
 

JP Journal of Algebra, Number Theory and Applications 
Volume 29, Number 2, 2013, Pages 119-132 
Published Online: July 2013 
Available online at http://pphmj.com/journals/jpanta.htm 
Published by Pushpa Publishing House, Allahabad, INDIA 

 

 HousePublishingPushpa2013©  
2010 Mathematics Subject Classification: Primary 11D25; Secondary 11D72, 11G05.

 Keywords and phrases: Diophantine system, Diophantine chains, n-tuples, primitive set, 
elliptic curves. 
This research was an award-winning paper of S.-T. Yau High School Mathematics Awards. 
Communicated by K. K. Azad 
Received November 3, 2012 

A DIOPHANTINE PROBLEM FROM 
MATHEMATICAL PHYSICS 

Zhi Ren and Dongchen Yang 

Mission San Jose High School 
41717 Palm Avenue 
Fremont, CA, 94539, U. S. A. 
e-mail: renzhistc69@163.com 

Hangzhou No. 2 High School of Zhejiang Province 
Hangzhou, 310052, P. R. China 
e-mail: yj8399@sina.com 

Abstract 

In this paper, we study a Diophantine problem from mathematical 
physics and prove that for every positive integer k, there exist 
infinitely many sets of k n-tuples of positive integers with the same 
sum and the same sum of their cubes. Each set of k n-tuples is 
“primitive” in the sense that the greatest common divisor of all kn 
elements is 1. We reduce the corresponding Diophantine system to a 
family of elliptic curves and apply Nagell’s algorithm, Nagell-Lutz 
theorem and the theorem of Poincaré and Hurwitz to deal with it. In 
the end, we raise two open questions about this Diophantine problem. 
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1. Introduction 

In mathematical physics, a Racah operator is a linear operator acting on a 
particular abstract Hilbert space and gives rise to the Racah coefficients. A 
full discussion could be found in [1], we could also see the motivation and 
the importance of the study of the Racah coefficients in Quantum Theory. 
Considerable interest has been shown in the nontrivial zeros of the Racah 
coefficients, because these determine vector spaces belonging to the null 
space of a Racah operator and accordingly give structural information 
concerning the operator itself. 

In 1985, Brudno and Louck [4] found the relation between the all 
nontrivial zeros of weight 1 6j Racah coefficients and the all non-negative 
integer solutions of the Diophantine system 
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They mentioned that the special parametric solution given by Gerardin ([8, p. 
713]) was very useful for their problem. 

In 1986, Bremner [2] got more solutions including Gerardin’s. In the 
same year, complete solutions were given in terms of cubic polynomials in 
four variables by Bremner and Brudno [3], as well as by Labarthe [9], and 
the parameter solutions got by them are different in the form. 

In 1991, a complete solution in terms of eight variables was given by 
Choudhry [5]. In 2010, Choudhry [6] gave a complete four-parameter 
solution in terms of quadratic polynomials. Of course, these two parameter 
solutions are different from the previous ones. 

In this paper, we consider the positive integer solutions of the 
Diophantine chains 
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where A, B are positive integers, which are determined by k n-tuples 
( ),...,,, 21 inii xxx  ....,,1 ki =  For ,2=n  ,2=k  it has been shown in [11] 

that (1.2) have no nontrivial integer solutions, so we consider .3≥n  For 
,3=n  ,2=k  (1.2) reduce to (1.1). For ,3=n  ,3≥k  Choudhry [6] proved 

that (1.2) have a parameter solution in rational numbers, but the solutions are 
not all positive, i.e., there are arbitrarily long Diophantine chains of the form 
(1.2) with .3=n  

The Diophantine chains (1.2) can be transformed into the following 
Diophantine system: 
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In 2013, Zhang and Cai [13] studied a Diophantine system which is 
similar to (1.3), the method of this paper is inspired by their paper, but we 
use the Nagell’s algorithm to get a family of elliptic curves. 

