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Abstract 

Background. Within the field of infertility, hierarchically structured 
data are not hard to find. For example, in the assisted reproductive 
technology whereby a crossover design is conducted, observations will 
be clustered within couples. The random-effects logistic regression 
model is a very popular choice for the analysis of multilevel data. The 
purpose of this article is to compare different statistical software 
implementations of random-effects logistic regression models using 
the multilevel dataset from the crossover trial in infertility. 

Methods. Sixty-two couples with primary or secondary infertility due 
to male factor entered the study. The sixty-two couples were randomly 
equally divided into two groups. Each group began one of the two 
treatment modalities (controlled ovarian hyperstimulation in 
conjunction with timed intercourse or intrauterine insemination) for 
three consecutive cycles and then switched to the alternative treatment 
after one rest cycle, if pregnancy was not achieved. Random effects 
logistic models were fit to a dataset of couples undergoing assisted 
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reproductive technology. The estimates obtained were compared 
among the four statistical packages. 

Results. The parameter estimates (protocol) obtained from all the four 
statistical packages were not very much dissimilar. The software 
differs considerably in computing time. SAS© and R© took few 
seconds to compute the estimates. 

Conclusions. In comparing the four statistical packages, it was found 
that the estimates were not very much dissimilar. Thus, there seems to 
be no explicit preference for either a frequentist or Bayesian approach. 
The choice for a particular implementation may largely depend on the 
computing time. 

Background 

What is multilevel modeling? Multilevel modeling is designed to explore 
and analyze data that come from populations which have a complex 
structure. Within the field of social, medical and biological sciences, 
multilevel or hierarchical structures are pervasive. Children may be nested 
within classes and classes nested within schools, patients may be nested 
within hospital centers and centers nested within towns. Multilevel data 
structures also arise in longitudinal studies where measurements are clustered 
within an individual [1] as it is the case in the crossover trials. Crossover 
designs are trials in which patients are allocated to sequences of treatment 
with the purpose of studying differences between individual treatments [2-6]. 
The commonest of crossover designs is the BAAB :  crossover design in 
which approximately half of the patients are first given treatment A and on a 
subsequent occasion treatment B whereas the rest of the patients are first 
given treatment B and on a subsequent occasion treatment A. 

In longitudinal studies, repeated measurements of a response variable 
and a set of covariates are made on subjects across occasions. Because the 
within-subject measurements are likely to be positively correlated, the 
correlation must be accounted for by analysis appropriate to the longitudinal 
data. The standard logistic regression model described in Neter et al. [7] fails 
in its assumptions to accurately characterize the dependence in the data. 
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Basically, the standard logistic regression model assumes that the 
observations are independent, which they clearly are not when they are 
clustered within individuals. One solution to this problem is to generalize the 
model to the case of a combination of fixed (e.g., treatment) and random 
effects. The random effects allow the correlation between the repeated 
measurements to be incorporated into the estimates of parameters. 

Regression estimates obtained from this technique are subject-specific, 
that is, they describe the individual’s response (conditional estimates, 
conditional on the random effect). Conditional estimates represent the effect 
of a regressor on the outcome controlling for or holding constant the value of 
the random subject effect. On the other hand, the estimates from the standard 
logistic regression are “marginal” or “population-averaged” estimates. 
Marginal estimates represent the effect of a regressor averaging over the 
population of subjects. 

In this article, a hierarchical dataset from the crossover trial in infertility 
with a binary outcome (pregnant or not pregnant) is used. Statistical methods 
that explicitly take into account hierarchically structured data have gained 
popularity in recent years, and there now exist several special purpose 
statistical packages designed specifically for estimating multilevel models. 
The purpose of this article is to compare different statistical software 
implementations, with regard to estimation results and computing time. The 
implementations include both frequentist and Bayesian approaches. 
Statistical software for hierarchical models has been compared already by 
Zhou et al. [8] and Guo and Zhou [9] about 15 years ago, and recently by Li 
et al. [1]. This article is different from previous reviews in that it is using the 
data set from designs that have a built-in tendency to produce missing data. It 
is the purpose of this article to show that even in data set from crossover trial 
in infertility the estimates obtained using different statistical softwares are 
not very much dissimilar. 

