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Abstract

In this paper, we study a Diophantine problem from mathematical
physics and prove that for every positive integer k, there exist
infinitely many sets of k n-tuples of positive integers with the same
sum and the same sum of their cubes. Each set of k n-tuples is
“primitive” in the sense that the greatest common divisor of all kn
elements is 1. We reduce the corresponding Diophantine system to a
family of elliptic curves and apply Nagell’s algorithm, Nagell-Lutz
theorem and the theorem of Poincaré and Hurwitz to deal with it. In
the end, we raise two open questions about this Diophantine problem.
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1. Introduction

In mathematical physics, a Racah operator is a linear operator acting on a
particular abstract Hilbert space and gives rise to the Racah coefficients. A
full discussion could be found in [1], we could also see the motivation and
the importance of the study of the Racah coefficients in Quantum Theory.
Considerable interest has been shown in the nontrivial zeros of the Racah
coefficients, because these determine vector spaces belonging to the null
space of a Racah operator and accordingly give structural information
concerning the operator itself.

In 1985, Brudno and Louck [4] found the relation between the all
nontrivial zeros of weight 1 6j Racah coefficients and the all non-negative
integer solutions of the Diophantine system

s 3 3 (1.1)

{X1+X2+X3=y1+y2+Y3:
3..3. .3
X +Xp+X3 =Y +Y¥Y2+Y3.

They mentioned that the special parametric solution given by Gerardin ([8, p.
713]) was very useful for their problem.

In 1986, Bremner [2] got more solutions including Gerardin’s. In the
same Yyear, complete solutions were given in terms of cubic polynomials in
four variables by Bremner and Brudno [3], as well as by Labarthe [9], and
the parameter solutions got by them are different in the form.

In 1991, a complete solution in terms of eight variables was given by
Choudhry [5]. In 2010, Choudhry [6] gave a complete four-parameter
solution in terms of quadratic polynomials. Of course, these two parameter
solutions are different from the previous ones.

In this paper, we consider the positive integer solutions of the
Diophantine chains
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D4 =D X3 == D X =B, (1.2)
j=1 j=1 j=1

n>2%k=>1

where A, B are positive integers, which are determined by k n-tuples
(Xi1s Xi2y - Xin)s 1 =1, ..., k. For n =2, k = 2, it has been shown in [11]
that (1.2) have no nontrivial integer solutions, so we consider n > 3. For
n=3 k=2, (1.2) reduce to (1.1). For n = 3, k > 3, Choudhry [6] proved
that (1.2) have a parameter solution in rational numbers, but the solutions are
not all positive, i.e., there are arbitrarily long Diophantine chains of the form
(1.2) with n = 3.

The Diophantine chains (1.2) can be transformed into the following
Diophantine system:

Xi1+-"+Xin = A,
xf’l+-~-+xi3;] = B,

1.3)
Xjj >0,A>0, B >0,

i=1 ..,k j=1.,nn>2k=>1

In 2013, Zhang and Cai [13] studied a Diophantine system which is
similar to (1.3), the method of this paper is inspired by their paper, but we
use the Nagell’s algorithm to get a family of elliptic curves.

We mainly investigate the positive integer solutions of (1.2) or (1.3) for
n >3, k > 1, and prove the following theorem by using the theory of elliptic
curves, including Nagell’s algorithm, Nagell-Lutz theorem and the theorem
of Poincaré and Hurwitz. The method used here is different from the methods
used by Choudhry [5, 6] and the result is stronger than Choudhry’s.
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Theorem 1. For n>3, k=1, the Diophantine chains (1.2) have
infinitely many coprime positive integer solutions. Equivalently, for every
positive integer k, there exist infinitely many primitive sets of k n-tuples of
positive integers with the same sum and the same sum of their cubes.

A set S of n-tuples of positive integers is called primitive if the greatest
common divisor of all elements of all n-tuples of S is 1.

In geometry, we can consider (1.3) as the intersection of a hyperplane
and a hypersurface. To find the integer points on their intersection, we fix
n — 3 variables in the n-tuples, then the problem is transformed into finding
integer points on a family of cubic curves, which is essentially a family of
elliptic curves. Hence, we can use the theory of elliptic curves to deal with
the new problem. The exact process will be showed in Sections 2 and 3.

2. Preliminaries

In this section, we give two propositions, where Proposition 3 is the key
step to prove our theorem. And the proofs of these two propositions are the
applications of the theory of elliptic curves and need many calculations.