We mainly investigate the positive integer solutions of (1.2) or (1.3) for 
,1,3 ≥≥ kn  and prove the following theorem by using the theory of elliptic 

curves, including Nagell’s algorithm, Nagell-Lutz theorem and the theorem 
of Poincaré and Hurwitz. The method used here is different from the methods 
used by Choudhry [5, 6] and the result is stronger than Choudhry’s. 
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Theorem 1. For ,3≥n  ,1≥k  the Diophantine chains (1.2) have 
infinitely many coprime positive integer solutions. Equivalently, for every 
positive integer k, there exist infinitely many primitive sets of k n-tuples of 
positive integers with the same sum and the same sum of their cubes. 

A set S of n-tuples of positive integers is called primitive if the greatest 
common divisor of all elements of all n-tuples of S is 1. 

In geometry, we can consider (1.3) as the intersection of a hyperplane 
and a hypersurface. To find the integer points on their intersection, we fix 

3−n  variables in the n-tuples, then the problem is transformed into finding 
integer points on a family of cubic curves, which is essentially a family of 
elliptic curves. Hence, we can use the theory of elliptic curves to deal with 
the new problem. The exact process will be showed in Sections 2 and 3. 

2. Preliminaries 

In this section, we give two propositions, where Proposition 3 is the key 
step to prove our theorem. And the proofs of these two propositions are the 
applications of the theory of elliptic curves and need many calculations. 

In fact, in order to prove the theorem, we only need the case for 3=n  of 
Proposition 2. However, Proposition 2 and its proof are of interest for their 
own sake, so it is worth including them even though they provide more 
information than it is needed. 

Proposition 2. When ,3≥n  the Diophantine system 
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has infinitely many rational solutions. 

Proof. It is easy to see that nxxx n === ...,,2,1 21  is a solution of 
(2.1). Taking ,3...,,2,1 321 −=== − nxxx n  we have 
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Eliminating ,2−nx  we get 
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Putting 

,1,
11 −−

==
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n
xvx

xu  

we have 

( ) ( ) ( ) ( ) ( ) 22223 312719321216 uuvnvunvnnn +−+−+−−−−  

( ) ( ) ( ) .0193127118 22 =−++−+−+ vnuvnuvn  

Next, we use the Nagell’s algorithm ([7, p. 115]) to transform the above 
equation into the Weierstrass form. Let both sides of the above equation be 

divided by ,3v  and let ,v
ut =  we get 

( ( ) ( ) ( ) ( ) ( )) 222 32121612719 vnnntntn −−−−−+−  

( ( ) ( ) ) ( ) .01931271183 22 =−++−+−++ ntvntnt  

Because of the coefficient ( ) ( ) ( )( )( )32121612719 22 −−−−−+− nnntntn  

is not zero for 3≥n  and any ,Q∈t  we can consider it as a quadratic 
equation of v, if it has rational solutions, then the discriminant should be a 
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perfect square, i.e., 

( ) ( ) ( ( ) ( ) ( ) ( ))310511933339 2223 −−−+−−−++−=Δ nnntntntntt  

is a square of some rational number. 

Let 

( )tΔτ=ρ 4  

( ) ( ( ) ( ) ( ) ( )) ,310511933339 42223 τ−−−+−−−++−= nnntntntnt  

putting ,133
τ

+−= nt  we have 
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where ( ) ( ) ( ),3212172 −−−= nnnc  we get a family of elliptic curves 

( ) ( ) ( ) ( )XnnnXnXYEn 3212177731324: 22232 −−−+−+=  

( ) ( ) ( ) ,32121216 2222 −−−+ nnn  

where 3≥n  is a positive integer. 

The birational transformation of this process is 
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the inverse transformation is 
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The discriminant of nE  is 

( ) ( ) ( ) ( ) ,3212125877312307 334 −−−=Δ nnnn  

where ,3≥n  it is easy to see that ( ) ,0≠Δ n  i.e., nE  is nonsingular. 