Methods and Materials 

The dataset used here is from Gregoriou et al. [10] based on a crossover 
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study to compare the pregnancy rates achieved by intrauterine insemination 
(IUI) and timed intercourse (TI) in gonadotrophin (hCG) stimulated cycles. 
In this dataset, sixty-two couples were randomly equally divided into two 
groups: group A or group B. Couples randomized to group A will begin with 
protocol 1 before switching to protocol 2. Couples randomized to group B 
receive protocols in the reverse order. For all couples, controlled ovarian 
hyper-stimulation (COH) was performed with the help of gonadotrophin 
(hCG), and either timed intercourse (TI) or intrauterine insemination (IUI) 
was employed. In protocol 1, timed intercourse (TI) was employed, while in 
protocol 2, intrauterine insemination (IUI) was employed. Couples stayed in 
the same protocol for at most 3 cycles before they can switch to the 
alternative protocol, with each couple receiving in total at most 6 cycles of 
protocols. For more details on this study, we refer to Gregoriou et al. [10]. 
The permission to use the patient data used in this study was obtained from 
the principle investigators of the original studies. 

Logistic regression 

To formulate the logistic model, let ip  represent the probability of a 

positive outcome ( )1.,i.e =iY  for the ith individual. The probability of a 

negative outcome ( )0.,i.e =iY  is then .1 ip−  Denote the set of covariates 

as ( ),...,,,1 1 ipii xx=x  where ( )′βββ=β p...,,, 10  is a ( ) 11 ×+p  vector 

of corresponding regression coefficients. Then the logistic regression model 
is written as 

 ( )
( ) ( ) ( ),exp1

1
exp1

exp
β′−Ψ=

β′−+
=

β′+
β′

= i
ii

i xxx
x

ip  (1) 

where ( )⋅Ψ  is the logistic cumulative distribution function, namely, 

 ( ) ( ) .exp1
1

zz
−+

=Ψ  (2) 

This model can also be represented in terms of the log odds or logit of 
the probabilities, namely, 
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 .1log β′=
− ix

i
i
p

p  (3) 

For estimation, with iY  as a binary outcome variable from Bernoulli 

distribution, we have 

 ( ) [ ] ,1 1 ii YY
iYPr −Ψ−Ψ=  (4) 

where ( )β′−Ψ=Ψ ix  as in equation (2). Following Hogg and Craig [11], the 

likelihood for a sample of m independent observations can be written as the 
product of equation (4) over the m individuals, i.e., 

 [ ]∏
=

−Ψ−Ψ=
m

i

YY iiL
1

1 .1  (5) 

Thus, the log-likelihood function becomes 

 ( ) ( )[ ]∑
=

Ψ−−+Ψ=
m

i
iiii YYL

1
.1log1loglog  (6) 

The log-likelihood above can now be maximized to obtain the maximum 
likelihood estimates (MLEs). 

Random effects model 

Let i denote the individuals and j denote the treatment. Let ijY  be the 

value of the dichotomous outcome variable, coded 0 or 1, associated with 
treatment j nested within individual i. The logistic regression model is 
written in terms of the log odds (i.e., the logit) of the probability of a 
response, denoted .ijp  Considering a random-intercept model, augmenting 

the standard logistic regression model 3 with a single random effect yields: 

 ,1log i
ij

ij vp
p

+β′=
− ijx  (7) 

where ijx  is the ( ) 11 ×+p  covariate vector (includes a 1 for the intercept), 
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β is the ( ) 11 ×+p  vector of unknown regression parameters, and iv  is the 

random subject effect. These are assumed to be distributed in the population 

as ( ).,0 2σN  

For estimation, we assume that there are mi ...,,1=  subjects as before, 

each with inj ...,,2,1=  repeated observations. In the case of p predictor 

variables, the data are given by 

( ) ( ) ( ),,...,,,,, ,2211 mjmjj YxYxYx  

where ( )
iiniiij YYY ...,,, 21=Y  represents the value of the dichotomous 

response variables, and ( )ipii xxx ...,,1=  is the value of the predictor 

variables for the ith subject. The single response ijY  is the jth response of the 

ith subject. Furthermore, 1=ijY  for success and 0=ijY  for failure. We 

consider estimation of a random-intercepts model, that is, 

 .1log i
ij

ij vp
p

+β′=
− ijx  (8) 