In fact, in order to prove the theorem, we only need the case for n = 3 of
Proposition 2. However, Proposition 2 and its proof are of interest for their
own sake, so it is worth including them even though they provide more
information than it is needed.

Proposition 2. When n > 3, the Diophantine system

n(n +1)
R T
2.1
3 3 n2(n+1)2 21)
X{ + o+ Xy :T

has infinitely many rational solutions.
Proof. It is easy to see that Xy =1, Xo = 2, ..., X, = n is a solution of
(2.1). Taking x; =1, Xo = 2, ..., Xy_3 = h — 3, we have

{xn_2 + Xy + Xp =3(n-1),

X3, +x3 4+ x5 =3n-1)(n? - 2n +3).
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Eliminating x,_», we get
3x2 2 2 2
n—1Xn + 3Xn_1Xn + 90 —n)xn_q + 90— n)x;y + 18— n)Xp_1Xp
+27(n = 1)%(Xy_q + X,) — 6(n —=1)(2n —1)(2n - 3) = 0,

leading to

2 2
3 Jn +3( Xn ) +9(1—n)i+9(1—n)( Xn ) L
Xn-1 Xn-1 Xn-1 Xn-1/) Xn-1

+18(1— )X Xl +27(n—1)2{21 + Jn 21 j

Xn-1 Xn-1 X1 -1 x4
1
-6(n-1)(2n-1)(2n -3)—5—=0.
Xn-1

Putting

y= X Cv= 1 ,

Xn-1 Xn-1
we have

—6(n —1)(2n —1)(2n - 3)v3 + 9(L - n)u?v + 27(n — 1)2uv2 +3u°

+18(1— n)uv + 27(n —=1)%v% + 3u + 91— n)v = 0.

Next, we use the Nagell’s algorithm ([7, p. 115]) to transform the above
equation into the Weierstrass form. Let both sides of the above equation be

divided by v3, and let t = % we get
(9(1 — n)t? + 27(n = 1)?t — 6(n —1)(2n —1)(2n — 3))V?
+(3t2 +18(1— n)t + 27(n —1)*)v + 3t + 91— n) = 0.

Because of the coefficient 9(1— n)t? + 27(n —1)2t -6(n-1)(2n-1)(2n-3)
is not zero for n >3 and any t € Q, we can consider it as a quadratic
equation of v, if it has rational solutions, then the discriminant should be a
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perfect square, i.e.,

A(t) = 9(t — 3n + 3)(t2 + (3n — 3)t? — 9(n — 1%t + (n —1)(5n> —10n — 3))
is a square of some rational number.

Let
p = tA(t)
= 9(t — 3n + 3)(t3 + (3n = 3)t2 = 9(n —1)°t + (n —1)(5n? —10n — 3))t*,
putting t =3n -3 + % we have

p=72(n-1)(2n —1)(2n — 3)7° + 324(n — 1)°t> —108(n — 1)t + 9.

Taking the transformation

X Y2
wo-(% %)

where ¢ = 72(n —1)(2n —1)(2n - 3), we get a family of elliptic curves
E, Y2 = X3 +324(n-1)?X2% + 7773(n = 1)%(2n = 1)(2n - 3) X
+216%(n —1)%(2n — 1)?(2n - 3)?,
where n > 3 is a positive integer.

The birational transformation of this process is

_ -Y - 216(n -1)(2n -1)(2n - 3)

Xn-1
6X (2.2)
3(n—1)(X +24(2n —1)(2n - 3))
Xp = ,
X
the inverse transformation is
72(n —1)(2n -1)(2n - 3)
X = .
Xp —3n +3 2.3)
v _ 216(n —1)(2n —=1)(2n —3)(3n — 3 — 2Xy_1 — X) '

Xp —3n+3
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The discriminant of Ej, is
A(n) = 58773123072(n — 1)*(2n — 1)3(2n - 3)3,
where n > 3, itis easy to see that A(n) = 0, i.e., E,, is nonsingular.

Noting that x; =1, X, = 2, ..., X, = n is a solution of (2.1), let x,_; =

n—-1 x, = n in(2.3), we get
X =-72(n-1)(2n-1), Y =216(n-1)(2n -1).

