\mathscr{G}_w -CLOSED SETS IN WEAK STRUCTURE SPACES

Jeeranunt Khampakdee and Chawalit Boonpok

Department of Mathematics Faculty of Science Mahasarakham University Mahasarakham, 44150, Thailand e-mail: chawalit.b@msu.ac.th

Abstract

In this paper, we introduce the notion of \mathcal{G}_w -closed sets in weak structure spaces. Also, we give some characterizations and applications of \mathcal{G}_w -closed sets. Finally, some characterizations of \mathcal{G}_w -regular and \mathcal{N}_w -normal spaces have been given.

1. Introduction

Császár [3] introduced a generalized structure called *generalized* topology. Also, Császár [2, 4] introduced and studied generalized operators. After then, Császár [1] introduced a new notion of structures called *weak* structure. Every generalized topology [3] and every minimal structure is a weak structure. In [1], Császár defined some structures and operators under

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: 54A10.

Keywords and phrases: weak structure, weak structure space, \mathscr{G}_w -closed set, \mathscr{R}_w -regular space, \mathscr{N}_w -normal space.

This research was financially supported by Mahasarakham University.

Submitted by K. K. Azad

Received March 4, 2013

more general conditions. Levine [6] introduced the concept of generalized closed sets. This notion has been studied extensively, in recent years, by many topologies. A subset A of a topological space (X, τ) is said to be generalized closed (briefly, g-closed) if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . In this paper, the notion of \mathscr{G}_w -closed sets in weak structure spaces and their properties are discussed. Also, we give some applications of \mathscr{G}_w -closed sets.

2. Preliminaries

Let X be a nonempty set and $w \subseteq \mathscr{P}$, where \mathscr{P} is the power set of X. Then w is called a *weak structure* [1] on X if $\varnothing \in w$. A nonempty set X with a weak structure w, is denoted by the pair (X, w) and is called a *weak structure space* (X, w). The elements of w are called w-open sets and the complements of w-open sets are called w-closed sets. For a weak structure w on X, the intersection of all w-closed sets containing a subset A of X is denoted by $c_w(A)$ and the union of all w-open sets contained in A is denoted by $i_w(A)$. The following lemmas will be useful in the sequel.

Lemma 2.1 [1]. Let w be a weak structure on X and A, $B \subseteq X$. Then $i_w i_w(A) = i_w(A)$, $c_w c_w(A) = c_w(A)$, $c_w(X - A) = X - i_w(A)$, $i_w(X - A) = X - c_w(A)$ and $A \subseteq B$ implies $i_w(A) \subseteq i_w(B)$ and $c_w(A) \subseteq c_w(B)$.

Lemma 2.2 [1]. Let w be a weak structure on X and $A \subseteq X$. Then $x \in i_w(A)$ if and only if there exists a w-open set U such that $x \in U \subseteq A$.

Lemma 2.3 [1]. Let w be a weak structure on X and $A \subseteq X$. Then $x \in c_w(A)$ if and only if $U \cap A \neq \emptyset$ whenever $x \in U \in w$.

Lemma 2.4 [1]. Let w be a weak structure on X and $A \subseteq X$. If $A \in w$, then $A = i_w(A)$ and if A is w-closed, then $A = c_w(A)$.

3. \mathscr{G}_{w} -closed Sets

In this section, we introduce the notion of \mathcal{G}_w -closed sets in weak structure spaces and give characterizations of \mathcal{G}_w -closed sets.

Definition 3.1. Let (X, w) be a weak structure space. A subset A of X is said to be \mathscr{G}_w -closed if $c_w(A) \subseteq U$ whenever $A \subseteq U$ and $U \in w$. The complement of a \mathscr{G}_w -closed set is said to be a \mathscr{G}_w -open set.

Remark 3.2. For a weak structure space (X, w), every w-closed set is a \mathcal{G}_w -closed set. The converse is not true is shown by the following example.

Example 3.3. Let $X = \{a, b, c\}$ and $w = \{\emptyset, \{a\}\}$ be a weak structure on X. It is easy to check that $A = \{a, c\}$ is \mathcal{G}_w -closed but not w-closed.

The next two examples show that the union and the intersection of two \mathcal{G}_w -closed sets are not, in general, \mathcal{G}_w -closed.

Example 3.4. Let $X = \{a, b, c\}$ and $w = \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}\}$ be a weak structure on X. Then it can be easily checked that $A = \{a\}$ and $B = \{c\}$ are two \mathscr{G}_W -closed sets and $A \cup B = \{b, c\}$ is not a \mathscr{G}_W -closed set.