The next step is to assume that the within-subject measurements are 
conditionally independent given the random subject effect (i.e., the random 
effects account completely for the correlation of the data within subjects). 
This assumption is critical and is known in Agresti [12], as the conditional 
independence assumption. Because the within-subject measurements are 
assumed to be conditionally independent, the conditional likelihood of in  

measurements within the ith subject is given by: 

 ( ) [ ( )] [ ( )]∏
=

−Ψ−Ψ=|
i

ijij
n

j

Y
ij

Y
ij zzv

1

1 .1iY  (9) 

To get the likelihood of the in  response patterns for all the m subjects, 

we need to have an expression for the likelihood of iY  that does not depend 

on the random effects. We can arrive at such an expression by integrating 
over the distribution of the random effects. This yields the marginal 
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probability for iY  in the population of subjects as: 

 ( ) ( ) ( ) ,∫ |=
v

dvvgvh ii YY  (10) 

where ( )vg  represents the population distribution of the random effects v, 

namely, ( ).,0 2σN  

We can now form the marginal likelihood of the response patterns iY  

from all subjects, and thus the total sample, by multiplying each of the 
subject’s marginal likelihoods together. 

Namely, 

 ( )∏
=

=
m

i
hL

1
iY  (11) 

or 

 ( )∑
=

=
m

i
hL

1
.loglog iY  (12) 

It is easier to manipulate the log-likelihood in equation (12). If we choose the 
values of the parameters that maximize the log-likelihood in equation (12), 
then those same values will also maximize the likelihood in equation (11). 

Integration over the random effect distribution 

In order to solve the above likelihood solutions, integration over the 
random effects distribution must be performed. Various approximations for 
evaluating the integral over the random effects distribution have been 
proposed in the literature. Perhaps the most frequently used methods are 
based on the first or second order Taylor expansions [13]. Numerical 
integration can also be used to perform the integration over the random-
effects distribution. Specifically, if the assumed distribution is normal, then 
Gauss Hermite quadrature can approximate the above integral to any 
practical degree of accuracy [14]. The integration is approximated by a 



Boikanyo Makubate 74 

summation on a specified number of quadrature points Q for each dimension 
of the integration. 

Consider the Gaussian integration formula for the Hermite polynomial in 
[14]. The Hermite polynomials are defined over [ ]∞∞− ,  and the weighting 

function of Hermite polynomials is 

 ( ) .
2xexw −=  (13) 

Therefore, Gauss Hermite quadrature naturally gives the integration for 

 ( )∫
∞

∞−
− .

2
dxexf x  (14) 

Thus, Gauss Hermite quadrature can be naturally associated with normal 
distribution as follows: suppose we were to evaluate 

 ( )
( )

∫
∞

∞−
σ
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,2

2
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 (15) 

where ( )yf  is a function of y. Substituting 

 
σ
−=
2

uyx  (16) 

in equation (16) yields 
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where following [14], { }N
iix 1=  are the roots of order N Hermite polynomial 

( )xPN  and { }N
iiw 1=  are: 
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Therefore, if y is normally distributed with mean μ and variance ,2σ  the 

expected value of ( ) ( )[ ]( )yfEyf ,  is given by: 

( )
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where { }N
iix 1=  and { }N

iiw 1=  are the same as above. 

With the numerical Gaussian quadrature integration, the approximation 
to the marginal likelihood gets better as the number of quadrature points 
increases. However, as the dimension of the random effects increases, the 
number of quadrature points increases exponentially; the total number of 

quadrature points required for all the random effects ,rQ  where r is the 

number of random effects. The numerical quadrature becomes 
computationally burdensome when there are more than 5 random effects 
[15]. 

Statistical software 

The NLMIXED in SAS© procedure fits nonlinear mixed models, that is, 
models in which both fixed and random effects are permitted to have a 
nonlinear relationship to the response variable. These models can take 
various forms, but the most common ones involve a conditional distribution 
for the response variable given the random effects. PROC NLMIXED 
enables us to specify such a distribution by using either a keyword for a 
standard form (normal, binomial, Poisson) or SAS© programming statements 
to specify a general distribution. 