It means that the point P = (=72(n —1)(2n —1), 216(n —1)(2n —1)) lies on

E,. Using the group law on the elliptic curve, we obtain the points
[2]P = (144(n -1)(2n —1), —216(n —1)(2n —1)(18n - 17)),
[3]P = (—4(6n — 5)(6n — 7), 8(108n? — 216n + 109)),
[4]P = (X4, Ya),

where

_ 288(n —1)(2n —1)(18n —19)
(18n —17)? ’

X4

_216(n —1)(2n —1)(11664n* — 42768n° + 57456n° — 33084n + 6731)
(18n-17)°

Yy

To prove that there are infinitely many rational points on E,,, it is enough
to find a rational point on E, with x-coordinate not in Z. We consider the
x-coordinate of the point [4]P, when the numerator of the x-coordinate of it

is divided by the denominator, the remainder equals

2080

r =-704n + 3

for n > 3, ris not an integer, and the denominator (18n —17)2 is an integer,

then X, is not an integer, by the Nagell-Lutz theorem ([10, p. 56]), [4]P is
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a point of infinite order, hence E, has infinitely many rational points for
n > 3. By the birational transformation (2.2), we have

Y -216(n-1)(2n -1)(2n - 3)
n-2 = 6X !

then the Diophantine system (2.1) has infinitely many rational solutions. [

Next, we state Proposition 3, and the proof is relatively simpler than
Proposition 2, which is due to the theorem of Poincaré and Hurwitz, this is
the key point in our paper.

Proposition 3. For n > 3, the Diophantine system (2.1) has infinitely
many positive rational solutions.

Proof. Because of X =1, X, = 2, ..., X,_3 = n — 3, to prove that there
are infinitely many Xj > 0, j=1, .., n, we only need to prove Xj > 0,

j=n-2,n-1n. From (2.2) and x,_o, we have the following equivalent

condition:
Y —-216(n-1)(2n -1)(2n -3
oy = b-DEn-9n-3)
-Y - 216(n-1)(2n -1)(2n -3
Xn—l = ( 6))(< )( ) > 0’
3(n—1)(X +24(2n -1)(2n - 3))
h= X >0

© X <—=24(2n-1)(2n - 3),|Y | < 216(n —1)(2n —1)(2n - 3). (2.4)

In virtue of the theorem of Poincaré and Hurwitz ([12, p. 78]), E,, has

infinitely many rational points in every neighborhood of any one of them.
Hence, if we find a rational point satisfies (2.4), then we can prove that there
are infinitely many rational points satisfy (2.4). It is easy to check that for
n > 3, the points P and [3]P satisfy (2.4). Therefore, there are infinitely
many rational points on E, satisfying (2.4), then we prove that (2.1) has

infinitely many positive rational solutions. O
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Example for n = 3, from the points

(X, Y) = (_432, 1296), (_572, 364), (—97511580 —243727681320)’

190969 ' 83453453
we get

(X0, Xy, x) = (1, 2, 3), (318 28 113) (319586 674461 182271
L 72 7807 %) (143 333 39 ) (180577 ' 219811 156883 )

6000

r4000

F2000

r-2000

r-4000

r-6000

4
U555 e

Figure 1. E3, x = -360 and y = +6480.

In Figure 1, we display the elliptic curve Egz and the three lines of (2.4),

from it, we find that the rational points, lie on the closed curve C, satisfy
(2.4).

3. The Proof of Theorem 1

Proof. Take any k positive rational solutions in (2.1), denote
(Xizs -0 Xin), 1=1, ..., k, where X3 =1, Xjp =2, .., Xj n_3 =n—-3. Letd

be the least common denominator of all the numbers Xjj (j=1..,n,i<k),
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we have

_T’ aij €Z+, (gcdi,j(aij), d)=1,

where aj = d, aj, = 2d, ..., 8 ,_3 = (n - 3)d.

Then

n n 2 2
nn+1 3 n°(n+1 3 .
Z;‘aij=%d, Z;aij=¥d (ISk),
1= 1=

hence

ged;, j(a5) = 1.
For two sets of solutions {(Xi{, ..., Xin), i <k} and {(xX{, ..., Xin), i <k},
if the sets of n-tuples of positive integers {(aj, ..., @jn), i <k} and
{(afq, .., @jp), i <k} coincide, then d =d’. Hence, the sets of solutions
themselves coincide.

By Proposition 3, there are infinitely many choices of k n-tuples from an
infinite set, and gcd; j(aij) =1, hence for every positive integer Kk, there

exist infinitely many primitive sets of k n-tuples of positive integers with the
same sum and the same sum of their cubes. O

Example for n = 3, from the positive rational triples

(X, Xo, %3) = (L, 2, 3) 318 29 113) (319586 674461 182271
L 728 » & 271437 333" 39 ) (180577 ' 219811’ 156883’

we have d = 33853311921, then the three triples of positive integers
(33853311921, 67706623842, 101559935763),
(75282190146, 29749880173, 98087801207),
(59913746178, 39331712277, 103874413071)

have the same sum 203119871526 and the same sum of their cubes
1396709184949924985734645154986596.
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4. Two Open Questions

When we communicated with Professor Michael Zieve, he posed some
questions, where the following two are interesting.