Example 3.5. Let $X = \{a, b, c\}$ and $w = \{\emptyset, \{a\}, \{c\}\}$ be a weak structure on X. Then it can be easily checked that $A = \{a, c\}$ and $B = \{a, b\}$ are two \mathcal{G}_W -closed sets and $A \cap B = \{a\}$ is not a \mathcal{G}_W -closed set.

Proposition 3.6. Let (X, w) be a weak structure on X. If A is \mathcal{G}_w -closed, then $c_w(A) - A$ does not contain any nonempty w-closed set.

Proof. Let F be a w-closed subset of X such that $F \subseteq c_w(A) - A$, where A is \mathscr{G}_w -closed. Since X - F is w-open, $A \subseteq X - F$ and A is \mathscr{G}_w -closed, $c_w(A) \subseteq X - F$ and thus $F \subseteq X - c_w(A)$. Thus, $F \subseteq [X - c_w(A)] \cap c_w(A) = \emptyset$ and hence $F = \emptyset$.

Corollary 3.7. Let (X, w) be a weak structure space and A be a \mathcal{G}_w -closed subset of X. Then $c_w(A) = A$ if and only if $c_w(A) - A$ is w-closed.

Proof. Let A be a w-closed set. If $c_w(A) = A$, then $c_w(A) - A = \emptyset$, and $c_w(A) - A$ is a w-closed set.

Conversely, let $c_w(A) - A$ be a w-closed set, where A is \mathscr{G}_w -closed. By Proposition 3.6, $c_w(A) - A$ does not contain any nonempty set. Since $c_w(A) - A$ is a w-closed subset of itself, $c_w(A) - A = \emptyset$ and hence $c_w(A) = A$.

Theorem 3.8. Let (X, w) be a weak structure space and $A \subseteq X$. Then A is \mathscr{G}_w -closed if and only if $c_w(\{x\}) \cap A \neq \emptyset$ for every $x \in c_w(A)$.

Proof. Let A be a \mathscr{G}_w -closed set and suppose that there exists $x \in c_w(A)$ such that $c_w(\{x\}) \cap A = \emptyset$. Therefore, $A \subseteq X - c_w(\{x\})$, and so $c_w(A) \subseteq X - c_w(\{x\})$. Hence $x \notin c_w(A)$, which is a contradiction.

Conversely, suppose that the condition of the theorem holds and let U be any w-open set containing A. Let $x \in c_w(A)$. Then, by hypothesis $c_w(A) \cap A \neq \emptyset$, so there exists $y \in c_w(\{x\}) \cap A$ and so $y \in A \subseteq U$. Thus, $\{x\} \cap U \neq \emptyset$. Hence $x \in U$, which implies that $c_w(A) \subseteq U$. This shows that A is \mathscr{G}_w -closed.

Proposition 3.9. Let (X, w) be a weak structure space and $A, B \subseteq X$. If A is \mathcal{G}_w -closed such that $A \subseteq B \subseteq c_w(A)$, then B is \mathcal{G}_w -closed.

Proof. Let $B \subseteq U \in w$. Since A is \mathscr{G}_w -closed and $A \subseteq U$, $c_w(A) \subseteq U$. Now, $B \subseteq c_w(A)$, $c_w(B) \subseteq c_w(A)$ and hence $c_w(B) \subseteq U$.

Theorem 3.10. Let (X, w) be a weak structure space and $A \subseteq X$. Then A is \mathcal{G}_w -open if and only if $F \subseteq i_w(A)$ whenever $F \subseteq A$ and F is w-closed.

Proof. Let A be a \mathscr{G}_w -open set and $F \subseteq A$, where F is w-closed. Then X - A is a \mathscr{G}_w -closed set contained in a w-open set X - F. Hence $c_w(X - A) \subseteq X - F$, i.e., $X - i_w(A) \subseteq X - F$. So $F \subseteq i_w(A)$.

Conversely, suppose that $F \subseteq i_w(A)$ for any w-closed set F whenever $F \subseteq A$. Let $X - A \subseteq U$, where $U \in w$. Then $X - U \subseteq A$ and X - U is w-closed. By assumption, $X - U \subseteq i_w(A)$ and hence $c_w(X - A) = X - i_w(A) \subseteq U$. Therefore, X - A is \mathscr{G}_w -closed and hence A is \mathscr{G}_w -open. \square

Theorem 3.11. Let (X, w) be a weak structure space. Then the following properties are equivalent:

- (1) for every w-open set U of X, $c_w(U) \subseteq U$;
- (2) every subset of X is \mathcal{G}_w -closed.

