hyperedge contains r hypervertices. If H is a (d, r)-
regular hypergraph, then the associated bipartite graph By is (d, r)-
semiregular. Let V; =V(H), V, =E(H) and d >r. Set n=|V;| and
m = |V, |. Then we have Al - A(H) and aldl - A(H™). By Theorems 7
and 10, we obtain the following result. Let Spec(B) be the set of all

eigenvalues of the square matrix B.

Theorem 11. Let H be a finite, connected (d, r)-regular hypergraph
withd >r. Set n=|V(H)|and m =| E(H)|. Then

¢(H, u, s, t)‘l
=(1-Q-wW@A-9 YA+ L-u)(r -1+
XH?zl(l—(%Zj —(@-s)(d-1+u)—(L-u)(r-1+s))t

+@-u)1-s)(d —1+u)(r =1+ s)t?)
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=(1-(1-u)@-9)t)FVA+@A-u)(r-1+s)t)""
x det(l, —(A(H)—(r—=2—-(d —2)s —(r —2)u — 2us)I,)t
+@-u)A-s)(d -1+ u)(r -1+ s)t?l,)
=(1-(1-u)@-9)t)FVA+@A-s)(d-1+u)t)"™"
x det(l, — (AH") = (d =2 —(d = 2)s — (r = 2)u — 2us) I )t
+@-uw)@-s)(d —1+u)(r -1+ s)t?l,),
where e=nd =mr, v=n+m and Spec(A(By)) = {£Aq, ..., Ay, 0, ..., O}.
In the case of s = u = 0, we obtain Theorem 16 in [11].

Corollary 6 (Storm). Let H be a finite, connected (d, r)-regular
hypergraph with d >r. Set n=|V(H)|, m=|E(H)| and q=(d —-1)(r -1).
Then

Ca@®) = @-t)F V(@ + (r =)™ " det(l, — (A(H) -1 + 2)t + qt?)
=@1=t)*V(A+(d -)t)""Mdet(l, — (A(H*) - d + 2)t + gt?),
where ¢ = nd = mr and v = n+m.
6. Example

Let G =(Vq, Vy) be the bipartite graph with V; = {v{, v, v3}, V, =

{V4, V5, Vg } and
E(G) = {V1Va, VaV5, V1Vg, VoV, VoVg, VaVs, V3V .

Thenwehave n=m=3, ¢=7, v=06 and
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o0 0 1 1 1
00 0 1 0 1 5
A(G):o 0 0 0 1 1,DV:O > ol
1 1.0 0 0 0 1
0 0 2
1 01 0 0 0
1 1 1 0 0 0
2 0 0
Dy,=(0 2 Of
0 3

By Theorem 6, we have
4G, u s, )7
=(1-(@-s)@-u)t?)* x det(l, — tA(G)
+2((L=5)(Dy, —(1-u)ly) ® (L —u)(Dy, — (L= 5)Iy))

= (1-(@1-s)1-u)t?)

1+ at? 0 0 -t t t
0 1+ bt? 0 —t 0 -t
cdetl | O 0 1+ bt? 0 , —t —t
-t —t 0 1+ct 0 0
-t 0 =, 0 1+ct? 0
|t —t —t 0 0 1+ dt?]

where a=(1-5)(2+u), b=(Q1-s)Q+u), c=@1-u)@+s) and d =
(1-s)(2 + u). Thus, we obtain

4G, u, s )T =1-1-s)1-u)t?)L+@-2us)t? + 1-u?)(1-s?)th
xfl—(s+U+4us)t® + (=4 —u—3u?+(-1+u+3u?)s

+(=3+3u+6u?)sHt* —(L-u)L-s)(L+2u + u?
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+(2+12u + 7u2)s + @1+ 7u+ 4u2)32)t6
+(1-sPAL-uP@+u)2+u)l+s)(2+s)t8).