Noting that nxxx n === ...,,2,1 21  is a solution of (2.1), let =−1nx  

nxn n =− ,1  in (2.3), we get 

( ) ( ) ( ) ( ).121216,12172 −−=−−−= nnYnnX  

It means that the point ( ) ( ) ( ) ( )( )121216,12172 −−−−−= nnnnP  lies on 

.nE  Using the group law on the elliptic curve, we obtain the points 
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To prove that there are infinitely many rational points on ,nE  it is enough 

to find a rational point on nE  with x-coordinate not in .Z  We consider the         

x-coordinate of the point [ ] ,4 P  when the numerator of the x-coordinate of it 

is divided by the denominator, the remainder equals 

,3
2080704 +−= nr  

for ,3≥n  r is not an integer, and the denominator ( )21718 −n  is an integer, 

then 4X  is not an integer, by the Nagell-Lutz theorem ([10, p. 56]), [ ]P4  is 
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a point of infinite order, hence nE  has infinitely many rational points for 

.3≥n  By the birational transformation (2.2), we have 

( ) ( ) ( ) ,6
32121216

2 X
nnnYxn
−−−−=−  

then the Diophantine system (2.1) has infinitely many rational solutions. ~ 

Next, we state Proposition 3, and the proof is relatively simpler than 
Proposition 2, which is due to the theorem of Poincaré and Hurwitz, this is 
the key point in our paper. 

Proposition 3. For ,3≥n  the Diophantine system (2.1) has infinitely 
many positive rational solutions. 

Proof. Because of ,3...,,2,1 321 −=== − nxxx n  to prove that there 

are infinitely many ,0>jx  ,...,,1 nj =  we only need to prove ,0>jx  

.,1,2 nnnj −−=  From (2.2) and ,2−nx  we have the following equivalent 

condition: 
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 ( ) ( ) ( ) ( ) ( ).32121216,321224 −−−<−−−<⇔ nnnYnnX  (2.4) 

In virtue of the theorem of Poincaré and Hurwitz ([12, p. 78]), nE  has 

infinitely many rational points in every neighborhood of any one of them. 
Hence, if we find a rational point satisfies (2.4), then we can prove that there 
are infinitely many rational points satisfy (2.4). It is easy to check that for 

,3≥n  the points P and [ ]P3  satisfy (2.4). Therefore, there are infinitely 

many rational points on nE  satisfying (2.4), then we prove that (2.1) has 

infinitely many positive rational solutions. ~ 
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Example for ,3=n  from the points 

( ) ( ) ( ) ,83453453
202437276813,190969

97511580,364,572,1296,432, ⎟
⎠
⎞

⎜
⎝
⎛ −−

−−=YX  

we get 

( ) ( ) .156883
182271,219811

674461,180577
319586,39

113,333
29,143

318,3,2,1,, 321 ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=xxx  

 
Figure 1. 360,3 −=xE  and .6480±=y  

In Figure 1, we display the elliptic curve 3E  and the three lines of (2.4), 

from it, we find that the rational points, lie on the closed curve C, satisfy 
(2.4). 

3. The Proof of Theorem 1 

Proof. Take any k positive rational solutions in (2.1), denote 
( ),...,,1 ini xx  ,...,,1 ki =  where .3...,,2,1 3,21 −=== − nxxx niii  Let d 

be the least common denominator of all the numbers ( ),,...,,1 kinjxij ≤=  
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we have 

( ( ) ) ,1,gcd,, , =∈= + daad
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x ijjiij
ij

ij Z  

where ( ) .3...,,2, 3,21 dnadada niii −=== −  
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hence 

( ) .1gcd , =ijji a  

For two sets of solutions {( ) }kixx ini ≤,...,,1  and {( ) },,...,,1 kixx ini ≤′′           

if the sets of n-tuples of positive integers {( ) }kiaa ini ≤,...,,1  and 

{( ) }kiaa ini ≤′′ ,...,,1  coincide, then .dd ′=  Hence, the sets of solutions 

themselves coincide. 