Proof. (1) \Rightarrow (2) Let A be any subset of X and $A \subseteq U \in w$. By (1), $c_w(U) \subseteq U$ and hence $c_w(A) \subseteq c_w(U) \subseteq U$. Hence, A is \mathscr{G}_w -closed.

(2) \Rightarrow (1) Let $U \in w$. By (2), U is \mathscr{G}_w -closed and hence $c_w(U) \subseteq U$. \square

Proposition 3.12. Let (X, w) be a weak structure space and A be a subset of X. If A is w-open and \mathcal{G}_w -closed, then A is w-closed.

Proof. This is obvious. \Box

Proposition 3.13. Let (X, w) be a weak structure space and A be a subset of X. If A is \mathscr{G}_w -open, then U = X whenever U is w-open and $i_w(A) \cup (X - A) \subseteq U$.

Proof. Let A be a \mathscr{G}_w -open set and $U \in w$ such that $i_w(A) \cup (X - A)$ $\subseteq U$. Then $X - U \subseteq [X - i_w(A)] \cap A$, i.e., $X - U \subseteq c_w(X - A) - (X - A)$. Since X - A is \mathscr{G}_w -closed, by Proposition 3.6, $X - U = \emptyset$ and hence X = U. **Proposition 3.14.** Let (X, w) be a weak structure space and A be a subset of X. If A is \mathcal{G}_w -open and $i_w(A) \subseteq B \subseteq A$, then B is \mathcal{G}_w -open.

Proof. We have $X - A \subseteq X - B \subseteq X - i_w(A) = c_w(X - A)$. Since X - A is \mathscr{G}_w -closed, it follows from Proposition 3.9 that X - B is \mathscr{G}_w -closed and hence B is \mathscr{G}_w -open.

4. Some Separation Axioms in Weak Structure Spaces

Definition 4.1. A weak structure w on a nonempty set X is said to have property \mathcal{H} if $X \in w$ and the union of elements of w belongs to w.

Lemma 4.2. Let X be a nonempty set and w be a weak structure on X satisfying property \mathcal{H} . For a subset A of X, the following properties hold:

- (1) $A \in w$ if and only if $i_w(A) = A$;
- (2) A is w-closed if and only if $c_w(A) = A$.

Recall that a topological space (X, τ) is called a T_1 -space [6] if for every g-closed set is closed or equivalently [5] if every singleton is open or closed. We introduce the following new definition:

Definition 4.3. A weak structure space (X, w) is called a $T_{\frac{1}{2}}^{w}$ -space if for every \mathscr{G}_{w} -closed set is w-closed.

Theorem 4.4. Let (X, w) be a weak structure space and w have property \mathcal{H} . Then the following properties are equivalent:

(1)
$$X$$
 is a $T_{\frac{1}{2}}^{w}$ -space;

(2) every singleton is w-closed or w-open.

Proof. (1) \Rightarrow (2) Suppose that $\{x\}$ is not *w*-closed subset for some $x \in X$. Then $X - \{x\}$ is not *w*-open and hence X is the only *w*-open set containing $X - \{x\}$. Hence, $X - \{x\}$ is \mathscr{G}_w -closed. Since X is a $T_{\frac{1}{2}}^w$ -space, $X - \{x\}$ is *w*-closed and hence $\{x\}$ is *w*-open.

 $(2)\Rightarrow (1)$ Let A be a \mathscr{G}_w -closed subset of X and $x\in c_w(A)$. Suppose that $x\not\in A$. (i) In case the singleton $\{x\}$ is w-closed, $A\subseteq X-\{x\}$. Since A is a \mathscr{G}_w -closed set and $X-\{x\}$ is a w-open, $c_w(A)\subseteq X-\{x\}$ and hence $\{x\}\subseteq X-c_w(A)$. Therefore, $\{x\}\subseteq c_w(A)\cap [X-c_w(A)]=\varnothing$. This is a contradiction. (ii) In case the singleton $\{x\}$ is w-open, since $x\in c_w(A)$, $\{x\}\cap A\neq\varnothing$ and $x\in A$. This is a contradiction. Therefore, $x\in A$ and hence $c_w(A)\subseteq A$. This shows that X is T_1^w -space.

Definition 4.5. A weak structure space (X, w) is said to be \mathcal{R}_w -regular if for each w-closed set F of X and each $x \notin F$, there exist disjoint w-open sets U and V such that $x \in U$ and $F \subseteq V$.