Now, let H be the hypergraph with V(H) = {v, v, v3} and E(H) =
{e1, €5, ez}, where e = {vj, vo}, € ={vj, va} and e3 = {vy, Vo, V3}. Then
the above bipartite graph G is the bipartite graph By associated with H,
where V; =V(H) and V, = E(H). By Theorem 7, we have

GH, U, s, )7 = 4G, u s, Vi)™
= (- (L-9)@- )@+ -2us)t+(L-u?)a-s)t%)
xfl—(s+U+4us)t+ (-4 —u—3u+(-1+u+3u?)s
+(=3+3u+6u%)s?)t> —(L—u)(L-s)(L+ 2u + u?
+(2+12u + 7u®)s + (1+ 7u + 4u?)s)t3
+(@-s)?L—u)’@+u)(2+u)L+s)(2+s)th.
If u =0, then
CH, 0,8 )T =1-L-)) X+t +(1-s*)t?)
x(L—st+(-4—s-3s?)t2 —(1—s)(1+5)’t3
+2(1-5)%(L+5)(2 + s)t?).
In the case of s = 0, we have
CH,u, 0, ) =@ -@-ut) @+t +@-u?)t?)
xL-ut+(-4-u-3ud)t> —@L-u)@+u)’t

+2(L—u)’(L+u)(2 + u)th).
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Furthermore, let s = u. Then
CH, u U ) =g(H u )t = - @-u)?t) @+ 1 -2u2)t + (1-u?)’t?)
x (L= 2u(l+ 2u)t + (-4 — 2u — 5u% — 6u® + 6u*)t?
—(1-u)’(1+ 4u +14u? + 1403 + a3
+@-uw P+ u)?2 +u)’t?).
If s =u =0, then we have
CH,0,0, ) =¢(H, ) =@-t)Q+t +t2) (1 - 4t? — 13 + at*),

Next, let fy = (vi, e1), fo = (v, &), f3 = (vi, €3), T4 = (vp, &), f5 =
(vo, €3), fg =(v3, &) and f; = (v3, e3). Then we have

D(By) = {fy, ..., f7, f{ L, .., f71).

Three matrices X, F and G are given as follows:

0 0 0 0 1 0 O]
00 0 0 0 0 1
00 0 1 0 1 0
X=/0 1 1 0 0 0 o
1 1.0 0 0 1 0
1 0 1 0 0 0 O
1 1 0 1 0 0 O
0 0 0 1 0 0 O]
00 0 0 0 1 0
00 0 0 1 0 1
F={1 0 0 0 0 0 O
00 1 0 0 0 1
01 0 0 0 0 O
0 01 0 1 0 O
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0 0 0 O

O O O O - -
O O O O+ O Bk
O O O O O +— B
o O O O O
O O O B O O
R O O O O O
O B O O O O

Then it is certain that FG = X.

Furthermore,

[lus s s u 1 0 0]
S us s 0 0 u 1
S s u 1 u 1 u

X+UF +sG+usly =] u 1 1 wus s 0 0]

1 1 u s u 1 u
1 u 1 0 0 wus s

|1 1 u 1 u S us]

and so, we have
det(l7 —t(X + uF + sG + usl;)) = ¢(H, u, s, )L
Finally, we consider arcs of B(Hl). Let
Ry = (v, e, Vo), Ry =(vi, €2, v3), Rz = (v, €3, V),
Ry = (v, €3, v3), Rs =Ri", Rg =Ry’ Ry = (vp, €3 V3),
Rs = Ry', Ry =Ry, Ryg = R7™,

and P =(f;, f1)(1<i<7). Arrange elements of R’ = D(B,(})) are as
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follows: R, ..., Py, Ry, ..., Rig. We consider the matrix T" under this order,
and then, we have

[us S S 0 0 0 0 us S

S us S 0 0 0 0 S us

Tl/

Il
o
o
o
o
o
o
=
o
o
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S
S

us

By Theorem 9, we have

S

S

us

0

0

0

us

0

0

0

0

det(l;7 —tT") = ¢(H, u, s, t)™%

0

0

0

0
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