By Proposition 3, there are infinitely many choices of k n-tuples from an 
infinite set, and ( ) ,1gcd , =ijji a  hence for every positive integer k, there 

exist infinitely many primitive sets of k n-tuples of positive integers with the 
same sum and the same sum of their cubes. ~ 

Example for ,3=n  from the positive rational triples 

( ) ( ) ,156883
182271,219811

674461,180577
319586,39

113,333
29,143

318,3,2,1,, 321 ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=xxx  

we have ,13385331192=d  then the three triples of positive integers 

( ),6310155993572,67706623841,3385331192  

( ),798087801203,29749880176,7528219014  

( )7110387441307,39331712278,5991374617  

have the same sum 203119871526 and the same sum of their cubes 
1396709184949924985734645154986596. 
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4. Two Open Questions 

When we communicated with Professor Michael Zieve, he posed some 
questions, where the following two are interesting. 

Question 4. Whether there are infinitely many n-tuples of positive 
integers have no common element with the same sum and the same sum of 
their cubes for ?4≥n  

In this paper, we do it for 3=n  by using (2.2), 2−nx  and some 

calculations. But for ,4=n  we get the rational quadruples which all have 

the form ( ),,,,1 zyx  there is a common element 1 for all rational quadruples. 

It is natural to use a more restrictive definition of “primitive”, i.e., all the              
n-tuples have no common element and the greatest common divisor of all 
elements is 1. Then Question 4 is whether there are infinitely many 
“primitive” n-tuples of positive integers with the same sum and the same sum 
of their cubes for .4≥n  

We conjecture that the answer to Question 4 is yes, but we cannot prove 
it for .4≥n  There are some examples for ,4=n  such as ( )24,13,2,1  and 

( )25,6,5,4  have the same sum 40 and the same sum of their cubes 16030, 

( )20,17,2,1  and ( )23,8,6,3  have the same sum 40 and the same sum of 

their cubes 12922, ( )24,19,2,1  and ( )27,9,6,4  have the same sum 46 

and the same sum of their cubes 20692. 

Question 5. For which triples ( )kji ,,  of positive integers such that the 
Diophantine system 
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has infinitely many rational solutions? 

To this problem, we get an incomplete result but very interesting. 
Eliminating z of (4.1), we get 

( ) ( ) ( ) ( ) ykjiykjixykjixykji 2222 ++−+++−++−−++  

( ) ( ) ( ) .0=++++ jkkjji  
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Noting that ( ) ( )kjizyx ,,,, =  is a solution of (4.1), let ( ) jixty +−=  in 

the above equation, we have 

( ) (( ) (( ) ( ) ) xkitkitkjixttix ++++++−+− 22 222  

( ) ( ) ( ) ) .02 22222 =+++−−++++ kkitkjikitijiki  

Solving it, we get 
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If x is a rational number, then we need Δ  to be a perfect square. Following 
the usual procedure described by Dickson ([8, p. 639]), we can find values of 
t that would make Δ  a perfect square. One such value of t is given by 
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and this leads to a rational solution of (4.1) as follows: 
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By the symmetry of i, j, k in (4.2), we know that for ,kji ≠≠  

( ) ( ) ( ).,,,,,, 111 kjizkjiykjix ≠≠  
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From (4.2), we get an identity 
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where kji ≠≠  are arbitrary positive integers, replace i, j, k by ( ),,,1 kjix  

( )kjiy ,,1  and ( ),,,1 kjiz  respectively, to get another identity 
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In fact, we can repeat this process any times to get two arbitrarily long 
Diophantine chains of the type 
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where ....,2,1=n  

However, we cannot prove the chains do not have cycles after some 
steps. On the other hand, the rational solutions, we get in this form, are not 
all positive. 

Example, let ( ) ( ),3,2,1,, =kji  from (4.2), we have 

( ) .2
15,10,2

17,, 111 ⎟
⎠
⎞⎜

⎝
⎛ −=zyx  

Then 

( ) .140
4947,1295

7834,148
5237,, 222 ⎟

⎠
⎞

⎜
⎝
⎛ −=zyx  
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