Question 4. Whether there are infinitely many n-tuples of positive
integers have no common element with the same sum and the same sum of
their cubes for n > 4?

In this paper, we do it for n =3 by using (2.2), x,_, and some
calculations. But for n = 4, we get the rational quadruples which all have
the form (1, x, y, z), there is a common element 1 for all rational quadruples.

It is natural to use a more restrictive definition of “primitive”, i.e., all the
n-tuples have no common element and the greatest common divisor of all
elements is 1. Then Question 4 is whether there are infinitely many
“primitive” n-tuples of positive integers with the same sum and the same sum
of their cubes for n > 4.

We conjecture that the answer to Question 4 is yes, but we cannot prove
it for n > 4. There are some examples for n = 4, such as (1, 2, 13, 24) and

(4, 5, 6, 25) have the same sum 40 and the same sum of their cubes 16030,
(4, 2,17, 20) and (3, 6, 8, 23) have the same sum 40 and the same sum of
their cubes 12922, (1, 2,19, 24) and (4, 6, 9, 27) have the same sum 46
and the same sum of their cubes 20692.

Question 5. For which triples (i, j, k) of positive integers such that the
Diophantine system

4.1
BaydaeB ity B @1

{x+y+z=i+j+k,
has infinitely many rational solutions?

To this problem, we get an incomplete result but very interesting.
Eliminating z of (4.1), we get

i+ j+k-yX°—(+j+k-yPx+({+j+ky>—(i+j+k?y
+(+j)(j+k)k+j)=0.
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Noting that (x, y, z)=(i, j, k) is a solution of (4.1), let y=t(x—i)+ j in
the above equation, we have

(Xx— 1) (2 +)X% = (20 + j + K)t? + 2(i + K)t + i + k)X
+(i% + ik +ij)t? + (i = 2ik — j2 + kD)t + (i + k)k) = 0.
Solving it, we get

- i+ j+Kt2+ 2+ K)t+i+k VA
’ 2t +1) '

where
A=(j+ K% +4j(j + Ot +202i% +ij + ik + jk +2j% —k?)t?
+4i(i + Kt + (i + k)2

If x is a rational number, then we need A to be a perfect square. Following
the usual procedure described by Dickson ([8, p. 639]), we can find values of
t that would make A a perfect square. One such value of t is given by

i2 _ k2

2 -k2

t=-—

and this leads to a rational solution of (4.1) as follows:

.3 .3 3 .. .2 .92
. i+ j° +k° —ijk —ij° —ik
e (5 (= R

.3 .3 3 . 2 o2
i, o) =y = e TIE g

(i, | k)zzzi3+j3+k3—ijk—i2k—j2k
Y (i-k)(j—k) '

By the symmetry of i, j, k in (4.2), we know that for i = j = k,

xa(i, J, k) = ya(i, 5, k) # (i, §, k).
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From (4.2), we get an identity
(i, J, K)+ (i, oK)+ (i, §, k) =i+ j+Kk,
{ﬁ@Lkﬁ+n@ka+a@ka=F+F+k?
where i = j # k are arbitrary positive integers, replace i, j, k by x(i, j, k),
y1(i, j, k) and z(i, j, k), respectively, to get another identity
Xa(i, J, k) + y2(i, J, k) + 220, J, k)
=% (0, J, k) + (i, J, k) + 7, J, k),
xo(i, J, K)° + ya(i, i, k) + 25, , k)
= (i, J, )%+ yali, J, K)° + (i, k)%,

In fact, we can repeat this process any times to get two arbitrarily long
Diophantine chains of the type

xn(i, J, K)+ Yo(i, J, k) + 2n(i, J, k)
=iy § K)ol B k) i, B k) =i+ kK,
Xn(i, § K)® + yn(i, §, K)® + z4(i, . k)

==, J, K+, § k)3 + G k) =i+ B+ kS,

where n =1, 2, ....

However, we cannot prove the chains do not have cycles after some
steps. On the other hand, the rational solutions, we get in this form, are not
all positive.

Example, let (i, j, k) = (1, 2, 3), from (4.2), we have

17 15
(X, Y1, 71) = (71 -10, ?)-

Then

(X Yo, 25) = ~5237 7834 4947
21 Y2 22 148 ' 1295°' 140 )
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