PROC NLMIXED fits the specified nonlinear mixed model by 
maximizing an approximation to the likelihood integrated over the random 
effects. Different approximations to the integral (10) are available, and the 
two principal ones are the one we used, Gaussian quadrature and a first order 
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Taylor series approximation. There are a variety of alternative optimization 
techniques; the default is the Newton Raphson described in the previous 
sections. Standard errors are obtained by the Delta method. For the theory 
and computational techniques of PROC NLMIXED, Pinheiro and Bates 
[16] are strongly recommended. Other softwares which are capable of 
handling the random effects include GenStat©, Stata©, MathCad©, R©,                 
S-Plus© and WinBugs©. In this article, attention is focused on the use of 
SAS©, R©, GenStat© and WinBugs© to perform random effects model. 

Analysis 

The data can be analyzed as the BAAB :  crossover design, where the 
first 3 cycles constitute the first period and the second 3 cycles constitute the 
second period. That is to say that if one couple conceives under cycle 1 and 
the other couple conceives under cycle 2 or 3, then those two couples are 
regarded as having conceived under the first period. Similarly, if one couple 
conceives under cycle 4 and the other couple conceives under cycle 5 or 6, 
then those two couples are regarded as having conceived under the second 
period. It is possible to have treated each cycle as a period. Here, we cannot 
do that as we are restricted by the way the data is presented. The way the data 
is presented does not allow us to treat each cycle as a period. The data is 
analyzed using the random effects model described above. We consider four 
types of models: (1) empty or null model, (2) the model involving protocol 
only, (3) the model involving period effects only and (4) the model involving 
both protocol and period effects. 

Results 

Descriptive statistics 

Of the 62 couples enrolled, 20 couples conceived, of which 12 conceived 
during the first 3 cycles and 8 conceived in the second 3 cycles. Couples left 
the study if and only if they conceived. Table 1 is taken from Gregoriou et al. 
[10] shows the achieved pregnancy rates in each group of attempts by the 
two protocols. Table 2 gives the summary results of fitting various models 
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for the dataset in Gregoriou et al. [10] using different fitting methods. The 
models are, in order of fitting: a null model, a model involving protocol 
(treatment) only, a model involving period only and a model fitting protocol 
and period. Four statistical packages: SAS©, R©, WinBugs© and GenStat© are 
illustrated. SAS© and R© give similar results in all the four models since the 
general fitting criterion (maximum likelihood) is the same and only details of 
numerical implementation are different. In fact, the deviances are in good 
agreement between SAS©, R© and GenStat©. All the four methods indicate 
that IUI is more effective than TI, and that couples undergoing IUI have 
nearly four times higher odds of conception than couples undergoing TI. 
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Table 1. Pregnancy rates achieved in each group of attempts by the two 
protocols 

 

 

 

 

Table 2. Comparative analysis of the Gregoriou data 
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Discussion 

Although the parameter estimates were not very much dissimilar between 
the four software implementations, a considerable variation in computing 
time was observed. SAS© NLMIXED and R© lme4 were the fastest taking 
only seconds to produce the results. GenStat© HGANALYSE was slower 
than both SAS© and R©, however, it was very much faster than WinBUGS©. 
WinBUGS© was invariably slower than the frequentist approaches, which is 
due to the computational intensive MCMC approach and that convergence is 
much harder to judge than in a classical frequentist sense. 

Conclusions 

In this article, we used a likelihood-based approach to the statistical 
analysis of pregnancy data from a crossover design. This approach was based 
on the logistic random effects model incorporating both protocol and period 
effects. In both scenarios (the model with protocol only and the model with 
protocol and period effects), the protocol estimates obtained under the four 
statistical packages were not very much dissimilar. The parameter estimates 
from logistic random effects regression models should not be influenced by 
the choice of the statistical package. The choice of the statistical 
implementation in a clinical trial should depend on other factors such as 
speed and desired flexibility. This study shows that if there is no prior 
acquaintance with a certain package frequentist approach has to be given first 
preference. SAS© NLMIXED and R© lme4 are highly recommended because 
of their efficiency. This study also supports the findings by Li et al. [1]. 
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