Theorem 4.6. Let (X, w) be a weak structure space and w have property \mathcal{H} . Then the following properties are equivalent:

- (1) X is \mathcal{R}_w -regular;
- (2) for each $x \in X$ and each $U \in w$ with $x \in U$, there exists $V \in w$ such that $x \in V \subseteq c_w(V) \subseteq U$;
 - (3) for each w-closed set F of X, $\bigcap \{c_w(V) : F \subseteq V \in w\} = F$;
- (4) for each $A \subseteq X$ and each $U \in w$ with $A \cap U \neq \emptyset$, there exists $V \in w$ such that $A \cap V \neq \emptyset$ and $c_w(V) \subseteq U$;

- (5) for each nonempty subset A of X and each w-closed subset F of X with $A \cap F = \emptyset$, there exist $V, W \in w$ such that $A \cap V \neq \emptyset$, $F \subseteq W$ and $W \cap V = \emptyset$;
- (6) for each w-closed set F and $x \notin F$, there exist $U \in w$ and a \mathcal{G}_w -open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$;
- (7) for each $A \subseteq X$ and each w-closed set F with $A \cap F = \emptyset$, there exist $U \in w$ and a \mathcal{G}_w -open set V such that $A \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$.
- **Proof.** (1) \Rightarrow (2) Let $x \notin X U$, where $U \in w$. Then there exist disjoint $G, V \in w$ such that $X U \subseteq G$ and $x \in V$. Thus, $V \subseteq X G$ and so $x \in V \subseteq c_w(V) \subseteq X G \subseteq U$.
- $(2) \Rightarrow (3) \text{ Let } X F \in w \text{ with } x \in X F. \text{ Then, by (2), there exists} \\ U \in w \text{ such that } x \in U \subseteq c_w(U) \subseteq X F. \text{ So } F \subseteq X c_w(U) = V \in w \\ \text{and } U \cap V = \varnothing. \text{ Then } x \in c_w(V). \text{ Thus, } F \supseteq \bigcap \{c_w(V) : F \subseteq V \in w\}.$
- $(3)\Rightarrow (4)$ Let A be a subset of X such that $U\in w$ with $A\cap U\neq\varnothing$. Let $x\in A\cap U$. Then $x\notin X-U$. Hence, by (3), there exists $W\in w$ such that $X-U\subseteq W$ and $x\notin c_w(W)$. Put $V=X-c_w(W)$ which is a w-open set containing x and hence $A\cap V\neq\varnothing$. Now $V\subseteq X-W$ and so $c_w(V)\subseteq X-W\subseteq U$.
- (4) \Rightarrow (5) Let A be a nonempty subset of X and F be a w-closed subset X with $A \cap F = \emptyset$. Then $X F \in w$ such that $A \cap (X F) \neq \emptyset$ and hence by (4), there exists $V \in w$ such that $A \cap V \neq \emptyset$ and $c_w(V) \subseteq X F$. If we put $W = X c_w(V)$, then $F \subseteq W$ and $V \cap W = \emptyset$.
- (5) \Rightarrow (1) Let F be a w-closed set not containing x. Then $F \cap \{x\} = \emptyset$. Thus, by (5), there exist $V, W \in w$ such that $x \in V, F \subseteq W$ and $V \cap W = \emptyset$.

- $(1) \Rightarrow (6)$ This is obvious.
- (6) \Rightarrow (7) Let A be a subset of X and F be a w-closed set with $A \cap F = \emptyset$. Then, for $x \in A$, $x \notin F$, and hence by (6), there exist $U \in w$ and a \mathscr{G}_w -open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$. So $A \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$.
- $(7) \Rightarrow (1)$ Let $x \notin F$, where F is w-closed in X. Since $\{x\} \cap F = \emptyset$, by (7), there exist $U \in w$ and a \mathscr{G}_w -open set W such that $x \in U$, $F \subseteq W$ and $U \cap W = \emptyset$. Then $F \subseteq i_w(W) = V \in w$ and hence $U \cap V = \emptyset$. This shows that X is \mathscr{N}_w -normal.
- **Definition 4.7.** A weak structure space (X, w) is said to be \mathcal{N}_w -normal if for any two disjoint w-closed sets A and B, there exist two disjoint w-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- **Theorem 4.8.** Let (X, w) be a weak structure space and w have property \mathcal{H} . Then the following properties are equivalent:
 - (1) X is \mathcal{N}_w -normal;
- (2) for any pair of disjoint w-closed sets A and B of X, there exist disjoint \mathcal{G}_w -open sets U and V of X such that $A \subseteq U$ and $B \subseteq V$;
- (3) for each w-closed set A and each w-open set B containing A, there exists a \mathcal{G}_w -open set U such that $A \subseteq U \subseteq c_w(U) \subseteq B$;
- (4) for each w-closed set A and each \mathscr{G}_w -open set B containing A, there exists a w-open set U such that $A \subseteq U \subseteq c_w(U) \subseteq i_w(B)$;
- (5) for each w-closed set A and each \mathcal{G}_w -open set B containing A, there exists a \mathcal{G}_w -open set U such that $A \subseteq U \subseteq c_w(U) \subseteq i_w(B)$;
- (6) for each \mathscr{G}_w -closed set A and each w-open set B containing A, there exists a w-open set U such that $c_w(A) \subseteq U \subseteq c_w(U) \subseteq i_w(B)$;

214

(7) for each \mathcal{G}_w -closed set A and each w-open set B containing A, there exists a \mathcal{G}_w -open set U such that $c_w(A) \subseteq U \subseteq c_w(U) \subseteq i_w(B)$.

Proof. (1) \Rightarrow (2) This is obvious.

- $(2) \Rightarrow (3)$ Let A be a w-closed set and B be a w-open set containing A. Then A and X-B are two disjoint w-closed sets. Hence, by (2), there exist disjoint \mathcal{G}_w -open sets U and V of X such that $A \subseteq U$ and $X-B \subseteq V$. Since V is \mathcal{G}_w -open and X-B is a w-closed set, by Theorem 3.10, $X-B\subseteq i_w(V)$. Therefore, $c_w(X-V)=X-i_w(V)\subseteq B$ and hence $A\subseteq U\subseteq c_w(U)\subseteq c_w(X-V)\subseteq B$.
- $(3) \Rightarrow (1)$ Let A and B be two disjoint w-closed subsets of X. Then A is a w-closed set and X-B is a w-open set containing A. Thus, by (3), there exists a \mathscr{G}_w -open set U such that $A \subseteq U \subseteq c_w(U) \subseteq X-B$. Thus, by Theorem 3.10, $A \subseteq i_w(U)$, $B \subseteq X c_w(U)$, where $i_w(U)$ and $X c_w(U)$ are two disjoint w-open sets.
 - $(4) \Rightarrow (5)$ and $(5) \Rightarrow (2)$ are obvious.
 - $(6) \Rightarrow (7)$ and $(7) \Rightarrow (3)$ are obvious.
- $(3) \Rightarrow (5)$ Let A be a w-closed set and B be a \mathscr{G}_w -open set containing A. Since A is w-closed and B is \mathscr{G}_w -open, by Theorem 3.10, $A \subseteq i_w(B)$. Thus, by (3), there exists a \mathscr{G}_w -open set U such that $A \subseteq U \subseteq c_w(U) \subseteq i_w(B)$.
- (5) \Rightarrow (7) Let A be a \mathscr{G}_w -closed subset of X and B be a w-open set containing A. Then $c_w(A) \subseteq B$, where B is \mathscr{G}_w -open. Thus, there exists a \mathscr{G}_w -open set U such that $c_w(A) \subseteq G \subseteq c_w(G) \subseteq B$. Since G is \mathscr{G}_w -open and $c_w(A) \subseteq G$, by Theorem 3.10, $c_w(A) \subseteq i_w(G)$. Put $U = i_w(G)$. Then U is w-open and $c_w(A) \subseteq U \subseteq c_w(U) = c_w[i_w(G)] \subseteq c_w(G) \subseteq B$.

(6) \Rightarrow (4) Let A be a w-closed set and B be a \mathcal{G}_w -open set containing A. Then, by Theorem 3.10, $c_w(A) = A \subseteq i_w(B)$ and $i_w(B)$ is w-open. Thus, by (6), there exists a w-open set U such that $c_w(A) = A \subseteq U \subseteq c_w(U) \subseteq i_w(B)$.

References

- [1] Á. Császár, Weak structures, Acta Math. Hungar. 131 (2011), 193-195.
- [2] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (2005), 53-66.
- [3] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351-357.
- [4] Á. Császár, Generalized open sets, Acta Math. Hungar. 75 (1997), 65-87.
- [5] W. Dunham, $T_{\frac{1}{2}}$ -spaces, Kyungpook Math. J. 17 (1977), 161-169.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19 (1970), 89-96.